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Abstract

In this modern era of technology, it is becoming more common for

digital devices to be seized as evidence. This has lead to a backlog of

digital evidence to be analysed for court cases. A proposed solution

to this ’data volume challenge’ is to develop digital forensics triage

tool that utilises data mining techniques such as supervised machine

learning. Apparently, no research has yet been published for the de-

velopment of a memory forensics triage tools capable of performing

crime classification of a memory image.

This work explores the development of such a memory forensics triage

tool, labelled MemTri, that can assess the likelihood of criminal ac-

tivity in a memory image, based on evidence data artefacts generated

by several applications. Fictitious illegal firearms suspect activity sce-

narios were performed on virtual machines to generate 60 test mem-

ory images for input into MemTri. Four categories of applications

(i.e. Internet Browsers, Instant Messengers, FTP Client and Docu-

ment Processors) are examined for data artefacts located through the

use of regular expressions. These identified data artefacts are then

analysed using a Bayesian Network, to assess the likelihood that a

seized memory image contained evidence of illegal firearms trading

activity. MemTri’s normal mode of operation achieved a high artefact

identification accuracy performance of 95.7% when the applications’

processes were running, however this fell significantly to 60% as appli-

cations processes’ were terminated. To explore improving MemTri’s

accuracy performance, a second (scan) mode was developed, which

achieved more stable results of around 80% accuracy, even after ap-

plications processes’ were terminated.
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Chapter 1

Introduction

This project focuses on building a memory forensics triage tool, named MemTri,
that has the ability to search for evidence artefacts in a memory image, after
which it provides an output rating that measures the likelihood that a suspect
was engaged in a specific criminal activity. The output ratings generated by
MemTri can then be assessed by a law enforcement officer to determine the best
priority order for performing a full analysis on a set of seized suspect memory
images. To narrow the scope, this project focuses on the identification of evidence
artefacts generated by a selected set of Internet Browsers, Instant Messengers,
Document Processors and FTP Client applications. Also, the memory images in
this work are collected in a Windows7 environment and the evidence searched for
is specifically in relation to an illegal firearms trading investigation. MemTri uses
the Volatility framework [6] to navigate and interpret the Windows7 structures in
the memory image, when searching for evidence artefacts. The evidence artefacts
found are then analysed using a Bayesian Network which incorporates digital
forensics expert’s knowledge gathered through the use of a questionnaire. After
analysis of the evidence artefacts found, MemTri produces a probabilistic output
rating of how relevant all the located evidence is to an illegal firearms trading
investigation.

The ideal reader of this dissertation is expected to have a basic knowledge of
computer science concepts involving volatile memory, operating systems, discrete
mathematics and supervised machine learning. There are chapters dedicated
to explaining the core research areas of this project, i.e. volatile memory and
Bayesian Networks, in a manner that the average reader can follow the work
done in this project.

1.1 Motivation

In this modern age of technology, it is becoming more common for law enforce-
ment personnel to encounter digital devices as part of seized evidence to be exam-
ine. These digital devices include desktops, laptops, mobile phones and tablets
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etc. This growing influx of seized digital devices has generated a backlog of court
case evidence to be forensically examined [7]. A proposed solution for alleviating
this evidence backlog is to develop triage execution tools that incorporate data
mining techniques [8]. The main aim of such triage tools is to quickly assess
whether a digital device contains relevant case evidence or not, and how much
priority should be placed on fully analysing the device.

Though there have been various research into developing crime classification
triage tools for disk and mobile forensics, it appears there has not yet been any
published work on the development of any such similar triage tool for memory
forensics. This was a bit surprising since various research has shown that mem-
ory can contain critical evidence such as internet browsing data, network traffic,
malware, passwords, cryptographic keys and decrypted content, some of which
may never be stored to disk [9, 10]. A possible reason for the apparent low re-
search in developing crime classification triage tools for memory forensics is due
to the complexity in analysing operating system (OS) memory structures, which
is still a fairly adolescent area of research. The open-source tools Volatility [6] and
Rekall [11] have aided in simplifying the analysis of such OS memory structures by
incorporating the academic research done by various authors in reverse engineer-
ing these structures. Therefore, the MemTri application developed in this project,
leverages from the various research incorporated into the Volatility framework [6]
in order to analyse OS memory structures. It was simply decided to utilise the
Volatility framework [6] for this project, due to it being the most widely utilised
and tested memory analysis tool in the academic community. Another factor
that may have contributed to the apparent research in developing crime classifi-
cation triage tools for memory forensics, is due to the fact that acquiring memory
requires careful planning and skill in order to collect a ‘forensically sound’ [12]
memory image, which in-turn has led to the slow adoption of performing memory
image acquisitions by law enforcement departments.

Another challenge in memory forensics is that, if the user terminates the
application process used to perform an illegal activity then the freed virtual
address space is often quickly overwritten by other activity within the operating
system. Based on Garfinkel et al.’s [13] research however, portions of unallocated
memory can remain unchanged for up to 14 days, even when the system is actively
being utilised. Therefore, since some data artefacts may not be overwritten in
unallocated memory space by the OS, it is still possible to extract such data
artefacts for memory analysis, similar to carving for files in a file system. In this
work, MemTri is developed with two modes of operation, namely normal and scan
mode, that give insights for the best methods to process evidence artefacts in a
volatile memory environment.

The Evidence Search Engine (ESE) component of MemTri mainly uses regular
expressions in order to locate evidence artefacts in memory. This approach was
taken based on research done by [10, 14, 15] which showed that intuitive evidence
artefacts can be retrieved by simply searching for ASCII/Unicode data patterns
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generated by specific applications. This regular expressions approach is also
flexible in that it can locate evidence artefacts in a memory image regardless of
the OS environment in which the artefacts were generated. Additionally, regular
expressions can be executed fairly quickly to locate evidence within large datasets.
This intuitiveness, flexibility and speed offered by regular expression evidence
searching methods, are essential traits for the development of an effective digital
forensics triage tool.

The Bayesian Network Analyser (BNA) component of MemTri, as the name
suggests, uses a Bayesian Network to analyse the evidence found by the ESE. An
output rating is then produced that can be used to rank a set of suspect memory
images, based on the likelihood level of criminal activity. It was decided to build
the Bayesian Network based on the model proposed by Ray and Shenoi [16],
since it is simple to interpret and has proven successful in correctly analysing
real-life criminal investigations. Comparative studies have also analysed that
Bayesian approaches to developing digital forensics triage tools, on average have
the best accuracy performance [17] (88.5%) compared to other supervised ma-
chine learning (SML) techniques such as Support Vector Machines, Decision Trees
and K-Nearest Neighbour. This combination of accuracy and ease of interpre-
tation supported by Bayesian Network approaches, are favourable traits when
seeking to triage a criminal investigation. Additionally, of the aforementioned
SML techniques, Bayesian Networks handles missing evidence most eloquently,
since it is naturally incorporated into its design. Handling missing evidence is
particularly a key part of forensics investigations, since evidence can often be
missing due to it being destroyed or not yet discovered.

1.2 Aims and Objectives

The following sections states the various aims and objectives set for this project
to be successfully executed.

1.2.1 Aims

The main aim of this project is to quantitatively measure the likelihood that a
specific criminal offence was committed, based on evidence data artefacts found in
Random Access Memory (RAM), in order to determine the priority that should
be placed on fully examining a set of memory images. To achieve this aim a
Windows7 memory forensics triage tool named MemTri will be developed that
utilises Bayesian Networks and the Volatility Framework.

The secondary aim of this project involves assessing the effectiveness of lo-
cating data artefacts in RAM, after the process that generated the artefact has
terminated.
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1.2.2 Objectives

In order for MemTri to achieve the aims of this project; the following objectives
have been set.

Base Objectives:

1. Build an Evidence Search Engine to extract artefacts from internet browsers,
instant messengers and document processors, and link the evidence arte-
facts to their applications process. The final output of the Evidence Search
Engine is called features.

2. Develop an Evidence Weighting System that assigns numeric weights to
evidence based on the importance/value of an evidence artefact to a criminal
investigation. The system should use either manually entered weights or
automatically assigned weights based on heuristic rules.

3. Develop a mechanism for users to modify the keywords or patterns used to
search for evidence.

4. Design a Bayesian Network Model that incorporates the knowledge of dig-
ital forensics experts about the likelihood that a specific evidence artefact,
if found, has contributed to a performing a specific criminal offence.

5. Build a Bayesian Network Analyser that processes the features found in a
memory image and provides a numeric Bayesian Network output rating,
which is a measurement of the likelihood that a specific criminal offence
was committed

6. Collect a set of training and test memory images at three different phase
points; (1) while the targeted applications are running, (2) immediately
after the targeted applications have been terminated and (3) Five minutes
after the targeted applications have been terminated.

Enhanced Objectives:

1. Build a Case Classifier that provides a numeric Bayesian Network output
rating for two different kinds of criminal offences. For example, MemTri
should provide an output rating for illegal firearms dealership and another
output rating for illegal drugs dealership. The Digital Investigator can then
compare both ratings to determine which of the two criminal offences was
likely committed.

2. Upgrade the Evidence Search Engine to extract evidence artefacts from an
email client and link the artefact to the applications process.
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3. Provide a Case Evidence Report that shows where in the memory image
evidence was found, the application process associated with evidence and
the total number of evidence artefacts found etc. This can help to further
triage the digital investigators criminal investigation by identifying where
the most relevant evidence is likely located and thus where best to begin
his full memory analysis.

1.3 Contributions

The performance of this project contributes to various digital forensics research
such as memory artefact identification, expert knowledge collection and Memory
Forensics Triage. These contributions are expounded in the following subsections.

1.3.1 Memory Artefact Identification

This project provides regular expression patterns that can be used to identify
various types of memory artefacts generated by various applications, namely,
Chrome, Tor, Filezilla, Skype, Wickr, Libre Writer and Microsoft’s Notepad.
This project also confirms the regular expressions patterns designed by [14, 10]
to locate browser memory artefacts generated by visiting websites and performing
Google search engine queries. Further research is also done in developing regular
expressions that capture other kinds of browser artefacts such as those generated
when a file is downloaded. Simon [15] in his research noted that Skype contact
information and communication content can be extracted from physical memory,
however did not provide regular expressions patterns to capture this data. There-
fore, this research confirms the existence of such Skype information in memory
and develops regular expressions to capture these Skype memory artefacts.

1.3.2 Expert Knowledge Collection

A demonstration is given of how to design a questionnaire using SurveyMon-
key [18], that can be used to gather expert knowledge data, which is then encoded
into a Bayesian Network Model. Ray and Shenoi [16] in their development of a
Bayesian Network also utilised a questionnaire approach however the server that
hosted the sample questionnaire is no longer available. Additionally, this work
illustrates the steps taken to translate the expert knowledge from the designed
SurveyMonkey questionnaire into Bayesian Network Model.

1.3.3 Memory Forensics Triage

This project presents a Memory Forensics Triage application named MemTri, that
has the ability to provide an output rating which measures the likelihood level of
a specific criminal activity, found within a memory image. As previously men-
tioned, there appears to be no published research that attempted to develop a
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digital forensics triage tool aimed specifically at analysing criminal activity found
in a memory image, using SML techniques. This work examines the effective-
ness of two designed approaches for locating criminal evidence in memory. The
first approach involves using Volatility [6] framework to dump the memory of
target applications which are then searched for evidence. The second approach
involves scanning the entire memory for evidence. Therefore, the results of this
project gives insights into which of these approaches is generally better suited for
a memory forensics triage environment.

1.4 Outline

The rest of this dissertation is divided into the following parts:

• Chapter 2 – Preliminaries: Introduces the main areas of research utilised
in the development of MemTri.

• Chapter 3 – Bayesian Network: Explains what is Bayes’ Theorem and
how it is utilised in the context of Digital Forensics to analyse hypotheses
and evidence. Steps are also given of how to build a Bayesian Network
model and the significance of the node connections based on logical reason-
ing. Finally, an example is used to demonstrate how statistical inference is
performed within a Bayesian Network using Bayes’ Theorem.

• Chapter 4 – Volatile Memory: Explain what is volatile memory and
where it is located within a modern computer system. The memory man-
agement mechanisms of segmentation and paging are then discussed along
with an illustration of how memory addresses are translated for both mech-
anisms. A close look is taken at the Windows process structure and the
common data fields of forensic interest are highlighted. Finally, an analysis
is made of various memory acquisition techniques in terms of the forensic
quality of the images produced.

• Chapter 5 – Background and Related Work: Discusses the impor-
tance of the contributions made by this project to the area of digital foren-
sics triage. An assessment is also made of other comparative triage work
done using various supervised machine learning techniques. Finally, various
research to locating data artefacts in memory are discussed.

• Chapter 6 – Design and Methodology: Presents the intended design
for the MemTri application. An outline is given of the experiment setup
and memory acquisition steps. Finally, the design details for the two main
components of MemTri are explained.

• Chapter 7 – Implementation: Describes how the design for MemTri was
actually executed.
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• Chapter 8 – Results and Evaluation: Presents the results from the
execution of MemTri on the test images collected. An evaluation is made
of the results and any interesting observations were also highlighted.

• Chapter 9 – Conclusions: Summarises the work done in this project
and highlights challenges and limitations that were encountered. Recom-
mendations are also given for future work that can be undertaken. Finally,
an objective assessment is given of whether the aims and objectives set for
this project were achieved.
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Chapter 2

Preliminaries

This chapter gives an overview of the main areas of research covered in this
project, i.e. Memory Forensics (see Chapter 4) and Bayesian Networks (see
Chapter 3). The area of Memory Forensics, specifically focuses on the analysis
of artefacts found in main memory i.e DRAM, while the Bayesian Network area
focuses on rational decision-making based on evidence (whether present or miss-
ing) given an hypothesis. It is this extraction of artefacts in Memory Forensics
and the rational decision making via statistical inference in Bayesian Network,
that is combined to develop the Memory Forensics Triage (MemTri) application in
this project. The following sections introduce the research areas within Memory
Forensics and Bayesian Networks utilised in this work.

2.1 Memory Forensics

This project focuses on the collection, extraction and analysis of data artefacts
in main memory (i.e. DRAM). As mentioned in Section 4.1, main memory is
volatile, which means that it only maintains its contents when the system is in a
powered-on state. Therefore, this project ideally focuses on collecting a memory
image from a computer that is in a powered-on state. There are various meth-
ods for collecting memory from a computer, which are mainly classified into two
methods, namely hardware-based and software-based methods (see Section 4.6).
There are pros and cons of using either of the aforementioned methods, which
are further explained in Section 4.6. Therefore, the Digital Investigator must be
aware of these limitations and strategically select the best method for the given
circumstance. In this project, a software-based visualisation memory acquisition
technique (see Section 4.6.2.3) is performed using VMware Player [19]. Virtuali-
sation memory acquisition is quick and it produces and high quality [12] memory
image.

The next memory forensics related part of the work done in this project,
involves the extraction of artefacts found in main memory. To accomplish this
task, the Digital Investigator must have a keen understanding of how data is
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managed and structurally stored in main memory. The management of main
memory mainly relies on the functionality provided by the computer’s CPU ar-
chitecture as explained in Section 4.4. Experiments were conducted on computers
that contained microprocessors based on Intel’s IA-32 architecture. The IA-32
microprocessor on the experiment machines are set to operate in protected-mode
which supports the memory management features of segmentation and paging.
These two aforementioned memory management features are explained in Sec-
tion 4.4. It is important for the Digital Investigator to understand how these
memory management features operate in order to correctly interpret where data
is stored. For example, the paging feature is used to implement virtual mem-
ory through a mechanism referred to as ‘demand paging’. With virtual memory
the virtual address that is seen by a running process is different than the actual
physical address in main memory where the data is held. Moreover, the data
can be stored in a page file located on a hard disk, in which case, a page fault
interrupt is initiated to fetch the page from disk into main memory. Therefore,
the CPU has to perform a page address translation (see Section 4.4.2.1) in order
to translate the process’ virtual address into a physical address. This project
specifically focuses on processes running in a Windows 7 OS environment. As
such, when examining the Windows process structures, the Digital Investigator
has to be aware that the virtual addresses referenced within the process’ structure
has to be converted into the actual physical addresses in the memory image. The
Volatility framework [6] has the capability to automatically perform these nec-
essary page address translations, which helps to simplify the extraction of data
from Windows process structures.

The OS of a computer is responsible for generating processes and managing
how its data is stored, accessed and protected. As previously mentioned, this
project focuses on extracting information from processes running in a Windows 7
OS environment. The extracted evidence artefacts from the suspect’s computer
memory image is later analysed using a Bayesian Network (see Chapter 3) to
determine the likelihood that the suspect committed a specific crime (in the case
of this project, Illegal Firearms Trading). In order to locate this critical evidence
in memory, it is beneficial that the Digital Investigator understands the Windows
OS structures used to implement a process (see Section 4.5.2). For example, if
the evidence being sought was likely typed in via the keyboard, the investigator
can focus his examination on heap nodes within the Windows process’ VAD tree
structure, instead of searching the entire process’ virtual address space. Also,
by understanding the structure of a Windows Process, the Digital Investigator
is better able to confirm the accuracy of the results presented by a Memory
Forensics application such as Volatility.

There are two main methods used for locating a Windows process, namely
the enumeration method and the pool scan method. The enumeration method of
locating processes is likely to produce more accurate results, however it is suscep-
tible to malware attack techniques such as Direct Kernel Object Manipulation
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(DKOM) attacks (see Section 4.5.3), which attempts to hide processes from being
detected. Therefore, the Digital Investigator must be able to detect such attacks,
in order to determine if an application’s results may be missing data. The pool
scanning technique of locating processes is not susceptible to DKOM attacks,
however it is more likely to produce false positive results. Details of how these
two process identification methods function are explained in Section 4.5.3. In this
work, MemTri is developed with two modes of operation; a normal mode which
uses the enumeration method to locate processes via Volatility’s ‘pslist’ plug-in
and a scan mode which uses the pool scanning method for locating processes via
Volatility’s ‘psscan’ plug-in.

Chapter 4 gives further details on how data is stored, managed and accessed
in main memory and thus gives the reader a deeper insight into how MemTri is
able to locate evidence artefacts in memory.

2.2 Bayesian Network

A Bayesian Network is an acyclic graph, often modelled to support rational
decision-making, through the performance of statistical inference with Bayes’
Theorem. Bayes’ Theorem (see Section 3.1) was introduced by Rev. Thomas
Bayes to provide a rational way of updating one’s belief of an event occurring in
light of new evidence [20]. The theorem is essentially based on conditional prob-
ability (see Section 3.2) which evaluates the probability of two dependent events
occurring. A favourable feature of Bayesian Networks, which has contributed to
its wide use in forensic disciplines, is its ability to statistically account for missing
evidence [21]. It is common for evidence to be missing or not yet recovered in
forensic investigations. Therefore, Bayesian Networks’ natural ability to consider
missing evidence is valuable in forensics related decision-making processes. Even
more so, with memory forensics investigations, evidence may be missing from
main memory due to it being swapped out to a page file on disk or to it gradually
being overwritten within unallocated memory space by normal OS activity. A
Bayesian Network models the causal/effectual relationship amongst nodes in the
network. (see Section 3.3). Therefore when statistical inference (see Section 3.4)
is performed, all related nodes are automatically updated. This work analy-
ses the evidence extracted from four different types of applications loaded into
main memory, using a Bayesian Network. The inherent features of the Bayesian
Network, such as statistically accounting for missing data and the automatic up-
dating of causal evidence relationships, may prove useful in the development of a
memory forensics triage tool, which aims to provide decision-making support for
prioritising a set of suspect memory images. Chapter 3 goes into further details
on the theory behind Bayesian Networks and thus sheds more light on how the
evidence artefacts discovered by MemTri is actually analysed.
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Chapter 3

Bayesian Network

This chapter sets the foundation for understanding the logical reasoning incor-
porated into MemTri through the use of a Bayesian Network. Logical reasoning
in Bayesian Network is performed through statistical inference using Bayes’ The-
orem and it supports effective decision-making processes. In digital forensics
triage, law enforcement personnel often has to make quick decision based on ev-
idence found on a crime scene. Thus, a soundly built Bayesian Network can
efficiently aid in determining the best course of action to be taken based on the
evidence found.

3.1 Bayes’ Theorem

Bayes Theorem is a formula proposed by Rev. Thomas Bayes that is designed to
update the belief about an event occurring based on the observance of another
related event [20]. Bayes’ Theorem is mathematically stated as follows:

Theorem 1 (Bayes’ Theorem). Let A and B be two dependent events generalized
as e. Additionally, let P (e) be the probability that an event e will occur. Let
P (ei|ej) be the probability of ei occurs given that ej is true. Then, it holds that:

P (A | B) =
P (B | A) P (A)

P (B)
, where P (B) > 0 (3.1)

3.1.1 Bayes’ Theorem and Digital Forensics

In the field of Digital Forensics, Bayes’ Theorem is applied in the context of
updating the belief of a hypothesis H occurring based on the observance of new
evidence [22]. Therefore, in Digital Forensics, Bayes’ Theorem can be applied as
follows:

P (H | E) =
P (E | H) P (H)

P (E)
(3.2)
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Where,

P (H | E) is the ‘Posterior Probability’ which represents the degree of belief
that the hypothesis H occurred after taken into account the evidence E.

P (E | H) is the ‘Likelihood’ that the evidence E will be observed/present
given that the hypothesis event H occurred.

P (H) is the ‘Prior Probability’ which represents the initial belief of the
hypothesis occurring before the evidence E is observed.

P (E) is the ‘Marginal Likelihood’ or ‘Normalising Constant’ which repre-
sents the total probability of the evidence being present whether or not the
hypothesis occurs E.

It is this hypothesis-evidence analysis form of Bayes’ Theorem that is utilised in
modelling the Bayesian Network for the MemTri application.

3.2 Bayesian Probability

3.2.1 Conditional Probability

Bayesian Probability is based on the statistical notion of conditional probabil-
ity [23]. That is, if two events A and B are dependent, the probability of both
events occurring is

P (A ∩B) = P (A | B) P (B) (3.3)

P (A | B) =
P (A ∩B)

P (B)
, where P (B) > 0 (3.4)

And likewise

P (B ∩A) = P (B | A) P (A) (3.5)

P (B | A) =
P (B ∩A)

P (A)
, where P (A) > 0 (3.6)

Equations (3.4) and (3.6) for conditional probability closely resembles Equa-
tion (3.1) given for Bayes Theorem. A simple substitution of P (A ∩B) in Equa-
tion (3.4) with (3.5) will result in (Equation 3.1) given for Bayes’ Theorem. The
following section formally illustrates how Bayes’ Theorem is derived based on
conditional probability.
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3.2.2 Derivation of Bayes’ Theorem

When two events are dependent, we are given based on the multiplication rule of
conditional probability that:

P (A ∩B) = P (B | A) P (A) (1)

And

P (A ∩B) = P (A | B) P (B) (2)

Equating both equations (1) and (2) we get,

P (A | B)P (B) = P (B | A) P (A) (3)

Dividing both sides of equation (3) by P (B) we get

P (A | B) =
P (B | A) P (A)

P (B)
(4)

The result is the formulae for Bayes Theorem, which is utilised to perform
statistical inference within the Bayesian Network, later discussed in Section 3.4 .

3.3 Bayesian Network Model

The Bayesian Network Model is an acyclic graph that encodes the conditional
independence relationship of the graph nodes. There are three kinds of connec-
tions in the Bayesian Network [24] as shown in Figure 3.1. The following section
discusses how the notion of conditional independence is encoded into these three
types of connections.
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3.3.1 Conditional Independence

A B C

(A) Serial / Causal Chain

B

A C B

A C

(B) Diverging / Common Cause (C) Converging / Common Effect

Figure 3.1: Bayesian Network Connections

3.3.1.1 Casual Chain

For Bayesian Network Connection (A) in Figure 3.1, it translates that it is be-
lieved that A causes B to occur which further causes C to occur. If we know
however that B occurred then whether A occurs or not does not affect our belief
about C occurring. A is therefore conditionally independent of C given that B
occurs, i.e. P (C | A ∩B) = P (C | B). This conditional independence can also
be written as (A ⊥⊥ C | B).

3.3.1.2 Common Cause

For Bayesian Network Connection (B) in Figure 3.1, the occurrence of B (the
parent node) causes both A and C (the child nodes) to occur. If A is observed
to have occurred then our belief that the occurrence of A is a result of B oc-
curring will increase. Since our belief that B has occurred increased, it will also
affect our belief that C will also occur. Therefore the occurrence of A indirectly
impacts our belief that C will occur as a result of increasing the belief that B
has occurred. However, if B is known to have occurred then this knowledge
directly impacts our belief of C occurring regardless of whether A is observed
or not. A is therefore conditionally independent of C given that B occurs, i.e.
P (C | A ∩B) = P (C | B) ≡ (A ⊥⊥ C | B).

3.3.1.3 Common Effect

For Bayesian Network Connection (C) in Figure 3.1, both the parent nodes A
and C can cause the child node B (the effect) to occur. A and C are however
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marginally independent (A ⊥⊥ C) as long as B is not known. That is to say that
the probability of A occurring does not affect the probability of C occurring and
vice versa, if B is not known. Therefore if A is known to occur, it will update
our belief about B occurring, however it does not impact our belief about C
occurring and likewise if C is known, it will not impact our belief about A occur-
ring. However, if B is known then A and C becomes conditionally dependent, i.e.
(A 6⊥⊥ C | B), which is directly opposite to the conditional independence relation-
ship previously explained with Casual Chain and Common Cause connections.
That is, if B is known to have occurred then if the probability of A increases
then our belief that B was caused as a result of C occurring will decrease and
vice versa. This can be expressed as P (C | A ∩B) 6=P(C | B) ≡(A 6⊥⊥ C | B).

3.3.2 Translating Bayesian Network Model to Equations

In order to understand the methods for calculating statistical inference within a
Bayesian Network Model (BNM), the first step is to be able to generate the joint
probability equation based on the designed model. The following sections show
how to intuitively determine the equation of a Bayesian Network Model and also
illustrate how conditional independence is naturally translated from the models
design. The general rule that is followed for translating a node, say X, into the
Bayesian Network joint probability equation is P (X | Parents(X)) [25].

Definition 1. Joint Probability: Given two random events x ∈ X and y ∈ Y , the
Joint Probability is the intersection of the events, i.e P (X = x ∩ Y = y)

3.3.2.1 BNM #1: Single Node

A

Equation for BNM 1:

P (A)

Since there is only one node with no parents the equation of the graph is simply
P (A).

15



3.3 Bayesian Network Model

3.3.2.2 BNM #2: Two Node Serial Connection

A B

Joint Probability Equation for BNM 2:

P (A ∩B) = P (A) P (B | A)

Breaking down the formation of the equation into steps, the first node A with
no parents is simply written as P (A) while the second child node B with the
parent node A is written as P (B | A). As you may have noticed, this is the same
equation for conditional probability’s multiplication rule of dependent events[refer
to rule definition]. Therefore since the simplest connection in the graph can be
expressed in terms of a conditional probability equation, it intuitively highlights
that Bayes Theorem can be applied to perform statistical inference within a
Bayesian Network.

3.3.2.3 BNM #3: Three Nodes Serial Connection

A B C

Joint Probability Equation for BNM 3:

P (A ∩B ∩ C) = P (A) P (B | A) P (C | A ∩B)

= P (A) P (B | A) P (C | B)

The first line of the equation for the BNM 3 serial connection is the same as the
chain rule in conditional probability. This incorporation of conditional probabil-
ity’s chain rule intuitively shows how data can be logically propagated through-
out the Bayesian Network when performing statistical inference later discussed
in Section 3.4. The second line is the final reduced form of the equation after
considering the conditional independence relationship between A and C (see Sec-
tion 3.3.1.1). That is, the probability of the node C, which a child of B and
a grandchild of A, initially represented as (C | A ∩B) is the same as P (C | B).
Therefore the general rule of translating a node X to Bayesian Network joint
probability equation form, i.e. P (X | Parents(X)), holds.

Definition 2. Conditional Probability’s Chain Rule: For a set of n events, the
chain rule states that , P (A1 ∩ A2 ∩ A3 ∩ .... ∩ An) = P (A1) P (A2 | A1) P (A3 |
A2 ∩A1) .... P (An | An−1 ∩An−2 ∩ ... ∩A1).
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3.3 Bayesian Network Model

3.3.2.4 BNM #4: Diverging Connection

B

A C

Equation for BNM 4:

P (A ∩B ∩ C) = P (A) P (A | B ∩ C) P (C | A ∩B)

= P (A) P (A | B) P (C | B)

Similar to as explained in BNM 3, the notion of conditional independence
in Bayesian Network diverging connections results in P (A | B ∩ C) = P (A | B)
and P (C | A ∩B) = P (C | B) shown in the final line of the equation for BNM
4. This final form of the equation additionally supports that the general rule
of P (X | Parents(X)) can be also directly applied to diverging connections of a
Bayesian Network.

3.3.2.5 BNM #5: Converging Connection

B

A C

Equation for BNM 5:

P (A ∩B ∩ C) = P (A) P (C) P (B | A ∩ C)

In this case, we note that the probability of the node B is conditionally
dependent on A and C, i.e. P (B | A ∩ C) 6=P(B | C) and similarly P (B | A ∩ C)
6=P(B | A), as explained in Section 3.3.1.3. Therefore, since B has two parents,
applying the general rule of P (X | Parents(X)) is shown to correctly interpret
this conditionally dependency portion of the equation i.e, P (B | A ∩ C).
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3.4 Bayesian Inference

3.4 Bayesian Inference

Bayesian Inference refers to performing statistical inference through the use of
Bayes Theorem. Statistical inference is a process where conclusions are derived
from probabilistic data. Therefore, statistical inference provides support for logi-
cal decision making in areas where there is uncertainty. As mentioned previously,
the Digital Forensics form of Bayes’ Theorem given by Equation 3.2 is used to
perform Bayesian Inference within this project as restated below:

P (H | E) =
P (E | H) P (H)

P (E)

Where Hrepresents our hypothesis about an event occurring and E is the
new evidence found that supports the occurrence of the hypothesis.

Therefore, Bayesian Inference in the designed Bayesian Network model in-
volves updating our belief about a hypothesis occurring based on newly ob-
served evidence. This is essentially done by solving for the Posterior Probability
P (H | E) of the main hypothesis node within the Bayesian Network. The rea-
soning is that the Posterior Probability P (H | E) is the conclusion / consequent
of the two antecedents, the Likelihood P (E | H) and the Prior Probability P (H).
The following sections discuss two methods used in the calculation of Bayesian
Inference.

3.4.1 Calculation Methods of Bayesian Inference

Bayesian Inference is generally the most expensive calculation that is performed
within a Bayesian Network. The two methods that are discussed in this section
are (1) Inference by Enumeration and (2) Inference by Variable Elimination.
However before we discuss these methods, an introduction will first be made
to an expanded version of the Bayes Theorem. According to the law of total
probability, the Marginal Likelihood P (E) is equal to

∑n
j=1 P (E | Hj) P (Hj).

Thus, Bayes Theorem can also be written as:

P (Hi | E) =
P (E | Hi) P (Hi)∑n
j=1 P (E | Hj) P (Hj)

(3.7)

Definition 3. Law of Total Probability: For a collection of n events in the par-
tition of a sample space S, such that it is collectively exhaustive (i.e A1 ∪ A2 ∪
A3∪, ...,∪An = S) and Ai is mutually exclusive (i.e. Ai∩Aj = for i), an event B
found within the sample space S is P (B) = P (B∩A1)+P (B∩A2)+....+P (B∩An)
= P (B | A1)P (A1) + P (B | A2)P (A2) + .... + P (B | An)P (An) =

∑n
i=1 P (B |

Aj) P (Aj).
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3.4 Bayesian Inference

This expanded equation is utilised in the Bayesian Inference calculation ex-
ample later illustrated in Section 3.4.2. For simplification of the discussion of the
following inference methods, the focus is placed on the fact that the Posterior
Probability is directly proportional to the numerator product of the Likelihood
and Prior Probability. That is:

P (H | E) ∝ P (E | H) P (H)

The Marginal Likelihood or Normalising Constant P (E) is ignored from the
discussion, since it is generally a constant value and the statistical inference out-
put value is mainly viewed by the changes in the Likelihood and Prior Probability.

3.4.1.1 Bayesian Inference by Enumeration

This is the brute force method for calculating Bayesian Inference. It involves
finding the summation of all the probability values of the relevant nodes. Figure
3.2 is a diagram of the Bayesian Network that will be used to demonstrate the
enumeration method for calculating Bayesian Inference.

A

C

B

D

Figure 3.2: Bayesian Network Inference Diagram

The Joint Probability Equation for Figure 3.2 is:

P (A ∩B ∩ C ∩D) = P (A) P (B) P (C | A ∩B) P (D | C) (3.8)

For this illustration, the state of the event nodes within the Bayesian Network
Figure 3.2 is either True (T ) or False (F ), i.e (A,B,C,D) ∈{T, F}. Let us say
that we want to perform statistical inference to find the probability that the node
A is true given that the node D is observed to be true, i.e P (A = T | D = T ).
The following is the steps to derive the Bayesian Inference Enumeration method
equation to calculate the answer:

Step 1:
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State the conclusion to be statistically inferred based on the formula for Con-
ditional Probability. As previously stated in Section 3.2.2, the formulae for Bayes’
Theorem is derived from the definition of Conditional Probability. Two points to
note; (1) the joint probability numerator portion of the equation only refer to the
relevant nodes along the path from A to D. The node B is therefore indirectly
included since C is also dependent on B. (2) The summation of all the relevant
nodes is to be included except for A and D which are known to be true (T ).

P (A = T | D = T ) =

∑
B

∑
C P (A ∩B ∩ C ∩D)

P (D)

Step 2:

As aforementioned, for simplicity we will focus on the numerator portion of
the equation

P (A = T | D = T ) ∝
∑
B

∑
C

P (A ∩B ∩ C ∩D)

Step 3:

Replace the joint probability equation P (A ∩B ∩ C ∩D) with the equivalent
Equation (3.8) of the Bayesian Network.

P (A = T | D = T ) ∝
∑
B

∑
C

P (A = T ) P (B) P (C | A = T ∩B) P (D = T | C)

Step 4:

Simplify the summation by grouping event variables. This step will depend
on the given equation. The aim of this step is to rearrange the equation in order
to perform the least amount of calculations.

P (A = T | D = T ) ∝ P (A = T )
∑
C

P (D = T | C)
∑
B

P (B)P (C | A = T ∩B)

3.4.1.2 Bayesian Inference by Variable Elimination

The Bayesian Inference by Variable Elimination goes a step further in trying to
reduce the number of calculations compared to the Enumeration method. This
is done by converting parts of the Bayesian Network Inference equation into
pre-calculated functions. As previously stated, Bayesian Inference is the most
resource intensive step to perform in a Bayesian Network. Therefore saving pre-
calculated portions of the inference equation helps to improve the performance
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of the Bayesian Network. The following steps illustrate the Bayesian Inference
by Variable Elimination method to solve for P (A = T | D = T ) in the Bayesian
Network Figure 3.2.

Step 1:

Perform the same steps 1 to 3 mentioned in Section 3.4.1.1 to arrive at the
equation:

P (A = T | D = T ) ∝
∑
B

∑
C

P (A = T ) P (B) P (C | A = T ∩B) P (D = T | C)

Step 2:

The next step involves creating functions based on common groups of input
events. The boxed portion of the equation below has the common event B.
Since we already know that the event A = T it can be considered as a constant.
Therefore a new function fB takes as an input parameter all possible states of C.
That is, fB(C) =

∑
B P (B) P (C | A = T ∩B).

P (A = T | D = T ) ∝
∑
B

∑
C

P (A = T ) P (B) P (C | A = T ∩B) P (D = T | C)

∝
∑
C

P (A = T ) P (D = T | C) fB(C)

∝ P (A = T )
∑
C

P (D = T | C) fB(C)

Therefore in this example the Bayesian Inference by Variable Elimination
Method reduced the need to calculate for event B by incorporating the pre-
calculated figures in a function named fB(C).

3.4.2 Bayesian Network Example

In this section we will illustrate how Bayesian Inference is performed using the
Enumeration method. In essence this example will incorporate all the concepts
mentioned in this Chapter. Figure 3.3 is a diagram of the Bayesian Network that
will be examined. This Bayesian Network has been set up with the Netica [26]
software.
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3.4 Bayesian Inference

Figure 3.3: Bayesian Network Example

This is the general structure of the Bayesian Network that is used in the
development of MemTri. The top-most nodes prefixed with H are referred to as
hypothesis nodes while the lowest level nodes prefixed with E are referred to as
the evidence nodes. To make this example more intuitive the nodes have been
assigned specific meanings as follows:

H: The suspect employee’s computer was used to send confidential company
files to a third party using FTP

H1: An FTP connection was established between employee machine and
third party

E1: Network Logs show a TCP connection on port 21 between employee
machine and third party

E2: FTP ”Transfer OK” response packet found between employee machine
and third party in router cache

The probability values shown in Figure 3.3 is the Prior Probability values
of the Bayesian Network. The following joint probability tables 3.1, 3.2 and
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3.3, represent the Likelihood probability values that is associated with the given
Bayesian Network in Figure 3.3:

H1

H Yes No Uncertain

Yes 60 35 5

No 35 60 5

Uncertain 5 5 90

Table 3.1: Likelihood Joint Probability Table for P(H1 | H)

E1

H1 Yes No Uncertain

Yes 85 15 0

No 15 85 0

Uncertain 0 0 100

Table 3.2: Likelihood Joint Probability Table for P(E1 | H1)

These probability values are usually set based on the data gathered from
experts in the field of the investigation. From the table we see that a node has
three states ‘Yes’, ‘No’ or ‘Uncertain’. An important point to note is that the
probabilities in the Bayesian Network must add up to 100%.

Now let us say that an investigator wants to determine the probability that
the suspect employee sent confidential files to a third party given that he has
observed that there was a FTP ‘Transfer OK’ packet found. In other words, the
investigator wants to determine P (H = Y | E2 = Y ). This hypothesis can be
examined by performing Bayesian Inference. Statistically inferring a conclusion
for this hypothesis can be useful in aiding the investigator to confidently decide
whether the investigation is worth a certain dedication of resources.

Now the nodes encountered from H to E2 are (H, H1 and E2). There are
also no additional parent nodes that has to be considered. Therefore the joint
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E2

H1 Yes No Uncertain

Yes 75 25 0

No 25 75 0

Uncertain 0 0 100

Table 3.3: Likelihood Joint Probability Table for P(E2 | H1)

probability equation for the portion of the Bayesian Network needed for inference
is:

P (H ∩H1 ∩ E2) = P (H) P (H1 | H) P (E2 | H1)

Applying the Enumeration method for calculating Bayesian Inference, the
equation that is needed to evaluate the investigator’s request is:

P (H = Y | E2 = Y ) =

∑
H1 P (H ∩H1 ∩ E2)

P (E2)

=

∑
H1 P (H = Y ) P (H1 | H = Y ) P (E2 = Y | H1))

P (E2 = Y )

=
P (H = Y )

∑
H1 P (H1 | H = Y ) P (E2 = Y | H1))∑

H

∑
H1 P (H) P (H1 | H) P (E2 = Y | H1))

Solution:

P (H = Y | E2 = Y ) =
.333 [(.6× .75) + (.35× .25) + (0.05× 0)]

.333

=
���.333 [.45 + .0875 + 0]

���.333
= 0.5375

≈ 0.538

Therefore the probability that the employee sent the files to a third party
given the FTP packet evidence found based on Bayesian Inference is 0.538. This
can be seen visually in Figure 3.4.
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Figure 3.4: Bayesian Network with Observed Evidence Example
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Chapter 4

Volatile Memory

This chapter presents some fundamental concepts of how volatile memory is
utilised within a Personal Computer (PC). The discussion focuses primarily on
main memory or Dynamic Random Access Memory (DRAM), which is the type
of memory captured and analysed in this project. It is important that a Digital
Investigator understands how data is stored in main memory, in order to verify
the completeness of a collected memory image and to ensure accurate analysis of
its contents. Additionally, it improves the Digital Investigator’s ability to debug
possible output result errors from memory analysis tools such as Volatility [6]
and to assess how malware may attempt to hide itself from being discovered by
such tools. This chapter also explains some of the important considerations that
a Digital Forensics Investigator should take into account when deciding what tool
to use to collect the main memory contents of a computer. The improper choice
of tool and methodology can result in an incomplete/inaccurate memory capture
image.

4.1 Computer Memory

Memory within a computer are physical devices that store information. There
are two types of memory within a computer system, non-volatile memory and
volatile memory. Non-volatile memory, also referred to as permanent storage,
does not lose the information it stores when the device is powered off. Two
examples of non-volatile memory devices are magnetic hard disks and Erasable
Programmable Read-Only Memory (EPROM). Volatile Memory on the other
hand stores information temporarily, in that, the information it stores is lost when
the device is powered off. Two examples of volatile memory devices are DRAM
and the Central Processing Unit (CPU) registers. Though volatile RAM devices
and hard disks are both computer memory, it is common to refer to volatile RAM
devices as ‘memory’ or ‘primary memory’ and hard disks as ‘secondary storage’.
The main focus of this project is the analysis of DRAM or main memory. From
this point the word ‘memory’, if used alone, will refer to the computer’s main
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memory and likewise the acronym RAM will refer to DRAM.

4.2 PC Architecture

Understanding the layout of a PC’s Architecture can help to better comprehend
how memory is accessed within a computer and therefore how to develop tools to
capture the contents of memory. It also informs the Investigator of the various
considerations that must be taken into account in order to obtain a memory im-
age that is both correct and complete. The following sub-sections briefly explain
two main components of a modern PC’s architecture (see Figure 4.1) in relation
to memory forensics. The first component, which is the Memory Management
Unit (MMU), is mainly utilised for software based memory acquisition (see Sec-
tion 4.6.2), while the second Direct Memory Access Controller (DMA) component
is mainly utilised for hardware based memory acquisition (see Section 4.6.1).

Figure 4.1: Physical Layout of a modern computer system [1]

4.2.1 Memory Management Unit

The Memory Management Unit (MMU) is a part of the CPU and is mainly
responsible for translating an address requested by the processor into the actual
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physical memory address in RAM. In order to speed up the address translation
process, the MMU communicates with the Translation Look-aside Buffer (TLB)
which is a fast access temporary storage for address translation structures. The
implementation of the address translation process (see Section 4.4.2.1) however
varies based on the type of CPU architecture.

4.2.2 Direct Memory Access (DMA) Controller

The Direct Memory Access (DMA) Controller allows I/O devices to access main
memory directly without the need to contact the CPU. This therefore improves
the performance of the entire system by freeing up the CPU to focus on the
processing of other tasks. Since the DMA facilitates direct access to main memory
for I/O devices, it has been utilised by Digital Forensics Investigators as a means
for acquiring a memory image from a target computer (see Section 4.6.1).

4.3 CPU Architecture

The mechanism by which a computer’s memory address space is accessed is de-
pendent on the architecture of the Central Processing Unit (CPU). This project
utilised Intel’s IA-32 architecture. IA-32 is the 32-bit family of Intel’s micropro-
cessor architecture and is also referred to as x86 or i386. Intel’s IA-32 architecture
supports up to 4GB of memory however this can be expanded to 64GB using the
Physical Address Extension(PAE) paging feature. Intel’s IA-32 architecture has
three modes of operations namely protected mode, real-address mode and system
management mode [2]. Throughout the remainder of this chapter, the discussion
will be in reference to Intel’s IA-32 microprocessor running in protected mode,
which supports features such as segmentation, paging and virtual memory. Before
explaining each of these features however, Sections 4.3.1 and 4.3.2 will define two
sets of volatile memory devices located within the CPU, namely registers and
caches respectively. Additionally, a few of the specialised registers and caches
relevant to memory management will be briefly introduced.

4.3.1 Registers

Registers are devices with a small amount of memory that can be accessed quickly
by the CPU. The group of registers involved in the basic execution of a program
are the general purpose registers, segment registers, EFLAGS register and EIP
register [2]. There are eight general purpose registers which are responsible for
storing operands and pointers. The EFLAGS register stores the status of a pro-
gram’s execution and allow application level control of the CPU. The EIP register
stores a pointer to the next instruction to be executed. The segment registers
store up to six segment selectors which are pointers used to locate segments in
memory. The three main segment selectors are named after the segmented parts
of the program being pointed to, i.e. CS (Code Segment), DS (Data Segment)
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and SS (Stack Segment). The other three segment selectors point to data seg-
ments of a program and are namely ES, FS and GS. Section 4.4.1 will explain
how the segment selectors, stored within the segment registers, play a role in
segmentation memory management.

The IA-32 microprocessor additionally has four registers responsible for locat-
ing data structures that control segmented memory management, namely GDTR
(Global Descriptor Table Register), LDTR (Local Descriptor Table Register),
IDTR (Interrupt Descriptor Table Register) and TR (Task Register). Collec-
tively these registers generally contain linear base addresses, segment limits, table
limits and segment selectors.

Another set of registers involved in memory management are the control reg-
isters. There are five control registers label CR0, CR1, CR2, CR3 and CR4. The
way in which these control registers are involved in memory management are, (1)
through the use of flag bits that set and control the paging mode of operation
and (2) by defining the base address to the first paging structure. Further de-
tails about how specific control registers control the paging memory management
system is explained in Section 4.4.2.

Note that each core within the CPU generally has their own set of the registers
that were mentioned throughout this section.

4.3.2 Cache

A cache is a high speed device, normally implemented using Static RAM (SRAM),
that temporarily stores small copies of main memory, in order to speed up the
average time it takes to access main memory data. The CPU generally contains
a hierarchy of data and instruction caches that are referenced by levels (L1, L2,
L3 .. etc). The lower the cache level the faster it is to access but the smaller the
storage size. Conversely, the higher the cache level the slower it is to access and
the larger the storage size.

In order to speed up the translation of a virtual address to a physical address,
a specialised cache named the Translation Look-aside Buffer (TLB) was imple-
mented as part of the MMU in the CPU (see Figure 4.1). A virtual address is
explained in further detail in Section 4.4.2 and is simply a linear address that is
produced when paging mode is turned on. The TLB stores the physical address
that corresponds to the page number portion of a virtual address. Therefore,
the CPU first quickly checks for a matching entry in the TLB, before attempting
to perform the entire page translation process using main memory. The TLB
also contains information about the access rights to a page and a dirty flag that
indicates if the page has been modified since it has been placed in the TLB.

Another cache used to speed up the page translation address process is the
Page Directory Entry (PDE) cache. This cache stores PDEs that is used to locate
the page table. Therefore with the PDE cache, the CPU still has to complete
the address translation process by locating the page table and ultimately the
physical address; however it is still quicker than having to access the PDE from
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main memory.

4.4 Memory Management

This section discusses two memory management mechanisms namely segmenta-
tion and paging. An overview of these memory management mechanisms can be
seen in Figure 4.2. Memory management techniques are designed to allow the
computer system to utilise its available memory efficiently, to prevent corruption
of multiple programs during execution and to avoid scenarios that can cause a
program to crash. The addressable memory space of the IA-32 microprocessor is
referred to as the linear address space [2]. The CPU’s linear address space allows
a running program to view memory as a single continuous byte addressable space
with an address range from 0 to 232−1. An address for any byte within the linear
address space is referred to as an linear address [2]. The MMU is responsible for
translating various forms of memory addresses to the actual physical address in
memory.

Figure 4.2: Segmentation and Paging Process [2]
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4.4.1 Segmentation

When the IA-32 microprocessor is running in protected mode, segmentation is
always enabled. Segmentation involves dividing the processor’s linear address
space into variable length address spaces referred to as segments [2]. As hinted
by the types of segment registers in Section 4.3.1, segments point to code, data
and stack portions of a program’s execution in memory. In this way segmentation
allows for multiple programs to run on the same processor without execution col-
lisions, through the isolation of each program’s code, data and stack information.
The address used to locate a byte within a segment is referred to as a logical
address [2]. The logical address consists of a 16 bit segment selector and an 32
bit offset. The segment selector is a unique identifier for a segment and points to
record in the Global Descriptor Table (GDT) or Local Descriptor Table (LDT).
The corresponding segment selector record in the GDT or LDT contains the base
address of the segment within the linear address space. The base address of the
segment is then added to the offset portion of the logical address to produce the
linear address of the requested byte within the segment. The recently explained
translation process of a logical address to a linear address is summarised in Fig-
ure 4.3. If paging is disabled then the CPU’s linear address is the same as the
memory’s physical address. A physical address refers to the actual address in
main memory where the data is located. If paging is enabled then a page address
translation process has to be done to convert the linear address to a physical
address, which is later explained in Section 4.4.2.1.

Figure 4.3: Translation of Logical Address to Linear Address [2]

4.4.2 Paging

Paging is enabled by setting the PG flag (bit 31) in the CR0 register to 1. The
paging mechanism in IA-32 architecture, divides the linear address space into
fixed address space sizes referred to as page frames. Paging is used to implement

31



4.4 Memory Management

virtual memory through a mechanism called demand paging [1]. With demand
paging, a file on secondary storage device can be used to store page frames from
main memory. Page frames can then be swapped into and out of main mem-
ory when needed using the page file, through a process referred to as swapping.
Therefore, demand paging allows for the execution of multiple programs which
collectively require more memory space than is available in main memory. How-
ever, it is an expensive operation to access a page frame that is stored within a
page file. Also if the computer system spends a considerable amount of time fetch-
ing page frames from the page file, it can significantly degrade the performance
of the system. This is referred to as thrashing [1].

There are three paging modes namely 32-bit paging, PAE paging and IA-32e
paging. These modes are mainly set by flags within the CR0 and CR4 control
registers. PAE paging mode allows for 32-bit linear addresses to point to a 64-bit
physical addresses and supports a maximum of 64GB of memory. IA-32e paging
mode is used only by processors that support Intel 64 architecture and allows for
48-bit linear addresses that support up to 512GB of memory. The main focus
of the discussion however will be on the 32-bit paging mode which uses a 32-bit
linear address space and supports a maximum memory size of 4GB.

When paging is turned on, a linear address is also referred to as a virtual
address. A virtual address has two parts, a page number at the higher bit portion
and an page frame offset at the lower bit portion of the address. Note that the
IA-32 architecture is a little-endian based architecture. The number of bits of the
virtual address assigned to the page number and the page frame offset depends on
the page frame size. If the page frame size used is 4MB, the higher 10 bits of the
virtual address is the page number and the lower 22 bits is the page frame offset
as illustrated in Figure 4.4. In this case the page number represents the offset in
the Page Directory structure where the page frame’s base address is stored.

31 22 21 0

Directory︸ ︷︷ ︸
page number

Offset

Figure 4.4: Virtual Memory Address for 4MB page size

However, if the page frame size is 4KB, the higher 20 bits of the virtual address
is the page number while the lower 12 bits is the page frame offset as illustrated in
Figure 4.5. In this case the higher 10 bits of the page number represents the Page
Directory offset while the lower 10 bits of the page number is the Page Table offset
(see Figure 4.5). The following section 4.4.2.1 will explain how a virtual address
is translated to a physical address when 4KB pages are used. All variations of
the paging mode settings uses a similar concept for locating the paging structures
needed to perform page address translation as discussed in Section 4.4.2.1.
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31 22 21 12 11 0

Directory Table︸ ︷︷ ︸
page number

Offset

Figure 4.5: Virtual Memory Address for 4KB page size

4.4.2.1 Page Address Translation

Figure 4.6: Translation of Virtual Address to Physical Address for 4KB page
size [2]

The conversion of a virtual address (VA) to a physical address starts with the
CR3 register. The bits 31:12 of the CR3 register contains the base address for the
Page Directory structure (see Appendix A). After locating the Page Directory,
the Page Directory offset bits 31:22 of the VA (see Figure 4.5) is used to select the
relevant Page Directory Entry (PDE). Each PDE in the Page Directory is 4bytes
(32 bits) therefore the Page Directory offset has to be multiplied by 4 and added
to the Page Directory base address in order to locate the PDE. Figure 4.7 shows
the combination of the Page Directory’s base address in the CR3 register and the
Page Directory offset in the VA, which together forms the PDE address. Note
that the two lowest bits with value 0 represent a shifting of the Page Directory
offset two bits to the left, which essentially multiplies the offset by 4.

CR3[32 : 12] VA[32 : 22] 0 0︸ ︷︷ ︸
PDE Address

Figure 4.7: Combination of base address in CR3 register with Directory offset in
VA to produce the PDE Address
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The next step in the page translation process involves locating the Page Table
Entry (PTE) for the PDE.The PDE contains the base address of the Page Table
in bits 31:22 (see Appendix A). After locating the Page Table, the offset in the
VA bits 21:12 is used to select the relevant PTE. The PTE is 4 bytes in size
therefore the Page Table offset has to be multiplied by 4 in order to locate the
PTE. Figure 4.8 shows the combination of the Page Table’s base address in the
PDE and the Page Table offset in the VA, which together forms the PTE address.

PDE[32 : 12] VA[21 : 12] 0 0︸ ︷︷ ︸
PTE Address

Figure 4.8: Combination of base address in PDE with Page Table offset in VA to
produce the PTE Address

The final step in the page translation process involves locating the physical
address requested within the page frame using the PTE. The bits 31:12 of the
PTE contains the base address of the page frame (see Appendix A). After locating
the page frame, the page frame offset in bits 11:0 of the VA is used to locate the
physical address requested in main memory. Figure 4.9 shows the combination
of the page frame’s base address in the PTE and the page frame offset in the VA,
which together forms the actual physical address in main memory requested by
the CPU.

PTE[32 : 12] VA[11 : 0]︸ ︷︷ ︸
Physical Address

Figure 4.9: Combination of base address in PTE and with Page Frame offset in
VA to produce the Physical Address

The entire page translation process can be seen in Figure 4.6. Note that
there are bits within the CR3 register, PDE and PTE that contain page control
information. For example bit 6 (dirty flag bit) of the PTE is used to indicate
whether the page has been updated by another application and thus needs to be
refreshed in memory and the page file (see Appendix A).

4.5 Windows Operating System Process

This section gives information about the structure of a Windows operating system
(OS) process and highlights some of the key fields that are particularly interest-
ing in memory forensics investigations. This section also discusses the different
techniques that are used to locate processes within a Windows OS memory image
and explains how malicious users may attempt to hide a process. Therefore, by
understanding the structure of a Windows OS process, a digital forensics inves-
tigator can fine tune his search for evidence and also detect attempts to hide
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data. However, before going into details about the structure of the Windows OS
process, a brief description is given of the Windows OS’s architecture.

4.5.1 Windows OS Architecture

The Windows OS was developed by Microsoft and has two modes in which a
program can be executed, i.e. user mode or kernel mode (see Appendix B). Ap-
plications ran by a user is generally executed in user mode. In user mode an
application has restricted access to system resources. Therefore, a user mode
application generally cannot directly access/update the contents in the physical
DRAM (main memory) and must first make a request via kernel mode functions
which has unrestricted access to system resources. This communication between
user mode and kernel mode is facilitated through the Executive (System) Services
which is a part of the Windows Executive component of the OS (see Appendix B).
As defined by Microsoft, “the Executive is a family of software components that
provide the basic operating system services” [27]. In the Windows OS, resources
are represented using data structures referred to as ‘objects’. These objects are
generated, managed and protected by the Object Manager which is a part of the
Windows OS Executive. Appendix C shows a list of some of the objects managed
by the Object Manager. The EPROCESS object (see Appendix C) is what is used
to represent and manage the execution of a process in the Windows OS environ-
ment. More details are given about the EPROCESS structure in Section 4.5.2. An
important module within Windows’ kernel mode is the (micro)kernel itself (see
Appendix B). The kernel is comprised of the core components for the function-
ing of the OS. The kernel also acts as an interface between the Executive and
Hardware Abstraction Layer (HAL) to enable key OS features such as threading,
context switching and multiprocess synchronisation.

4.5.2 Windows Process Structure and Resources

This section takes a closer look at the EPROCESS object structure (see Table 4.1)
that is used to implement a Windows Process. When the Windows OS generates
a new process, it builds various data structures that are used to manage the pro-
cess’ resources. The EPROCESS object usually contains pointers to these resource
management data structures instead of storing them inside the EPROCESS object
itself. Figure 4.10 shows the five main resources managed by a Windows Process
namely threads, virtual address space, handles, security access and loaded mod-
ules. The fields in the EPROCESS object structure (see Table 4.1) that are used to
manage these five resources will be briefly discussed in the following subsections.
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Figure 4.10: Basic Resources of a Process [1]

4.5.2.1 Windows Process Object

Before discussing the major data structures used to manage the resources of a
Windows process, this section takes the time to introduce a few data fields that
describe information about the process itself. These field therefore can provide
key forensic information about the state of the process at the time the memory
image was captured.

The first field in the EPROCESS object (see Table 4.1), pcb, is the kernel’s
process control block which manges the state of the process and stores the pro-
cess’ crucial register values during context switching. One of these key regis-
ter value fields within the pcb structure is the DirectoryTableBase (DTB),
which is loaded into the CR3 register in order to perform page address transla-
tion (see Section 4.4.2.1). Volatility’s [6] ‘memmap’ plug-in therefore uses this
pcb.DirectoryTableBase field when performing calculations to map a process’
virtual address space to its physical address space.

The CreateTime and ExitTime fields (see Table 4.1) store the time the process
was executed and terminated respectively. It is important to note that when a
process exits, its allotted virtual address space is simply marked as free similar
to what is done by most file systems when a file is deleted [13]. The length of
time the process structure remains in memory before being overwritten depends
on the amount of system activity.
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>>> dt(” EPROCESS”)
’ EPROCESS’ (704 bytes)
0x0 : Pcb [’ KPROCESS’]
0x98 : ProcessLock [’ EX PUSH LOCK’]
0xa0 : CreateTime [’WinTimeStamp’, ’is utc’: True]
0xa8 : ExitTime [’WinTimeStamp’, ’is utc’: True]
0xb0 : RundownProtect [’ EX RUNDOWN REF’]
0xb4 : UniqueProcessId [’unsigned int’]
0xb8 : ActiveProcessLinks [’ LIST ENTRY’]
0xc0 : ProcessQuotaUsage [’array’, 2, [’unsigned long’]]
[snip]
0xf4 : ObjectTable [’pointer’, [’ HANDLE TABLE’]]
0xf8 : Token [’ EX FAST REF’]
[snip]
0x140 : InheritedFromUniqueProcessId [’unsigned int’]
[snip]
0x16c : ImageFileName [’String’, ’length’: 16]
[snip]
0x188 : ThreadListHead [’ LIST ENTRY’]
[snip]
0x198 : ActiveThreads [’unsigned long’]
[snip]
0x1a8 : Peb [’pointer’, [’ PEB’]]
[snip]
0x278 : VadRoot [’ MM AVL TABLE’]

Table 4.1: Volatility’s volshell command output for the EPROCESS structure

The UniqueProcessId field stores a positive integer that uniquely identifies
a process and is usually referred to as the “PID”. The parent process’ PID that
spawned a (child) process, is stored in the InheritedFromUniqueProcessId field.
In Windows however, the parent child relationship between processes is different
than in Linux. In Linux, if a parent process closes then the child process(es)
terminates as well. With Windows however, if a parent process terminates, the
child process still continues to run. The InheritedFromUniqueProcessId is also
not updated after being initially set.

The ImageFileName field stores up to 16 ASCII characters for the process’
executable filename. Longer unicode versions of the filename can be found in a
VAD node or in the Process Environment Block (PEB).

4.5.2.2 Handles

A handle is simply a pointer to an opened instance of resource object that is
managed by the kernel [1]. A resource object, as listed in Appendix C, can be
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a file, thread, mutant or registry key etc. The EPROCESS.ObjectTable points
to a HANDLE TABLE which uses a TableCode to identify where the list of table
entries are stored (see Figure 4.11). The handle table can store up to 512 handle
entries for a 32-bit system and 256 for a 64-bit system. Each handle entry in
turn contains an Object field that points to the actual OBJECT HEADER(s) of the
object(s) being referenced by the EPROCESS structure. Therefore, by enumerating
the handle entries opened by a Windows process, a Digital Investigator can gather
valuable information about the kernel resources that the process had access to,
which in-turn can help paint a story of what the process was doing on the system.

Figure 4.11: Diagram showing how an Object is referenced in the Object table of
a Process [1]

4.5.2.3 Tokens: Security Access

Before a process can access a resource, the kernel must assess whether it has
the adequate permission(s) to do so. In Windows, a token ( EPROCESS.Token)
is used to define the security context of a process. The token stores information
about the security identifiers (SIDs)/user accounts associated with the process
and the privileged tasks that can be performed. Therefore, analysing tokens can
give the Digital Investigator valuable information about whether an attacker may
have been able to compromise a process and increase its level of access to have an
Administrative (account) access. Similarly, an attacker may have also performed
a ‘privilege escalation attack’ on a process to allow it to perform a task that
would otherwise be restricted.

4.5.2.4 Threads

A process itself does not perform the work of an application but rather schedules
basic tasks which are executed via threads. When a process is generated, it has
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at least one thread which is referred to as the ‘primary thread’. A process can
generate and execute multiple threads which share the process’ resources such
as the code segments, global variables, opened files and the process environment
block (PEB) as illustrated in Figure 4.12. A thread however has its own stack
and a Thread Local Storage (TLB) pointer which is used to store data unique to
each thread [28] (see Figure 4.12).

Figure 4.12: Diagram showing shared and independent resources of Process and
Threads [3]

Windows uses a doubly linked list to manage the list of threads for a pro-
cess and the head node is saved in the field EPROCESS.ThreadListHead (see
Table 4.1). Later in Section 4.5.3, it discusses how to enumerate through doubly
linked list structures, which can reveal key insights about the various (thread)
tasks being performed by the process at the time the memory image was cap-
tured.The EPROCESS also maintains the number of ActiveThreads (see Ta-
ble 4.1), which if 0, is an indication that the process has terminated.

4.5.2.5 Virtual Address Descriptors

Each windows process references its own private virtual memory/address space
that is isolated from other processes via the segmentation memory management
feature [29]. A portion of a process’ virtual address space is allocated as user(-
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mode) space and the remaining as kernel(-mode) space. The boundary between
user and kernel space is defined by the MmHighestUserAddress field located
within the Kernel Debugger ( KDDEBUGGER DATA64) structure. As shown in Fig-
ure 4.13, the resources of a process such as the thread stack, process heap, PEB
and DLLs are generally stored in the user space of the process. In cases where
the process has to access a shared kernel DLL or driver, it would first make an
request for access through Windows Executive Services. If successful, the kernel
DLL or driver is referenced from the kernel space region of the process’ virtual
address space (see Figure 4.13).

Figure 4.13: Process’ virtual address space and stored resource areas [1]

In order to manage the virtual address space of a Windows process, a Virtual
Address Descriptor (VAD) tree structure is used. The root of the VAD tree is
stored in the field EPROCESS.VadRoot (see Table 4.1). Each VAD node stores
the start and ending virtual address range that it represents/manages. It also
stores descriptive information about the data that is contained within the allot-
ted virtual address range; such as whether the data belongs to a memory map
file, process heap or thread stack, and the access rights to that specific virtual
address space such as read, write and/or copy. The VAD tree is structured as a
self-balancing tree such that lower virtual memory ranges are connected to the
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left and higher memory ranges to the right. There is also a flag (i.e. MemCommit)
within the VAD tree node which specifies whether the virtual memory region has
been committed to memory. The ‘memdump’ plug-in provided by Volatility [6] to
dump a process’ memory to a file, therefore enumerates the entire VAD tree and
dumps only the ‘committed’ virtual address ranges. Note that since the process’
VAD tree references virtual addresses, page translation has to be performed in
order find the corresponding physical address in memory where the data is actu-
ally stored. Therefore, though data stored in the process’ virtual address space
may appear to be continuous, in reality the data can be scattered in different
parts of the physical RAM.

4.5.2.6 Process Environment Block

The Process Environment Block (PEB) structure ( EPROCESS.Peb) contains in-
formation about loaded modules such as DLLs and executable files, along with
process heap and environment variable information. The PEB therefore contains
a rich set of information that can prove valuable in a memory forensics investiga-
tion. For example, the full path of the process’ executable and DLLs, along with
the command line that started the process, can be found in the PEB [1]. The
environment variables mainly contain directory paths which are searched when a
call is made to execute a file. Attackers may manipulate environment variables
in order to get their maliciously prepared file to execute instead of the proper file
requested by the user. The process’ heap generally store dynamic data sent to
the process. This includes for example, typed input by the user into an applica-
tion such as notepad, which Ligh [1] demonstrates can be skilfully retrieved by
examining the VAD tree nodes that hold process heap information.

4.5.3 Enumerating Windows Processes

There are two main techniques for enumerating through the processes within
a memory image, namely doubly linked list enumeration and pool scanning.
The doubly linked list enumeration method, which is implemented in Volatil-
ity’s [6] ‘pslist’ plug-in, involves enumerating the doubly linked list of active
process found in the field EPROCESS.ActiveProcessLinks (see Table 4.1). The
head of this doubly linked list is pointed to by the PsActiveProcessHead field
found within the Kernel Debugger structure ( KDDEBUGGER DATA64). Volatil-
ity’s [6] ‘kdbgscan’ plug-in is able to locate this KDDEBUGGER DATA64 struc-
ture by scanning the input memory image for a ’kdbg’ signature, similar to file
carving for files on a disk image. Each doubly linked list of an active process
(i.e. EPROCESS.ActiveProcessLinks) contains two pointers, namely flink and
blink, which essentially points to the next and previous active process respec-
tively. Therefore, a list of all the active processes can be generated by first
locating of the head EPROCESS.ActiveProcessLinks node, which is pointed
to by the field KDDEBUGGER DATA64.PsActiveProcessHead, then enumerating
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through the list using the flink/blink pointers. This technique for locating pro-
cesses is however susceptible to Direct Kernel Object Manipulation (DKOM)
attacks [4]. As shown in Figure 4.14, a DKOM attack can be done to hide a
process by manipulating the blink/flink pointers to effectively unlink a process
from the list. In this case, Volatility’s [6] ‘pslist’ plugin will not identify the
hidden/unlinked process as part of its results.

Figure 4.14: DKOM attack on EPROCESS structure to hide a process [4]

The pool scanning technique however is not susceptible to DKOM attacks.
This is because the pool scanning technique, implemented in Volatility [6] as
the ‘psscan’ plugin, involves searching for PoolTag values located within the
POOL HEADER attached to Windows Executive Objects, and therefore is not de-

pendent on the fields of the EPROCESS Object. The POOL HEADER essentially
contains debugging information for the Object (e.g the EPROCESS Object) struc-
ture to which it is attached. It also specifies if the Object is paged (i.e. can be
written to secondary storage) or nonpaged (i.e. never written to secondary stor-
age). Note that EPROCESS Objects are always set as nonpaged. The PoolTag

value for an EPROCESS Object can be either ‘Proc’ or ‘Pro3’ [1]. Therefore,
to locate all the processes within a memory image using pool scanning involves
searching for the aforementioned PoolTag values. However, just searching for
these values alone can lead to a lot of false positive process identification results.
To reduce false positives, the psscan plug-in also utilises the known structure of
the fields within the POOL HEADER and Windows Executive Object structures to
confirm a positive match. Therefore after locating the process’ PoolTag value, if
a field at a particular offset in the POOL HEADER or EPROCESS structure is known
only to have the value 0 or 1, but another value is found, it will identify the match
as a false positive and not include it in the final results. Another noted advantage
of the pool scanning technique is that it is able to identify processes that have
been terminated and removed from the list of active processes, however have not
yet been overwritten in main memory.
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4.6 Memory Acquisition

Due to the volatile nature of main memory and its utilisation for concurrent
processing within a computer, careful planning is required to ensure that the
memory image collected is both accurate and complete. Therefore, the memory
collection planning phase is especially important since the court will not accept
evidence that is likely to be unreliable or inaccurate. Vomel et al. [12] proposed
three criteria for measuring the ‘forensic-soundness’ of a memory image which
are correctness, atomicity and integrity. The correctness of a memory image
has to do with whether the values at a specific location in the memory image
match the actual values that were stored at that same requested location in the
physical RAM device, at the time the memory snapshot was taken [12]. An
example of how the correctness of an image can be impacted is through the
presence of a rootkit that redirects the request to read a location in memory
to another incorrect location. The atomicity is the consistency measure of the
concurrent activity captured within a memory image [12]. According to Gruhn
and Freiling[30], generally the smaller time span between acquiring the first and
last memory regions, the better the atomicity. The integrity measures how many
memory region values have changed in the memory image from the specific time
the Digital Investigator started the capture via the memory acquisition tool. For
example, with software based acquisition, the captured memory image’s integrity
will not be perfect since portions of the memory is changed when the acquisition
program is loaded.

There are generally two categories of memory acquisition tools, i.e. hardware
based (see Section 4.6.1) or software based (see Section 4.6.2). The following
sections discuss various memory acquisition methods along with their strengths
and weaknesses based on the ‘quality’ of the image produced. Since all memory
acquisitions methods have strengths and weakness, the Digital Investigator must
be aware of this in order to select the best method based on the resources avail-
able. Another point to note is that if paging is turned on then some of the page
frames for a process can be located on disk and not in main memory. In such
cases, some memory data may be absent from the memory image.

4.6.1 Hardware-based Methods

Hardware-based methods have generally been considered the most secure way to
obtain an accurate memory image since it does not depend on running software on
the OS that can be subverted by malware. Hardward-based acquisition methods
also do not require the computer to be in a logged in state in order to execute a
program as with software based acquisition methods. However, hardware-based
memory acquisition is generally more costly to implement than software-based
methods and the acquisition methods are limited to the hardware that is available
in the target machine. The Digital Investigator also must have knowledge of
various kinds of hardware and configurations since there are usually risks involved
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that can possibly destroy or hinder the memory content from being acquired. In
the following sub-sections, the strengths and weaknesses of the two main types
of hardware-based acquisition methods, namely ’DMA Attack’ and ’Cold Boot
Attack’, are discussed in terms of the ’forensically-soundness’ [12] of the memory
image produced.

4.6.1.1 DMA Attack

A DMA Attack involves accessing the main memory of a computer directly via
the DMA controller. A DMA Attack is usually performed through the use of a
Peripheral Component Interconnect (PCI) device [31] or FireWire. Unlike with
FireWire methods, the PCI device methods may require the device’s driver to
already be installed on the target system. Therefore, in the case where the PCI
device driver has to be installed, the target machine must be logged in with a
user that has adequate permissions to do so.

Though DMA Attack techniques do not rely on the CPU, which is typically
easier to compromise by malware during memory acquisition, there are various
ways the correctness of a memory image produced can be affected. For example,
with PCI DMA Attack methods, the installed driver can be compromised by
a malware [32] that redirects memory address requests to other parts of mem-
ory in order to hide itself from being included in the memory capture image.
Rutkowska [33] also identified that kernel-level malware (i.e. rootkits) can change
the values in the registers used by the DMA controller to locate a memory address
and therefore can compromise the correctness of the acquired image.

According to an evaluation of the different types of memory acquisition meth-
ods, Gruhn et al. [30] identified that simple straight-forward DMA Attack meth-
ods generally appear to have the worst atomicity rating. This is because the
system is actively updating memory while the acquisition process is taking place.
A solution to this problem on a system that uses an Intel IA-32 microprocessor
is to utilise the System Management Mode (SMM) of operation. Reina et al.[34]
explains that when the processor switches to SMM via a System Management
Interrupt (SMI), the system enters a suspended state therefore allowing a con-
sistent snapshot of the memory to be captured. However as previously hinted,
this solution is limited to the system containing a suitably configured Intel IA-32
microprocessor.

The integrity of straight-forward DMA Attack methods appear also to have
the worst integrity rating [30]. This is because memory acquisition using DMA is
slow [32], and so the data that exists in memory when the investigator started the
acquisition process is far different from the data in the final memory image. The
SMM solution with Intel IA-32 microprocessors as previously mentioned can also
solve this problem. Issuing the SMI to suspend the system is almost immediate
and therefore the investigator can capture the full contents of memory that were
available the moment he started the acquisition process. Another factor that can
degrade the integrity of the memory image captured via the PCI DMA Attack
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method, is if the PCI device drivers has to be installed. This installation means
that the driver install program has to be executed, which will overwrite contents
in memory; thus the captured memory contents will definitely be different from
the initial content stored right before the Investigator started the acquisition
process.

Another limitation that the Digital Investigator should be aware of is that
FireWire and PCI devices commonly can only capture up to 4GB of memory,
due to the 32-bit addressing limit of some device ports. This limitation is an
issue since it is becoming more common for computer systems to have over 4GB
of memory. There are 64-bit PCI cards that are able to capture more than 4GB
of memory. However, if the hardware of the computer only supports 32-bit PCI
slots then this will limit the maximum amount of accessible memory to 4GB.

A risk that the Digital Investigator should also consider is that the attacks
identified by Rutkowska [33] can cause the computer system to crash while per-
forming DMA Attack based memory acquisition. This could further result in the
Digital Investigator facing legal charges for damages to a system [33].

4.6.1.2 Cold Boot Attack

A Cold Boot Attack is performed by powering off a computer and then extracting
the contents from RAM. This technique is made possible due to the RAM rema-
nence effect [35] which describes the phenomenon of DRAM losing bits gradually
over time after being powered off. Halderman et al. [36] further showed that cool-
ing DDR1 and DDR2 RAM chips using a simple ‘canned air’ duster spray, before
powering off the computer, can slow down the rate of bit degradation. Another
method of cooling can be to immerse the RAM modules in liquid nitrogen which
can allow the RAM to maintain over 99% of its contents outside of a machine for
over an hour [36]. There are generally two ways to perform a Cold Boot Attack.
The first way involves simply rebooting the machine by briefly removing and
restoring power to the computer, which is referred to as cold booting [36]. This
is different from warm booting, which is initiated by performing an operating
system restart, in that power is not removed from the computer during reboot.
Though no bits are lost from RAM during warm-boot compared to cold-boot,
there is a risk that a software can be triggered to wipe key information from
RAM when the operating system restart procedure is initiated. After performing
the cold-boot, the target computer’s BIOS can be configured to boot a memory
imaging tool from a USB drive. The second method of performing a Cold Boot
Attack involves taking the DRAM modules from the target machine and inserting
them into another computer that is setup to capture the DRAM’s contents when
booted [36]. Transferring the DRAM modules may mean more bit degradation
since it would likely take a longer time to refresh the RAM’s power than with
the first method of simply rebooting. However this method is more secure since
the target machine may be set to wipe the RAM during the Power-On Self Test
(POST) stage performed by the BIOS [36].
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According to the results obtained by Gruhn et al. [30], the quality of the
memory image produced by a Cold Boot Attack is superior to simple DMA Attack
methods with regards to atomicity and integrity. Cold Boot Attack method is
described to have perfect atomicity [30] in that, the contents of the RAM is
essentially ‘frozen’ at the point in time when the power is removed from the
computer and is no longer affected by system activity when the memory image
is acquired. The Cold Boot method is also described to have almost perfect
integrity [30] in that, at the point the Investigator decides to collect a memory
image by removing power from the computer, the only change that is made to the
RAM is caused by the loading of the imaging tool. The imaging tool is usually
implemented with a small boot loader program such as syslinux, which is only
about 10 - 22 KB [30, 36]. This size is negligible even when compared to a below
modern average computer RAM size of 1GB. The correctness of the memory
acquired by a Cold Boot Attack method is also not susceptible to rootkit attacks
like in DMA Attack methods, since the RAM can be completely removed from the
target machine and inserted into a securely prepared machine for imaging. The
bit degradation that occurs due to the power loss within the DRAM cell capacitor
means that some bits may be read as 0 instead of 1 as the voltage in the cell falls
below a certain threshold [35]. This therefore impacts the correctness of the image
acquired by Cold Boot Attack. Additionally, forcefully removing the power from
a computer can cause bit errors which can in-turn impact the correctness of the
memory image acquired [30]. It may be possible to correct some of these bits
errors using algorithms that reconstruct the data based on other information
stored in RAM as was done by Halderman [36] in reconstructing disk encryption
keys.

Another advantage of Cold Boot Attack over DMA Attack for memory acqui-
sition is that it is not dependent on the hardware available in the target machine.
The DRAM modules can simply be cooled and removed for memory acquisition
in another computer or memory capture device.

Cold Boot Attacks however, like DMA Attack methods, can be limited to
4GB memory acquisitions. The reason for this is that Cold Boot Attack memory
imaging tools are written using small boot loader software, such as syslinux, which
are usually 32-bit applications for compatibility reasons. Therefore, the Digital
Investigator needs to be aware of this limitation when obtaining a memory image
using Cold Boot Attack methods.

Gruhn and Muller[35] experiments showed that with modern DDR3 RAM,
data is scrambled and its contents fade rapidly making it impossible to perform
a Cold Boot Attack on DDR3 RAM, even when cooling techniques are applied.
However, Gruhn and Muller[35] noted that it was still possible to acquire a mem-
ory image by performing a warm boot then collecting the memory’s contents
through the loading of a memory imaging tool via the BIOS. It was also shown
that it may not be possible to perform Cold Boot Attacks on certain DDR1 and
DDR2 RAM modules [35]. Therefore, based on the aforementioned findings, the
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Digital Investigator may risk losing all the information in memory, if a Cold Boot
Attack is attempted to capture a memory image from these kinds of DRAM
modules.

4.6.2 Software-based Methods

Software based memory acquisition methods are generally low-cost and easy to
implement. However, a limiting factor is that the target machine has to be logged
in with a user that has adequate permissions to execute the memory acquisition
software. They are also more susceptible to being compromised by malware
since they generally depend on user/kernel level OS functions to fetch contents
in memory.

Software based memory acquisition tools mainly rely on the physical memory
interface implemented by the OS in order to capture the contents of memory. In
the Windows OS, the physical memory interface is implemented through the ob-
ject device ‘\\.\Device\PhysicalMemory’ and in Linux through the ‘/dev/mem’
device. The implementation of such device interfaces allow memory to be easily
acquired using simple user-level tools such as dd[37] as illustrated in Figure 4.15.
However, these physical memory interfaces are usually disabled or restricted to
kernel-level access since they are commonly abused by attackers to manipulate
the contents in memory, for example to a hide process (see Figure 4.14). As a
result, software based acquisition tools now usually require kernel-level drivers in
order to interface between the OS’s physical memory device and the software’s
user-level interface.

dd if= \\.\Device\PhysicalMemory of=\\<directory>\memory.img

Figure 4.15: Simple dd command to collect memory from Windows physical mem-
ory object device

The following sections discuss the various software based acquisition methods
and their impact on the quality of the memory image produced.

4.6.2.1 Kernel-Level Acquisition

The most commonly utilised software type for collecting memory are kernel-
level acquisition tools such as FTK Imager [38], DumpIt [39] and Moonsols [40].
These tools use a kernel-level driver in order to interface between the OS physical
memory device and the user-level interface of the software tool. In this way the
user-level interface commands is able to issue controlled kernel-level commands
for acquiring memory, which would not be directly permitted with user-level
permissions.
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Since the system is not suspended during the memory acquisition process,
it negatively impacts on the atomicity quality of the image produced. The ac-
quisition software is also executed in the same memory address space as the
physical memory being acquired. This means that the loading of the acquisition
software can overwrite critical data within unallocated memory space, thereby
negatively impacting the integrity of the memory image capture. A comparative
study of various memory acquisition techniques conducted by [30] concluded that
kernel-level acquisition tools produce the worst quality memory image in terms
of atomicity and integrity.

Since the Kernel-Level acquisition tools depend on the kernel functions, if the
OS is compromised by a rootkit then it can in-turn affect the correctness of the
memory image produced. Ahmed and Aslam [41] also showed that some kernel-
level acquisition tools such as FTK Imager [38] and Magnet RAM Capture [42]
were not able to dump the user/kernel space data for certain online gaming
processes that used anti-debugging features.

4.6.2.2 User-Level Acquisition

User-level memory acquisition tools usually only have access to the virtual mem-
ory address of a process and not the entire physical memory address. With
user-level memory acquisition tools, such as Procdump[43] and Windows Task
Manager, it is possible to suspend just the running process before dumping the
process’ memory contents. This allows for perfect atomicity of the process mem-
ory image acquired [30]. The Procdump utility is also able to quickly dump all
the contents of a running process and therefore the image acquired has a high
level of integrity. However, user-level memory acquisition tools are vulnerable to
being compromised by malware which can affect the correctness of the memory
image acquired.

4.6.2.3 Virtualisation Acquisition

Virtualisation software such as VMware [19] allows the host operating system to
run another virtualised machine having its own virtual hardware and indepen-
dent OS. The virtualisation hypervisor is the software responsible for managing
the communication between the host operating system and the running virtual
machines. Therefore, VMware’s hypervisor handles the virtual machine’s mem-
ory management and facilitates the dumping of the virtual machine’s memory
contents into the ‘.vmem’ file, when it enters a suspended state.

According to Gruhn et al.[30], virtualisation memory acquisition techniques
generally produce the best quality memory images in terms of atomicity and in-
tegrity. This is because virtual machines can be immediately suspended which
halts all activity in the virtual machine. With VMware [19], the entire main
memory of the virtual machine is dumped in a ‘.vmem’ file when suspended (see
Figure 4.16). Virtualisation memory acquisition methods therefore has perfect
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atomicity [30]. There is also negligible change to the memory of the running
virtual machine from the time the Digital Investigator decides to suspend the
machine to the collection of the ‘.vmem’ memory image file. Therefore, virtuali-
sation memory acquisition methods also exhibit perfect integrity [30]. Since the
virtualisation software, e.g VMware [19], also runs on the host OS which can be
compromised by malware, it is possible for incorrect data to be placed within the
memory image in such cases.

Figure 4.16: Suspended VMware virtual machine’s memory in .vmem file
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Chapter 5

Background & Related Work

5.1 Source of the Problem

In this modern era of technology, it is becoming more common for cases to in-
volve some sort of digital evidence. A survey done by Quick and Choo [8] from
1999 -2014 showed that there is an increasing trend in the number and storage
capacity of digital devices being seized as evidence. Overill et al. [44] also noted
that this trend has placed a greater demand on the digital forensics resources of
law enforcement departments. The traditional branch of digital forensics, which
involves taking an image of a device and performing a full analysis, is a slow
process and has resulted in a backlog of digital evidence to be analysed for court
cases [7]. Quick and Choo [8] analysed that in order to address this data volume
challenge facing digital forensics, there is a need to develop triage tools that will
provide digital investigators with critical intelligence about the data stored on a
device in a timely manner, i.e. in hours rather than days.

5.2 Digital Forensics and Triage Solutions

According to [45], the definition of triage in regards to digital forensics is “a
process in which digital evidence is ranked in terms of importance or priority”.
There have been various research methodologies for developing triage tools for the
main branches of digital forensics, i.e. disk forensics, memory forensics, mobile
phone forensics and network forensics.

Bogen et al. [46] for instance developed a disk document triage tool named
Redeye which utilises corpus-based term weighting scheme (TF-ICF) and semi-
supervised machine learning to triage identification of documents that relate to
a specific case. The corpus-based term weighting scheme mainly assesses the
similarity between documents based on the frequency of a word and its position
in relation to other key words. Document analysts are then able to identify
documents that are most likely similar/related to certain key documents they
have marked as relevant to an investigation. The system further monitors the

50



5.2 Digital Forensics and Triage Solutions

tags and comments made by analysts in order to ‘learn’ which type of documents
are of particular importance to an investigation. Bogen et al. [46] evaluated that
the Redeye document triage tool successfully aided to reduce forensic case analysis
tasks from taking months to only a couple days or weeks. Though Red eye focuses
on a different field of forensics than the MemTri application developed for this
project, it demonstrates the ability of supervised machine learning techniques
(similarly utilised by MemTri’s Bayesian Network) to successfully triage tasks in
an investigation.

In the area of memory forensics, Li et al. [47] developed a memory triage
tool that uses fuzzy hashing to intuitively identify malware by detecting common
pieces of malicious code found within a process. In this research the authors [47]
identified a limitation with the asymmetric distance computation of existing fuzzy
hashing algorithms and assess four key insights, based on precision and recall,
which can improve the fuzzy hashing algorithms’ performance. The improve-
ment of such fuzzy hashing algorithms aids investigators to more quickly and
accurately determine whether a machine has been affected by malware before at-
tempting a full investigation. MemTri’s performance is similarly tested using such
performance measures which can reveal key areas of triage-related improvements.

Walls et al. [48] developed a mobile phone forensics triage tool, named DEC0DE,
that uses block hash filtering (BHF), Viterbi’s algorithm and Decision Tree in-
ference. During BHF, similar byte streams between mobile phone models, which
most likely will contain operating system data that is not relevant to the investi-
gator, are removed. Therefore, the mobile data that remains after BHF completes
is likely to be user data such as call logs and address book information, which is
then further processed using Viterbi’s algorithm and Decision Tree inference to
improve the recall and precision of the filtered data. Walls et al. [48] highlighted
that mobile phone forensics triage can help to gather key information upfront for
use in suspect interviews, before the full analysis is performed which can take
months to complete due to backlog of devices to be analysed. Similarly, MemTri
provides the Digital Investigator with a quick assessment of key evidence arte-
facts found in a memory image which can then be used as persuasive evidence in
a suspect interview.

Lastly, Koopmans and James [49] developed an network triage application
that uses a client-server model in order to search multiple client machines for
evidence. An automated network triage (ANT) server that host various services
is used to configure and boot PXE enabled clients [49]. When the client machine
boots, a batch script is simply ran to search for keywords, patterns and file
hashes on the client machine’s disk and the results are saved to a file. This
network forensics triage tool can essentially help to locate a machine within a
network that was most likely involved in the crime being investigated and thus
the identified machine can be seized/prioritised for further investigation. Without
such triage tools an investigator will have to analyse all the machines in the
network individually which may be impractical/time-consuming.

51



5.3 Data-mining and Digital Forensics Triage

The aforementioned researches by the various authors in the different fields of
Digital Forensics shows that triage tools have proven to be a valuable solution to
the ‘data volume challenge’. Generally, these triage solutions offer a quick way of
narrowing down the devices to those that contain critical data before a full digital
forensics analysis is performed. Similarly, the work in this project contributes to
the research area of building digital forensics triage tools, more specifically for
the field of memory forensics.

5.3 Data-mining and Digital Forensics Triage

Digital Forensics Triage (DFT) techniques generally focus on effective ways to
filter out unimportant data from a device while maintaining a high level of recall
and precision. Though simple DFT techniques of keyword searching and file
hashing have been successful in developing digital forensics triage tools such as
the work done by [49, 50, 51], most research focus on the inclusion of the more
advanced data mining techniques to improve the level of recall and precision as
done in the aforementioned work by [48, 47]. Data mining focuses primarily on
knowledge discovery and often incorporates machine learning. Quick and Choo [8]
concluded from his survey, that there is a need for more research into applying
data mining techniques to developing digital forensics triage tools, which can
better understand the data stored on a device. In DFT, the two main areas of
data mining that have received the most attention are Clustering and Supervised
Machine Learning (SML).

Clustering is where unlabelled data/objects that posses a similar feature are
grouped together into what is referred as clusters [52]. Clustering (a.k.a Unsuper-
vised Learning) data mining techniques in DFT are usually used for object/file
identification. For example, Roussev and Quates [53] used the fuzzy hashing
utility ’sdhash’ to implement a clustering data mining application that is able to
identify similar files stored on different devices. The ’sdhash’ utility outputs a
score value between -1 and 100 inclusive that is used to interpret the similarity
between files on the devices. In a case study, the similarity digest application
developed by Roussev and Quates [53] was able to identify pornographic mate-
rials stored on a suspect disk by comparing its similarity to another disk that
contained known pornographic content. An advantage of such clustering data
mining techniques is that they can be flexibly applied to various categories of
case investigations. However, an object/file may have similarities to multiple
files/objects belonging to different categories of investigation. In order to more
accurately classify files/objects on a device to a specific criminal activity, more
targeted information has to be assessed rather than just simple similarities be-
tween files/objects. This is where SML techniques comes in.

With SML, various characteristics about known files/objects associated with
a certain class are used to train a system to predict if another file/object belongs
to that same class. SML techniques are therefore commonly used in DFT for the
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5.4 DFT with Supervised Machine Learning

classification of files/objects on a device to a specific criminal activity. It is in
this area of SML that Bayesian Networks, which is utilised in the development
of MemTri, falls under.

5.4 DFT with Supervised Machine Learning

The four commonly used SML techniques in DFT are Bayesian Networks, De-
cision Trees, K-Nearest Neighbour and Support Vector Machines [17]. Each of
these SML techniques model a problem in a different way in order to determine
the classification of an object.

5.4.1 Support Vector Machines

Support Vector Machines (SVMs) for example takes in a set of training data and
establishes a hyperplane, which is essentially a line that marks the boundary of
separation for classification of the data. The selected hyperplane maximises the
distance between the closest training data inputs which are referred to as the
support vectors. The ’Skin Sheriff’ DFT tool developed by Platzer et al. [54]
is an example where a SVM-based machine learning model was used to classify
whether a picture contained pornographic content or not. A data point within
the multi dimensional vector space was represented using 21 selected features
which included skin fill rate, compactness and rectangularity [54]. A training set
data that contained non-pornographic and pornographic images were then used to
establish the hyperplane for the SVM classifier. Test images were then entered (as
vectors) into the SVM classifier which determined whether the images should be
classified as pornographic or non-pornographic based on the feature hyperplane
established using the training data.

Unlike Bayesian Networks that has one general formula (i.e Bayes’ Theorem)
for building a classifier, SVMs have multiple ways for developing a classifier which
can involve in-depth mathematical modelling in order to find the best mapping
function for the training dataset. This is so because some training datasets are
not always linearly separable in which case SMVs use kernel functions to define a
line that encircles data with similar features. DFT involves an element of speed
in that the Digital Forensics Investigator has to try to gather as much intelligence
as quickly as possible in order to prioritise the next lead to investigate. It may
therefore be more time consuming to build/adjust a SVM based solution to a DFT
problem than a Bayesian Network solution that generally has one straight forward
mathematical formulae (i.e Bayes’ Theorem). Also unlike Bayesian Networks,
SVMs does not directly provide probabilistic output for a classification result
and thus extra calculations are needed to convert the results to a probabilistic
measure. SVMs however may offer more flexibility in that several mathematically
models can be developed to analyse the given triage problem.
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5.4 DFT with Supervised Machine Learning

5.4.2 Decision Trees

A Decision Tree, as its name suggest, is a rooted tree structure that models a
decision path to a leaf node which represents the class/category of the dataset.
To build a Decision Tree, attributes/features are modelled into internal nodes
based on the class/category that is to be identified. Each internal node has two
or more edges that represent the path to be taken based on the value of the
input data’s feature/attribute. The edges of the internal nodes will ultimately
point to a leaf node which represents the final classification state of the input
data. Tan et al. [55] for example demonstrated building a Decision Tree using
the Iterative Dichotomiser 3 (ID3) algorithm to triage identification of a class
of security threat. Internal nodes were designed based on attributes such as
Alarm Level, Number of Attacks and Target Status. The ID3 algorithm is a
greedy algorithm that builds the nodes of the Decision Tree from the top down
based on the feature that gives the most ‘Gain’ in information [55]. In order to
determine the class of the security threat, the security log entry is entered into the
Decision Tree and then based on the entry value’s Alarm level, Number of attacks
and Target status it will ultimately follow a path to a leaf node that contains
the class of security threat. One issue with Decision Trees is that it is more
sensitive to over-fitting in comparison to other SML methods such as Bayesian
Networks and SVMs [56]. That is, as more attributes/features are added to
the Decision Tree the precision performance decreases. Precision is especially
important in DFT in order to support sufficient grounds for issuing a warrant
for the identified priority investigation [48]. However, of the four classification
methods discussed in this section, Decision Tree results are generally the easiest
to interpret and explain, which is a valuable characteristics when seeking to triage
a digital forensics investigation.

5.4.3 K-Nearest Neighbour

Performing classification with K-Nearest Neighbour (KNN) techniques is fairly
simple. Given a point within a feature space, the KNN classifier simply classifies
the point based on the class of the k (a positive integer) closest data points. For
example, Peng et al. [57] used a KNN classifier to identify the authors of mes-
sages posted on various social media websites. All the posts for various authors
were gathered and half of each authors’ posted message was used as training data
and the other half as test data. N-gram profiles were generated for each authors’
training data and were modelled as vectors within the feature space. The re-
maining test data were then also converted to vectors and entered individually
into the KNN system for classification. The k for the KNN classifier was set to
k = 1 signifying that for a given input, the system will search for the training
data author profile with the closest Euclidean distance. That is to say, the author
classification for the input will be the author of the training data profile with the
closest similarity. Though the methodology behind KNN is simple, it is referred
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to as a ’lazy learner’ in that it does not actually learn anything new from the
training data. It simply uses the training data itself for classification. Addition-
ally, if the training data is not well-balanced, i.e there is more of one class of data
compared to other classes, the KNN classifier may end up classifying input data
simply based on the majority class of the training data. A comparative study
done by McClelland and Marturana [17] of the four SML techniques discussed in
this section, showed that KNN algorithms had the worst performance in terms
of classification accuracy which was as a result of the aforementioned issues with
KNN techniques. High accuracy is important in DFT, since the Digital Investi-
gator does not want to miss critical clues that will heavily impact the assignment
of the ideal priority level to an investigation.

5.4.4 Bayesian Network

A Bayesian Network is an acyclic graph model that uses Bayes’ Theorem to
statistically infer the classification of data. Bayes’ Theorem was introduced by
Rev. Thomas Bayes and was designed as a way of ’updating one’s belief that
an event occurred in light of new evidence’ [20]. Bayes’ Theorem is based on
conditional probability and in Digital Forensics it is applied in mathematical
form as:

P (H | E) =
P (E | H) P (H)

P (E)
(5.1)

where H represents the hypothesis event and E the evidence that is as a result
of the event occurring. The formula therefore seeks to find the Posterior Proba-
bility (P (H | E)) of the hypothesis occurring in direct relation to the Likelihood
(P (E | H)) that the evidence will be observed and the Prior (P (H)) belief that
hypothesis will occur. In a Bayesian Network, the events (e.g. H and E) are
modelled as nodes that store the state (e.g. Yes, No or Unknown) of the class
being examined. A typical model for measuring the criminal activity likelihood in
digital forensics related investigations is the Bayesian Network models proposed
by Ray and Shenoi [16]. In essence, the Bayesian Network is modelled as a rooted
tree where the evidence nodes are represented as leaf nodes and the hypotheses
as the root and internal nodes. As evidence is found the class state of the node is
marked as observed. Bayesian Inference is then performed which propagates the
posterior probability results throughout the network and will finally update the
class states of the main hypotheses. The class state of the main hypothesis (i.e.
root node) is then interpreted to determine if the set of evidence belongs to the
class being tested for or not. This proposed Bayesian Network model by Ray and
Shenoi [16] has proven useful in in real life investigations. For example, Xu et
al [58] applied the aforementioned proposed Bayesian Network Model by [16], to a
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data-leakage investigation which identified the most likely source of the data leak-
age, which turned out to be a correct prediction. This same proposed Bayesian
Network model by Ray and Shenoi [16] is utilised to build the Bayesian Network
component of the MemTri application developed in this project.

Due to Bayes’ Theorem ability to rationally analyse the relationship between
a hypothesis and evidence, it has contributed to it being a fairly well known,
researched and applied theory in the area of law enforcement. Therefore, this
familiarity of Bayesian theory with law enforcement personnel, supports ease of
interpretation for tools designed using such Bayesian approaches, similar to the
memory analysis triage tool developed in this work. Additionally, McClelland
and Marturana [17] concluded, based on a comparative analysis of the work done
by [59, 56, 60, 61] on the four SML techniques discussed in this section, that
Bayesian Networks on average offer the best accuracy performance (88.5%) for
crime classification of Digital Forensics devices.

One of the most valuable features that Bayesian Networks offer to forensic
related cases is the ability to statistically account for the causal relationship
of missing evidence[21]. In forensic related cases it is common for evidence to
not be discovered as yet and therefore missing. More specifically, with Memory
Forensics it is common for data to be missing from RAM due to the operating
system automatically swapping out data to disk [13]. When Bayesian Inference
is performed in a network, the Prior probability of evidence not yet observed
(i.e missing evidence) is also updated. Therefore, the classification output of a
Bayesian Network naturally considers missing evidence in a case investigation
and can improve the law enforcement personnel’s confidence in making a decision
base on the output data. It is also fairly simple to add new evidence features
to a Bayesian Network by just adding a new evidence feature node. This can
therefore support easy upgrading of triage tools developed based on a Bayesian
Network approach.

The other three SML techniques (i.e SVM, Decision Tree and KNN) by de-
fault ignore analysis of missing features/data during the classification process.
Additional mechanisms have to be put in place in order for these SML tech-
niques to handle analysis of missing features/data. In the case of Decision trees,
the entire Decision Tree may have to be rebuilt or retrained with new training
data in order to incorporate a missing feature/data. A less expensive option is
to implement surrogate splits for a tree node which are essentially special rules
for handling cases of missing evidence [62]. Developing these surrogate split rules
can be time-consuming since they have to be meticulously designed to promote
accuracy and they may differ across various nodes in the Decision Tree. Similar to
Decision Trees, a SVM may have to be entirely retrained with new training data
in order to improve classification when there is missing features/data. An alter-
native method is to estimate the value of the missing data based on the nearest
vector neighbours [63]. However, this methods does not take into consideration
the relationship between the data features, as done with Bayesian Networks, and
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as such can produce erroneous values for missing data that will affect the overall
precision of the classification system. Finally, a KNN system, similar to SVM,
can implement an imputation method for missing values using the mean of all the
missing data field values of the training nodes. This however does not take into
consideration the relationship between data features as aforementioned. In order
to develop a system for handling missing data based on the relationship between
data, KNN systems have explored research in building predictive models. These
predictive models have to be developed for every type of missing data feature
which can be a tedious task[64].

5.4.5 General Limitation of applying SML in DFT

A major challenge generally faced in applying SML techniques to digital foren-
sics, is that there is a lack of actual judicial case data available to be used as
training/testing data [17]. Inherently, this is a problem faced in this project
and so MemTri is developed using simulated crime scene data rather than actual
judicial case data which would be ideal. Horsman et al. [65] in his research how-
ever, developed an evidence relevance rating system that automatically collected
relevance ratings of actual case evidence during a digital forensics expert inves-
tigation. The collected evidence ratings were then fed directly into a Bayesian
model of the developed CBR-FT application [65].The implementation of such
automated expert knowledge collection system can help to address the lack of
judicial case data needed to improve SML digital forensics triage research.

5.5 Extraction of Data Artefacts

Though there have been years of research in applying supervised machine learn-
ing to developing device classification digital forensics triage tools, the research
into the development of memory forensics triage tools using data mining tech-
niques have mainly focused on malware detection [47]. Since the effectiveness of
traditional forensic analysis of disk images is currently facing challenges due to
the common use of cloud technology, encryption and malware [9], it is becoming
more important to be able to gather more intelligence through memory forensic
analysis, which is less hindered by these challenges. Hausknecht et al. [9] and
Joseph et al. [10] explain that RAM can contain significant forensic data that
is usually never stored on the disk. Data artefacts such as network traffic, in-
ternet browsing data, passwords, cryptographic keys, decrypted content and files
among other data can reside within the RAM of a computer [9, 10]. It is possible
to extract these aforementioned data artefacts from memory for digital foren-
sic analysis. For instance, Said et al. [14] and Joseph et al. [10] demonstrated
that browser artefacts, such as Google search requests and visited websites URL,
can be extracted from a memory image using simple regular expression search
patterns. Similarly, this work utilises regular expressions to search for evidence
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and thus verifies the aforementioned regular expressions developed by Joseph et
al.’s [10], along with exploring identification of other browser related artefacts.
Simon and Slay [15] also illustrates that Skype encryption keys can be extracted
from a memory image by simply running key finder applications on the memory
image. Simon and Slay [15] also mentions that it is possible to locate Skype con-
tact information patterns within a memory image however did not seek to develop
regular expressions to capture these patterns. This work explores locating and de-
veloping regular expressions to capture these Skype contact information patterns.
Collectively, this work extracts data artefacts from various Internet Browsers, In-
stant Messengers, Document Processors and FTP Client applications, using the
regular expressions method.

Another method for the extraction of memory data artefact is by navigat-
ing the OS’s memory structures. This method was similarly utilised by Okolica
and Peterson [66] to locate in memory, data that was sent to the clipboard from
notepad, Microsoft Word and Microsoft Excel applications. The research [66] fo-
cuses on analysing the Windows OS functions that are called when coping content
to the clipboard in order to determine where and how the clipboard data is stored
in memory. Okolica and Peterson [66] then explains how by reverse engineering
the clipboard data structure they were able to navigate through the linked list
of clipboard data structures, using the next pointer field of type gphn, in order
to locate all the content stored in the clipboard. This research of navigating
the clipboard structure is also incorporated into the Volatility Framework [6].
Though MemTri utilises the Volatility Framework [6] to navigate certain memory
structures, data artefacts are mainly identified using the regular expressions ap-
proach rather than specifically navigating structures to exactly where the data is
held.

5.6 Data Artefact Feature Translation

The extracted data artefacts are first translated into features before performing
evidence analysis using a SML techniques such as a Bayesian Network. Features
are generally developed based on the frequency of the data artefacts observed.
For example, Marturana and Tacconi[56] developed features for mobile forensics
analysis by examining the frequency of data artefacts related to, the number of
calls made, number of missed calls and number of phonebook contacts. Again,
McClelland and Marturana’s [17] work focused on developing disk forensics anal-
ysis features based on the number of video files, picture files and visited urls etc.,
data artefacts located. Likewise, this work develops features for MemTri based on
the frequency extracted data artefacts for example, the number of flagged illegal
firearms websites found, the number of illegal firearms dealers in contact list and
the number of criminal suspected documents and files etc., across the various
Internet Browser, Instant Messenger, Document Processor and FTP client appli-
cations. A similar work in designing a tool with feature extraction capabilities was
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Garfinkel’s [50] development of the bulk extractor utility. Bulk extractor [50] can
extract data artefacts for email addresses, phone numbers, credit card numbers,
keyword search patterns and ip addresses etc from any kind of digital device based
on the incorporated regular expressions research of various authors. Histograms
are then outputted that contain the frequency of the identified data artefacts.
Additional features of Bulk extractor [50] are the ability carve out files from a
digital device image (including a memory image) and search the content in zipped
archive files. It also has multi-threading capabilities thereby allowing it to extract
data quickly based on the available resources of the host computer. MemTri does
not offer a wide range of regular expression pattern searches as bulk extractor [50]
but instead focuses on developing more targeted regular expressions that is able
to gather information relevant to a specific criminal investigation (in the case of
this project, an Illegal Firearms Investigation). If time permits it may be possi-
ble to implement a multi-threading environment for MemTri since speed is also
a desirable feature when performing triage. The major focus in this project is
to go a step further than simply locating data artefacts in a memory image but
also to link the data artefacts to the operating system process that generated
the artefact. In this way, MemTri generates features that are more relevant in
the context of memory forensics analysis. In order to identify these operating
system processes within memory, MemTri leverages from the academic research
incorporated into the Volatility Framework [6]. Memory forensics analysis of
data structures within memory is complex [67] and there have been various tools
developed such as Mandiant Redline [68], Rekall [11], WindowsSCOPE [69] and
Volatility [6] that can reverse engineer the Windows 7 operating system mem-
ory data structures. Volatility [6] is however the most widely utilised and tested
memory analysis tool in the academic community [15, 67, 70].

5.7 Concluding Note

MemTri therefore combines research done in data artefact feature extraction,
memory analysis (via Volatility) and supervised machine learning (via a Bayesian
Network) to develop a memory analysis tool that will aid in triaging an illegal
firearms investigation. Apparently, no research has yet been published that at-
tempted to combine these three research areas to develop a memory forensics
triage tool. The closest related works combined only data artefact feature ex-
traction and Bayesian Networks and were mainly geared at mobile phone and
disk forensics triage as previously mentioned in the work done by [16, 17, 56].
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Chapter 6

Design and Methodology

This chapter describes the experiment setup environment and the development
steps for the MemTri application. The discussion is broken down into three sec-
tions. The first section describes how a virtual machine is prepared for collection
of a ‘suspect’ memory image. The second section gives the list of the scenarios
that are performed to mimic illegal firearms trading activities conducted by a
‘suspect’. The final section outlines the planned design for the development of
the MemTri application. Thus, this chapter gives a high-level overview of the
various work executed by this project.

6.1 Suspect Machine Preparation

The suspect memory images in this work are collected through a virtualisation
memory acquisition technique (see Section 4.6.2.3).The first step is to install
Windows 7 x86 SP1 on a virtual machine using the VMware Player [19] software.
The hardware specifications of the virtual machine are as follows:

• RAM Size: 4G

• Hard Disk Size:: 60 GB

• CPU Type and Speed: Intel i7 @ 3.40 Ghz

• No of cores: 1

In this work four types of software applications, namely Internet Browser, Instant
Messenger, Document Processor and FTP Client, are examined. Therefore, the
next step is to install the various software applications, listed in Table 6.1, onto
the Windows7 virtual machine. These installed applications are also referred to
as the ‘target applications’ throughout this dissertation. The Windows7 virtual
machine is then shutdown and a copy is made of the virtual machine files. These
copied files are referred to as the base virtual machine image which is used as
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the starting point for performing the suspect activity scenarios (see Section 6.2).
As mentioned in Section 4.6.2.3, acquiring a memory image with VMware Player
simply involves suspending the virtual machine and copying the ’.vmem’ memory
dump file.

Applications

Type # of Name(s)

Internet Browser 2 Tor, Chrome

Instant Messenger 2 Wickr, Skype

Document Processor 2 Windows Notepad, Libre Writer

FTP Client 1 Filezilla

Table 6.1: List of applications installed by type

6.2 Suspect Activity Scenarios

The first step in the generation of the suspect activity scenarios (SAS) is deter-
mining the set of operations that can be performed with a specific application
type. For example, internet browsers can perform download operations, instant
messengers can send messages, document processors can save typed content and
FTP Client can connect to a remote server etc. The next step involves the iden-
tification of a set of words, website URLs and contact names, collectively referred
to as ‘case words’, that are particular interesting to an illegal firearms trading
investigation. These list of ‘case words’ are found in Appendix D. The final step
is designing the actual SASs, based on the combination of an application opera-
tion with certain ‘case words’, in order to simulate the performance of an illegal
firearms trading activity. The list of SASs developed for this work are shown in
Table 6.2. Additionally, a template of how these SASs are performed is shown in
Appendix E.
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App. Type Alias Scenario ID Scenario Description

Internet Browser WEB W1 Perform a google search for content relating to illegal firearms trading

W2 Visit a website that is flagged as containing content related to illegal firearms trading

W3 Download a file that is suspected to contain illegal firearms trading content

W4 Utilise the Tor browser

Instant Messenger MSG M1 Add a suspected illegal firearms dealer to messenger contact list

M2 Send a message containing language relating to illegal firearms dealership

M3 Transfer a file that is suspected to contain illegal firearms trading content

M4 Utilise the Wickr messenger application

Document Processor DOC D1 Type content into a document related to illegal firearms dealership

D2 Save / Open a file that is suspected to contain illegal firearms trading content

D3 Open a password protected document

FTP Client FTP F1 Connect to FTP Server (enter the server’s IP address)

F2 Connect to FTP Server (enter the user credentials)

F3 Transfer a file that is suspected to contain illegal firearms trading content

Table 6.2: List of suspect activity scenarios developed

62



6.3 Memtri Application Design

Two sets of memory images are then gathered based on the designed SASs.
The first set of memory images are used to train MemTri to locate data artefacts
generated by each of the SASs. These memory images are referred to as ‘training
images’. To generate the training images, each of the SASs are performed on
a separate base virtual machine image, then the memory collected is examined
for data artefact patterns. The details of how this is done are later explained in
Section 7.1.

The second set of images are used to test MemTri’s ability to successfully
identify multiple SASs performed in a simulated criminal activity environment.
These memory images are referred to as the ‘test images’. To generate the test
images, a set of 20 experiments are performed involving multiple scenario ids.
The scenario ids were selected based on a sampling criteria that aimed to cover a
reasonable spread of the possible sample space in the Bayesian Network. A better
method for selecting the scenario ids would be to implement a Bayesian Network
random sampler such as Gibbs sampler [71], however time did not permit to build,
implement and test this. Appendix G shows the template design for performing
the experiments used to collect the test images based on the aforementioned
setup described. The actual generation of the test images are later described in
Section 7.1.

6.3 Memtri Application Design

This section gives a high-level description of how MemTri is designed to search
for and analyse evidence artefacts in a memory image. As such, MemTri’s design
is broken down into two main components, i.e the Evidence Search Engine com-
ponent and the Bayesian Network Analyser component. These components are
explained further in the following subsections.

6.3.1 Evidence Search Engine

The Evidence Search Engine (ESE) component of MemTri is responsible for ex-
tracting evidence artefacts from the ‘suspect’ memory image and translating them
into features that can be used by the Bayesian Network Analyser. The first step
in the operation of the ESE is to identify the running processes within the mem-
ory image that match the target applications listed in Table 6.1. The ‘commited’
virtual address space of the target application processes are then dumped into
a file referred to as the ‘procdump’ file. The ASCII and Unicode content of the
’procdump’ file are then extracted out into another file, referred to as the ‘proc-
text’ file, in preparation for filtering. The next step of filtering out the evidence
artefacts within the application’s process is done through the use of regular ex-
pressions. These regular expressions are selected during the execution of training
phase later discussed in Section 7.1.1. When an evidence artefact is found, the
final step is to associate the artefact with a feature(s). In this case a feature is
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synonymous with a scenario id shown in Table 6.2. The entire ESE process of
locating the evidence artefacts in a process’ virtual address space and converting
them to features is illustrated in Figure 6.1. The features are then entered into
the Bayesian Network Analyser component to assess the level of illegal firearms
criminal activity found.

Figure 6.1: Designed steps for MemTri’s Evidence Search Engine component

6.3.2 Bayesian Network Analyser

The second main component of the MemTri application is the Bayesian Network
Analyser (BNA). The BNA is responsible for analysing the evidence found in the
‘suspect’ memory image, in order to produce an output rating of the likelihood the
suspect was involved in illegal firearms trading. The BNA consists of a Bayesian
Network Model (BNM) that is designed with three layers, i.e. the hypothesis
layer, sub-hypothesis layer and evidence layer as shown in Figure 6.2. Each node
in the Bayesian Network is designed to capture three probability states; ‘Yes’,
‘No’ and ‘Uncertain’.

The hypothesis layer consists of one node (H1) that represents the overall
conclusion about whether the suspect used the seized computer for illegal firearms
trading (see Figure 6.2). Therefore, the hypothesis layer stores the final numeric
output rating result of the MemTri application, which is essentially the posterior
probability of the ‘Yes’ state of the hypothesis node (H1).

The sub-hypotheses layer represents the various types of applications that the
suspect was likely to use in performing an illegal firearms trading activity (see
Figure 6.2). As such, the sub-hypothesis layer is modelled to contain four nodes
(H2 - H5), one for each application type (see Table 6.1) that is examined to locate
illegal firearms trading evidence. The MemTri application also displays an output
rating (i.e. the ‘Yes’ posterior probability state) for each of the sub-hypothesis
nodes, so that the Digital Investigator can easily analyse which application types
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contain the most relevant evidence in the investigation.
The evidence layer (see Figure 6.2) represents the artefacts of evidence that

are likely to be found, given that the suspect conducted an illegal firearms trad-
ing activity with any of the application types modelled in the sub-hypotheses
layer. For example, evidence node E1 (see Table 6.3) represents the occurrence
of any relevant web engine search evidence, given that the suspect used an In-
ternet Browser application type (represented by the sub-hypothesis node H2)
to perform an illegal firearms trading activity. If an evidence artefact is found,
as indicated by the outputted features of MemTri’s ESE component, the state
of the corresponding evidence node is set as ‘observed’ (i.e. its ‘Yes’ posterior
probability state is set to 100%). The evidence nodes are the only nodes directly
updated in the Bayesian Network. The state of all the other nodes are automat-
ically updated through the performance of Bayesian Inference, which ultimately
calculates the final output rating at the hypothesis layer.

The Bayesian Inference process relies on digital forensics expert knowledge,
which is encoded into the node edges of the Bayesian Network, in the form of
‘Likelihood’ Joint Probability Tables (JPT). These ‘Likelihood’ JPT values are
gathered through a memory forensics expert questionnaire in Appendix F. This
online questionnaire uses the SurveyMonkey [18] website, to collect responses
anonymously from several digital forensics companies and private digital forensics
expert practitioners. A weighted average of the response results are then entered
as the ‘Likelihood’ JPT’s values. How this weighted average is calculated and
entered are discussed later in Section 7.2.3.2. The calculations are performed in
such a way that the ‘Prior’ probability values for three possible states of all the
nodes, are equally set to 33.33%. In this way there are no initial biases about the
illegal firearms trading activity found in the ‘suspect’ memory images.

An overview of the entire design for the BNM, along with the relevant meaning
of all the nodes, can be found in Figure 6.2 and Table 6.3 respectively. This
designed BNM is generally easy to interpret, in that the linking of the nodes show
a logical analysis/reasoning between the evidence observed and the hypothesis
answers being tested for. For example nodes (E1 - E4) all represent the evidence
that relate directly to the sub hypothesis H1 being tested, which in turn is a part
of the overall main hypothesis H being tested. This ease of interpretation of the
BNM supports a timely decision-making process, which is a favourable feature
when seeking to triage a criminal investigation.
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Figure 6.2: Designed Bayesian Network Model for the MemTri Application

Type Nodes Description

Hyptothesis H1 The suspect performed illegal firearms trading activity on the seized computer
H2 The suspect utilised an Internet Browser to perform illegal firearms trading
H3 The suspect utilised an Instant Messenger to perform illegal firearms trading
H4 The suspect utilised a Document Processor to perform illegal firearms trading
H5 The suspect utilised a FTP Client to perform illegal firearms trading

IBE* E1 Web engine search for illegal firearms trading related content
E2 Visited a website known to contain illegal firearms trading content
E3 Downloaded file suspected of containing illegal firearms trading content
E4 An anonymous type Internet Browser was used

IME* E5 Has contact information for a known illegal firearms dealer
E6 Sent message suspected to be related to illegal firearms trading
E7 Transferred file suspected of containing illegal firearms trading content
E8 An anti-disk forensics Instant Messenger was used

DPE* E9 Typed content related to illegal firearms trading
E10 Disk location of file suspected of containing illegal firearms content
E11 Document was password protected

FTPE* E12 FTP Connection to Server IP suspected to be used for illegal firearms trading
E13 FTP Client user credentials used to connect to illegal firearms trading server
E14 Transferred file suspected of containing illegal firearms trading content

Table 6.3: Symbolised meaning of the nodes in MemTri’s BNM; IBE*-Internet
Browser Evidence, IME*-Instant Messenger Evidence, DPE*-Document Processor Evi-
dence, FTPE*-FTP Client Evidence
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Chapter 7

Implementation

This chapter discusses how the various elements discussed in the design phase
are actually implemented. The first Section 7.1 explains how training and test
memory images were captured for input into the MemTri application. The second
Section 7.2 discusses how the various components of the MemTri application are
built.

7.1 Collection of the Memory Images

There are two kinds of memory images in this work, namely training and test
memory images. All these memory images were collected through the use of the
VMware Player [19] software. The reason for selecting VMware player is because
capturing memory is fairly simple since it only requires copying the dumped
‘.vmem’ memory file after the virtual machine was suspended. It also produces
a high quality image as explained in Section 4.6.2.3.

7.1.1 Generating the Training Memory Images

Each of the SASs listed in Table 6.2 was performed on a copy of the base virtual
machine image and a memory image was collected for each. This resulted in a
total of 14 memory images which are referred to as the ‘training images’. The
training images are essentially used to teach MemTri how to identify the data
artefacts generated when a SAS has been performed. In order to accomplish this,
the ASCII & Unicode text of each training images were searched manually for
notable patterns that held the evidence data being sought. The ASCII & Unicode
text were extracted from the training images using the Linux strings [72] utility
and the evidence data was examined in Notepad++ [73]. Several data artefact
patterns were manually identified for each SAS performed in the training images
and regular expressions are programmed into MemTri’s ESE (see Section 7.2.2)
to identify these patterns. Samples of these regular expressions along with the
matching data artefacts can be found in Appendix H.
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7.1.2 Generating the Test Memory Images

The test images were generated based on the 20 designed experiments in Ap-
pendix G. Each experiment was conducted on a copy of the base virtual machine
image, after which a memory image was collected at three different points. The
first point of memory collection was done while the target applications were still
running. This is referred to as the ‘Running Phase’ test images and is represented
by Image #s 1 – 20. The virtual machine was then resumed and the target appli-
cations were terminated. Immediately after terminating the target applications,
the virtual machine was suspended a second memory image was collected. This
second point of memory collection is referred the ‘Stopped Phase’ and is repre-
sented by Image #s 21 – 40. The virtual machine was then resumed for the final
time and left to run idly for 5 minutes. After the 5 minutes had passed, the
virtual machine was suspended and a third memory image was collected. This
third point of memory collection is referred to as the ‘Delayed Phase’ and is rep-
resented by Image #s 41 – 60. Therefore a total of 60 test images were collected
to test MemTri’s ability to locate and analyse evidence artefacts after completing
its training phase. The collected test image #s and their corresponding experi-
ment # are illustrated in Appendix G.

7.2 MemTri Application Development

This section discusses how the various components of the MemTri application were
actually implemented. MemTri was built in the C++ programming language.
The following subsections discuses how MemTri’s mode of operations, ESE and
BNA were developed. Figure 7.1 gives an overview of the programmatic flow
of the MemTri application, based on its C++ code implementation shown in
Appendix O.
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Figure 7.1: Program flowchart for MemTri application. Green shapes are ESE
related process; Purple shapes are BNA related processes
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7.2.1 Modes of Operation

The MemTri application was initially developed with one mode of operation,
referred to as ‘normal mode’. Normal mode uses Volatility’s pslist plugin to
locate the Windows7 processes using the link-list enumeration method (see Sec-
tion 4.5.3). The committed virtual addresses space for each target application
process is then dumped into a file using Volatility’s memdump plugin, which is
later searched for evidence artefacts. It was later observed that the Windows
EPROCESS structure is usually unlinked from the active process list immediately

after the process is terminated; thus MemTri’s normal mode of operation would
not locate the process to dump its contents. Therefore another method named
‘scan mode’ was introduced, in order to explore improving MemTri’s ability to
locate evidence artefacts even after the process has terminated.

With scan mode, MemTri essentially scans the entire physical address space of
the memory image for processes and evidence artefacts. In this case, Windows7
processes are located using the the pool scanning technique (see Section 4.5.3), im-
plemented by Volatility’s ‘psscan’ plugin. There are also minor differences in the
regular expressions utilised to discover evidence artefacts which is later disscused
in Section 7.2.2.3. Since scan mode searches evidence artefacts independently
from locating EPROCESS structures, it is able to locate evidence artefacts even
after the target application processes have been terminated. However, a possible
disadvantage of scan mode is that it may not be able to locate an evidence arte-
fact that spans across a page boundary it since searches the unordered physical
address space of the memory image rather than the ordered virtual address space
of the application’s process, as done in normal mode.

By default, MemTri is executed in normal mode. To enter into scan mode,
MemTri is executed with the command line parameter ‘-s’ as explained in MemTri’s
User Manual in Appendix N. Lines 82–85 in the memtri.cpp file (see Appendix O.2)
assesses whether MemTri is to be executed in normal mode or scan mode. A
command-line interface implementation was chosen for MemTri since it is gen-
erally more light-weight than a GUI interface implementation, thus promoting
faster output of results which is a valuable characteristic for triaging an investi-
gation.

7.2.2 Evidence Search Engine Implementation

The Evidence Search Engine (ESE) has four main stages which are:

1. Locate the target applications process structures in memory.

2. Extract the unicode and ASCII text from memory.

3. Search for evidence artefacts that occurred as a result of SASs performed.
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4. Generate features that can be assessed by the Bayesian Network.

The implementation of the ESE for MemTri running in normal mode and scan
mode is slightly different and the differences will be explained along the way in
the following subsections.

7.2.2.1 Locating the Target Application Processes

As aforementioned in Section 7.2.1, in normal mode, MemTri locates processes
by link list enumeration using the ‘pslist’ Volatility plug-in, and in scan mode
by pool scanning using the ‘psscan’ Volatility plug-in. The selected plug-in for
the respective modes are executed via the command line based on lines 137–143
of the memtri.cpp file (see Appendix O.2). Both plug-ins output a list of the
processes found which are parsed by the process filter() function, referenced in
line 403 of the memtri.cpp file (see Appendix O.2). The function process filter()
searches for the names of the target application processes which are examined for
evidence artefacts in this work (see Tabletab:VMapps) and associates it with the
relevant application type (i.e. Internet Browser, Instant Messenger, Document
Processor or FTP Client). The next process of extracting the ASCII and Unicode
content from memory is explained in the following section.

7.2.2.2 Extracting ASCII and Unicode Text

A slightly different approach is taken to extract ASCII and Unicode text from
memory for MemTri’s execution in normal mode compared to scan mode. In
normal mode, the Volatility plug-in ’memdump’ is first used to dump the target
processes’ committed virtual address space to a file. The process memory dump
files are named after their respective process id (PID) and stored in a folder
called ’procdump’. This process of dumping the process’ virtual address space
to a file is handled by the process dump() function, referenced in line 508 of the
memtri.cpp file (see Appendix O.2). The ASCII and Unicode text of the process
memory dump files are then extracted and stored in a folder called ’proctext’.
In scan mode however, the ASCII and Unicode text is extracted directly from
the actual memory image file and stored in the ’proctext’ folder . The function
process text() in the memtri.cpp file (see Appendix O.2) is responsible for ex-
tracting the ASCII and Unicode text when MemTri is executed in either normal
mode or scan mode. In order to extract the ASCII and Unicode text from either
the process memory dump file or the memory image file itself, MemTri performs
a command-line execution of the ’strings2.exe’[74] utility with the respective file
as an input parameter. The next process of search the ASCII and Unicode text
for evidence is explained in the following section.
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7.2.2.3 Evidence Filtering and Feature Generation

Evidence is filtered out from the extracted ASCII and Unicode text using regular
expressions. Advantages of this regular expressions implementation is that it is
simple to implement and can recall high volumes of evidence. Additionally this
method is flexible in that it can locate evidence artefacts regardless of the type
the OS the memory image was captured from. However, this implementation
obviously ignores non-ASCII and non-Unicode data that can contain some kind
of evidence. Another evidence searching implementation could have been to nav-
igate the process memory structures in order to access data, for example in the
process’ heap. This was similarly done by Okolica and Peterson [66] to access the
contents of the windows clipboard through examining process heap data. This
method theoretically should allow all evidence relating to a process to be ex-
amined. However, it may not be a flexible approach since it commonly requires
constant reverse engineering of memory structures every time a new Windows OS
is launched, which can be time consuming. The ’yarascan’ plug-in by Volatility
essentially implements both the navigation of process memory structures (more
specifically the VAD Tree structure) and regular expressions, to perform contigu-
ous searching of memory. However, the ’yarascan’ plug-in takes a long time to
return search results, which is not a suitable for a triage environment.

As previously hinted in Section 7.1.1, regular expressions were developed for
MemTri by manually examining the ASCII and Unicode text of the training im-
ages for notable patterns containing the evidence data being sought. The list of
regular expressions coded into MemTri are located in the functions find doc evidence(),
find im evidence(), find web evidence() and find ftp evidence(), all of which are
found within the evidence search engine.cpp file (see Appendix O.4).

MemTri utilises the ‘grep’ [75] utility to perform the regular expression pat-
tern searches. It was decided to use the ‘grep’ utility since it was found to be
significantly faster than a previous implementation that utilised the standard
C++ <regex> library to search for regular expressions.

The regular expressions patterns developed are also described as being ei-
ther ‘strong’ or ‘weak’. Strong regular expressions generally have a clear link
between the application that generated it or notable patterns such as xml tags.
For example, Figure 7.2 shows a Google search query pattern identified by the
‘strong’ regular expression in lines 32–35 of the evidence search engine.cpp

file (see Appendix O.4); which had a website URL indicating a clear link to
an Internet Browser application, along with a notable ‘+’ separated pattern for
the search query. Weak regular expressions on the other hand, identify pat-
terns that are generally associated with multiple target applications. For ex-
ample, the ‘Visited’ data artefact pattern shown in Figure 7.3 was commonly
observed when a target application opened, saved or downloaded a file and are
identified by the ‘weak regular’ expressions in lines 168–170 and 310–312 of the
evidence search engine.cpp file (see Appendix O.4).
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https://www.google.co.uk/#q=how+to+operate+a+browning+hi+power+pistol

Figure 7.2: Example of Google search data artefact identified with a ‘strong’
regular expression

Visited: Project@file:///C:/Users/Project/Documents/PO word file.docx

Figure 7.3: Example of File Open/Save data artefact identified with a ‘weak’
regular expression

The set of regular expressions actually utilised by MemTri however, differ
based on the operation mode executed. In normal mode all of the regular ex-
pressions are available for use. The rationale is that since the regular expressions
are applied within the constrained context of the process’ memory, it is gener-
ally safe to apply both ‘strong’ and ‘weak’ regular expressions with little risk of
identifying false positives. On the other hand, with scan mode, a limited number
of regular expressions are actually utilised. More specially, some of the ‘weak’
regular expressions are excluded. The rationale for this implementation is that
since scan mode searches the entire memory image, the straightforward use of
‘weak’ regular expressions is likely to identify many false positive results. It was
therefore decided that in order to use some of the ‘weak’ regular expressions, an
‘application launch’ verification process, shown for example in lines 333–339 of
the evidence search engine.cpp file (see Appendix O.4), first had to be passed.
The ‘application launch’ verification process, simply involves searching for unique
regular expression patterns that are generated when an application is launched.
These ‘application launch’ patterns were identified by simply comparing the text
in a memory image which the application was launched from another image in
which it was not launched. Certain patterns that were found to be unique in
the memory image that contained the launched application were then selected
for use in the verification process. A better approach for the application launch
verification process would be to search for memory structure remnants of the
application’s process after it was terminated, however time did not permit to ex-
plore this option. The lines of code in the evidence search engine.cpp file (see
Appendix O.4) that contains the list of ‘strong’ and ‘weak’ regular expressions
for various scenario ids, is shown in Appendix I.

In order to identify artefacts that are particularly relevant to an Illegal Firearms
Trading Investigation, a set of context words, trigger words, flagged contacts,
flagged website and download links (collectively referred to as ‘case words’) are
referenced from text files in the ‘case database’ folder (see Appendix D). The
function load case words(), at line 455 of the evidence search engine.cpp file
(see Appendix O.4), is responsible for reading the ’case database’ text files into
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the MemTri application. The regular expressions incorporate these ‘case words’
to provide a sort of semantic searching feature to locate relevant evidence arte-
facts. This implementation approach allows a Digital Investigator to flexibly use
the MemTri application for different kinds of criminal investigations, by simply
updating the ’case database’ text files with ‘case words’ that are particularly
important to that investigation. A more robust implementation for this seman-
tic search feature would be to incorporate a Knowledge-based Natural Language
Processing (NLP) system that uses a domain-specific dictionary (i.e. for example,
a dictionary that contains words particularly interesting to an Illegal Firearms
Investigation). A domain-specific dictionary of words could not be located for
use in this project and as noted in the research done by Riloff [76], building one
from ’scratch’ takes considerable time. Therefore, the Knowledge-based NLP and
domain-specific dictionary implementation approach is left for future work.

The counts of the regular expressions in the ESE that successfully located
evidence artefacts in the memory image are stored in feature variables, namely
baynet web [ ] for Internet Browser features, baynet im [ ] for Instant Messenger
features, baynet doc [ ] for Document Processor Features and baynet ftp [ ] for FTP
Client features (see bayesian network analyser.h in Appendix O.5). These
feature variables are the input data that the Bayesian Network uses to identify
which evidence nodes should be set as ‘observed’. For example, if the baynet im [3]
variable has a value greater than 0, then the corresponding evidence node E3 is set
to ‘observed’. The actual evidence artefacts matched by the regular expressions
are stored in the folder ‘procevdn’. A summary of the total number of MemTri’s
regular expression search hits for evidence artefacts, based on the scenario id
performed, is printed out to screen by the function print evidence summary()(see
line 501 of evidence search engine.cpp in Appendix O.4).

7.2.3 Bayesian Network Analyser Implementation

The Bayesian Network Model for MemTri’s Bayesian Network Analyser (BNA)
component is implemented using the ‘dlib’ [71] C++ library. This library was
chosen simply because it was written in C++, which made for easy integration
into MemTri’s C++ code, and it contained all the necessary structures required
for building a Bayesian Network Model. This BNA implementation has three
main stages:

1. Building the Bayesian Network Model.

2. Entering the Joint Probability Table values based on Expert’s Knowledge.

3. Perform Bayesian Network Inference based on evidence observed.

Both normal mode and scan mode use the same BNA implementation, which
is discussed further in the following subsections.
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7.2.3.1 Building the Bayesian Network Model

The Bayesian Network Model (BNM) utilised by MemTri is implemented exactly
as the intended design shown in Figure 6.2. There are 1 main hypothesis node,
4 sub hypothesis nodes and 14 evidence nodes, which are listed in lines 17–35
of the bayesian network analyser.h file (see Appendix O.5). The linking of
the node’s edges to form the Bayesian Network, is done exactly according to
the designed model (see Figure 6.2) and is accomplished by lines 80–102 of the
bayesian network analyser.cpp file (see Appendix O.6). As aforementioned,
this BNM is utilised for both normal mode and scan mode.

Another possible implementation that was considered was to build a separate
BNM for scan mode. The reason for this is that in scan mode, a ‘weak’ regular
expression can locate a data artefact pattern that is generated by multiple target
applications (as previously explained in Section 7.2.2.3). For example, the process
of opening a file to send or to view as represented by E7 and E10 respectively, can
generate similar data artefact patterns. Therefore, a new node could be added to
represent such data artefact pattern cases, and new edges added the relevant sub-
hypothesis nodes H3 and H4 to point to this newly added node. However, this
BNM implementation would be a bit difficult to interpret since it would not be
clear which target application type generated the data artefact. For this reason,
it was decided to keep the current BNM implementation and add an ‘applica-
tion launch’ verification process to strengthen the positive identification of data
artefacts for ‘weak’ regular expressions (previously explained in Section 7.2.2.3).

7.2.3.2 Joint Probability Tables Setup

The next stage in building the BNA is entering the probability values for the ‘Like-
lihood’ Joint Probability Tables (JPT), which are referenced during the Bayesian
Inference process. These JPT values are entered based on a weighted average
of the responses received from the various questions in Digital Forensics Expert
survey. More specifically, the likelihood probability values are gathered from the
weighted average of the responses to Questions 4–8, which is given in Appendix M.
The calculations performed to populate the ’Likelihood’ JPTs are explained in
the next few steps, using the responses for Question 4a (see Appendix M) as an
example. Note that the abbreviation meanings for the variables in the formulas
are mentioned in Appendix M.

Step 1: Calculate the Weighted Average (WA)

WA = (V L ∗ 0.9) + (L ∗ 0.7) + (ALAN ∗ 0.5) + (UL ∗ 0.3) + (V UL ∗ 0.1)

= (2 ∗ 0.9) + (2 ∗ 0.7) + (1 ∗ 0.5) + (0 ∗ 0.3) + (0 ∗ 0.1)

= 3.7

Step 2: Calculate the Yes Weighted Average Likelihood (YWAL)
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YWAL = (WA / No Of Participants) ∗ 100%

= (3.7 / 7) ∗ 100%

= 52.86%

Step 3: Calculate the Uncertain Weighted Average Likelihood (UWAL)

UWAL = (No Of Uncertain Responses / No Of Participants) ∗ 100%

= (2 / 7) ∗ 100%

= 28.57%

Step 4: Calculate the No Weighted Average Likelihood (NWAL)

NLWA = YWAL − UWAL

= 52.86% − 28.57%

= 18.57%

After calculating the YWAL, NWAL and UWAL as shown above, these
values are then stored in a ‘;’ separated file named ’bn probabilities.txt’ within
the ’case database’ folder. The function load bn probabilities located at line 273
in the bayesian network analyser.cpp file (see Appendix O.6) (see lines() of
Appendix), is responsible for loading these weighted average values from the
’bn probabilities.txt’ file and generating the JPT values. The function set conditional probabilities
located at line 229 in the bayesian network analyser.cpp file (see Appendix O.6),
later sets the ’Likelihood’ probability values of each node in the Bayesian Net-
work, based on the values stored in the JPT. Table 7.1 shows a template of how
the weighted average values are used to generate the JPTs. Table 7.2 show a
populated JPT based on the previously calculated example values.

7.2.3.3 Bayesian Inference on Evidence

The final stage of the BNA is to analyse the evidence found via Bayesian In-
ference, which produces the Illegal Firearms Trading Investigation triage out-
put ratings. Initially, a Bayesian Inference process is performed at line 27 in
the bayesian network analyser.cpp file (see Appendix O.6), to update all the
’Prior’ probability nodes’ states to equally be 33.333%. The function mark observed evidence()
at lines 32–35 in the bayesian network analyser.cpp file (see Appendix O.6),
then assesses the feature array variables generated by the ESE and marks the
state of the respective evidence nodes as ‘observed’, based on the evidence found.
After marking relevant evidence nodes’ states as ‘observed’, Bayesian Inference
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NODE A

NODE B Yes No Uncertain

Yes YWAL NWAL UWAL

No NWAL YWAL UWAL

Uncertain 100-(YWAL+NWAL) 100-(YWAL+NWAL) 100-(2*UWAL)

Table 7.1: Template for inserting Joint Probability Table values

H1

H Yes No Uncertain

Yes 52.86 18.57 28.57

No 18.57 52.86 28.57

Uncertain 28.57 28.57 42.86

Table 7.2: Example of Joint Probability Tables values for P (H1|H)

is performed using the dlib’s [71] join tree algorithm shown at line 37 of the
bayesian network analyser.cpp file (see Appendix O.6). The final output rat-
ing results are then displayed by printing the ’Yes’ state values of the main hy-
pothesis node H and the sub-hypothesis nodes H2 to H5, as shown in lines 40–46
of the bayesian network analyser.cpp file (see Appendix O.6). It was decided
not only to print the final output rating of the main hypothesis node but also
to include the ratings of sub-hypothesis nodes, so that the Digital Investigator
can clearly see which type of target applications most likely contained evidence
relevant to the Illegal Firearms Trading Investigation. Therfore, this information
can prove useful in guiding the Digital Investigator as to where is the best place
to start his analysis of the memory image.
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Chapter 8

Results and Evaluation

This chapter presents the results of MemTri’s execution based on the 60 test
memory images that were generated and collected for the specific needs of the
project (see Section 7.1.2). An evaluation of the effectiveness of the MemTri
application is also discussed along with the results. The results and evaluation
is broken down into three sections. The first section, discusses MemTri’s overall
performance based on a series of experimental evaluation and their outputs. The
second section, discusses the effectiveness of MemTri in developing a case priority
list to be utilised by law enforcement personnel. The final section, looks at some
notable anomalies and observations and how they can impact memory forensics
analysis and MemTri’s ability to properly locate evidence.

8.1 Performance

In this section, MemTri’s performance is analysed based on accuracy, precision,
recall and f-measure. These are common performance measurements to assess
SML triage based tools and were similarly utilised in [57, 56, 47, 67, 54, 48].
The formulas for the aforementioned performance measurements are all based
on variables that count the number of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) results produced. Figure 8.1 shows a
matrix that describes the combination of TP, TN, FP and FN that constitutes
real positives (RP), real negatives (RN), pure positives (PP) and pure nega-
tives (PN).

Appendix J.1–J.6 shows MemTri’s normal and scan mode results for each sce-
nario where evidence was found within the 60 training images collected at the
three different phases (i.e. Running, Stopped and Delayed Phases). The perfor-
mance results, discussed in the next few sections, measures MemTri’s ability to
detect certain events/scenarios performed by a suspect with the targeted appli-
cations, based on the regular expressions developed during the training phase.
Since this work is not performed with real criminal images and uses a limited set
of case words to simulate fictitious scenarios, it does not indicate what MemTri’s
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TP FP PP

FN TN PN

RP RN

Table 8.1: Matrix of performance measurement variables used to calculate accu-
racy, precision and recall.

performance is for a real-life scenarios. Nevertheless, this work demonstrates
some of the challenges that a Digital Investigator is likely to face when develop-
ing a Memory Forensics triage tool and also what sort of result trends are likely
to be observed.

8.1.1 Accuracy

The accuracy measures how close the actual results produced by MemTri were to
the expected results ( i.e. the results expected based on the experiments that were
performed as shown in Appendix G). MemTri’s normal and scan mode accuracy
results for the three collection phases, shown in Appendix K.1–K.6, are calculated
using the following formulae:

Accuracy =
TP + TN

TP + TN + FP + FN
(8.1)

An average of MemTri’s accuracy performance for each phase set of test images
are illustrated in the bar-chart Figure 8.1. From this point onwards, the average
accuracy will simply be referred to as the accuracy of the MemTri application.
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Figure 8.1: MemTri’s average accuracy results for executions in normal and scan
mode across the three phase sets of test images

As shown in Figure 8.1, MemTri’s normal mode accuracy performance of 95.7%
was 2.5% better than scan mode’s accuracy performance of 93.2%, for the ‘Run-
ning’ phase test images. Therefore, when the target application processes are
still running in memory, MemTri’s normal mode is better able to differentiate
which SASs were performed, compared to scan mode. However, for the ‘Stopped’
and ‘Delayed’ phase test images, MemTri’s normal mode accuracy performance
dropped over 34% to 61.4% and 60.0% respectively. MemTri’s scan mode on
the other hand, experienced a smaller ≈12% drop in accuracy performance for
the ‘Stopped’ and ‘Delayed’ phase test images, to 81.4% and 78.6% respectively.
Therefore, when the target application processes are terminated, MemTri’s scan
mode approach identifies more correctly the SASs that were performed in such
cases, compared to normal mode.

One factor that negatively affected both normal and scan mode’s accuracy
performance, was instances where the list of regular expressions developed for
MemTri (see Appendix H and I) could not identify some data artefacts that were
generated. This was seen for example with scenario id W2 in image #9 (see
Appendix J.1); in that, even though the website URL visited was located in the
test image, MemTri was unable to find identify this evidence artefact with the
currently available regular expressions. Thus, MemTri reported a FN result for
the aforementioned example.

Another factor that negatively impacted on both normal and scan mode’s
accuracy performance, was that it failed to locate evidence artefacts with misspelt
words. For example, in image #19 the word ‘Webley ’ was accidentally misspelt
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as ‘Welbey ’ when performing the scenario id D1. This resulted in MemTri not
being able to locate the relevant evidence as indicated by the FP in Appendix J.1
for the given example.

The other factors that affected normal and scan mode’s accuracy performance,
pertained specifically to the implementation differences of each mode. These fac-
tors are discussed later under the precision and recall sections 8.1.2 and 8.1.3
respectively. Essentially, since precision and recall are more targeted subset mea-
surements of accuracy performance, a fall in precision or recall results in a fall in
accuracy and vice versa.

8.1.2 Precision

Precision, measures the probability that a predicted positive result reported by
MemTri is actually correct based on the SASs that were performed on the test
image. The precision results for MemTri’s execution on each of the test images,
shown in Appendix K.1–K.6, are calculated using the following formulae:

Precision =
TP

TP + FP
(8.2)

An average of MemTri’s precision performance for each phase set of test images
are illustrated in the bar-chart Figure 8.2. From this point onwards, the average
precision will simply be referred to as the precision of the MemTri application.

Figure 8.2: MemTri’s average precision results for executions in normal and scan
mode across the three phase sets of test images

As shown in Figure 8.2, MemTri’s normal mode maintained higher precision
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performances of 93.2%, 90.6% and 89.2%, for the ‘Running’, ‘Stopped’ and ‘Test’
phases respectively, compared to scan mode which had precision performances
of 90.8%, 83% and 81.7% respectively. Therefore, in the cases where MemTri
predicts that it has positively identified a specific scenario as being performed,
normal mode is more likely to have predicted correctly compared to scan mode.

The main assessed reason for normal mode’s better precision performance is
that when MemTri is executed in normal mode, only the process’ committed vir-
tual address space region is searched. Hence, noise patterns that may similarly
exist elsewhere in the memory image are filtered out. Scan mode on the other
hand, searches the entire memory image for data artefact patterns. This resulted
in a regular expression, which is designed to locate a specific data artefact pattern
for a target application, matching another similar data artefact pattern gener-
ated by some other application. Such cases mainly occurred with ’weak’ regular
expression (see AppendixI). For example, with image #s 1 and 6, MemTri’s scan
mode execution incorrectly predicted an evidence artefact as being caused by
scenario id M2, which was actually generated by scenario ids W1 and D1 in the
respective target images. Therefore, for the aforementioned example, MemTri
reported a FP result at scenario id M2 as shown in AppendixJ.2. Nonetheless,
both normal mode and scan mode were able to maintain a reasonably high preci-
sion performance above 80% for all three phase sets of test images. As previously
mentioned, the higher the precision performance of a digital forensics triage tool,
the more evidential supports it lends for the issuance of a search warrant [48].

8.1.3 Recall

Recall, measures MemTri’s ability to correctly identify all the memory evidence
artefacts that were generated by performing the SASs. The recall results for
MemTri’s execution on each of the test images, shown in Appendix K.1–K.6, are
calculated using the following formulae:

Recall =
TP

TP + FN
(8.3)

An average of MemTri’s recall performance for each phase set of test images
are illustrated in the bar-chart Figure 8.3. From this point onwards, the average
recall will simply be referred to as the recall of the MemTri application.
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Figure 8.3: MemTri’s average recall results for executions in normal and scan mode
across the three sets of phase test images

As shown in Figure 8.3, MemTri’s normal mode recall performance of 99.4%
was 3.3% better than scan mode’s recall performance of 96.1%, for the ‘Running’
phase test images. Therefore, when the target application processes are still
running in memory, MemTri’s normal mode is able to identify correctly a greater
number of SASs that were preformed, compared to scan mode. However, for
the ‘Stopped’ and ‘Delayed’ phase test images, MemTri’s normal mode recall
performance dropped significantly by over 83% to 15.7% and 12.9% respectively.
MemTri’s scan mode on the other hand, experienced a much smaller drop in recall
performance of ≈28% for the ‘Stopped’ and ‘Delayed’ phase test images, to 69.8%
and 63.3% respectively. This drop in recall for both normal and scan mode is
consistent with the observations made in Garfinkel et al.’s [13] research, which
illustrated that memory addresses freed immediately after terminating a process,
is initially quickly overwritten then more gradually by the OS when in an idle
state. As such, it is expected that after a target application process terminates,
MemTri is likely to recall less data artefacts due to some of the artefacts being
overwritten by the system’s activity. This was seen for example with image #40
and image #60, where for scenario id D1, MemTri located the evidence artefact in
the ‘Stopped’ phase test image #40 (see Appendix J.4) however it was overwritten
5 minutes later in ‘Delayed’ phase test image #60 (see Appendix J.6).

As previously noted, MemTri has a higher recall performance in normal mode
than with scan mode for the ‘Running’ phase test images. The main reason for
this is that normal mode uses all the available regular expressions while scan mode
uses a limited set of regular expressions to search for evidence, as explained in the
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Implementation Chapter 7. More specifically scan mode excludes some ’weak’
regular expressions. An example of how this negatively impacted scan mode’s
recall was observed for scenario id D2 in image #18. In this example, scan mode
reported that it could not find the evidence artefact for D2 (see Appendix J.2)
since the ’weak’ regular expression aimed at locating this artefact was disabled
for scan mode. With normal mode on other hand, it successfully identified the
evidence artefact for D2 as indicated by the TP result in Appendix J.1.

As mentioned earlier for the ‘Stopped’ and ‘Delayed’ phase test images, MemTri’s
normal mode experienced a significant drop in recall of ≈83% compared to scan
mode which only dropped by ≈28%. The main reason for this is that when a pro-
cess is terminated, its EPROCESS structure is usually immediately unlinked from
the OS’s list of active processes. Normal mode relies on enumerating the list of
active processes to locate the target process’s VAD Tree structure, which in-turn
is needed to dump the process’ virtual memory address space before searching for
evidence. Therefore, if the process has been unlinked from the active process list
by the Window OS, MemTri’s normal mode will not locate any evidence. This
was seen for example in the case of image #s 33, 35, 36, 38 and 42–47, which all
had a zero recall performance measurements (see Appendix K.3 and K.5). A few
instances were observed where a closed application process was simply marked
as terminated and remained attached to the OS’s active list of processes. An
example of this is the chrome process found within image #29, which was simply
marked as terminated as indicated by the exited time highlighted in Figure 8.4.

Figure 8.4: Volatility’s ’pslist’ plug-in output for image #29 showing chrome.exe
process marked as terminated immediately after application was exited

In the case of image #29, since the chrome process was still linked to the
OS’s active list of process, MemTri’s normal mode was able to locate evidence
for the WEB scenario id W3 only, as shown in Appendix J.3. Scan mode on
the other hand, was able to locate evidence across all the scenario types (i.e. for
WEB, MSG, DOC and FTP) as shown in Appendix J.4, since the entire image
is scanned for evidence regardless if the EPROCESS structures are found or not.

Overall, the results of this work indicate that the evidence recall performance
of a Memory Forensics Triage tool is likely to diminish, if the suspect terminates
the application used to commit the criminal activity. In such cases, it is better
to use scan mode to uncover leads in an investigation, since it has a better stable
recall performance of over 60% compared to normal mode which is under 16%.
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8.1.4 F-Measure

F-Measure is the harmonic mean of precision and recall. In essence, F-Measure
seeks to provide a probability for assessing how well MemTri balances locating
TP results amongst RP results (which analysed by recall) and PP results (which
is analysed by precision). In this project, the F1-Measure formulae is used which
equally weights precision and recall. The F1-Measure formulae is as follows:

F1 = 2 · precision · recall
precision + recall

(8.4)

MemTri’s normal and scan mode F1-Measure performance results for each
phase set of test images are shown in Appendices K.1–K.6. An average of
MemTri’s F1-Measure performance for each phase set of test images are illustrated
in the bar-chart Figure 8.5. From this point onwards, the average F1-Measure
will simply be referred to as the F1-Measure of the MemTri application.

Figure 8.5: MemTri’s average f-measure results for executions in normal and scan
mode across the three sets of phase test images

As shown in Figure 8.5, MemTri’s normal mode F1-measure performance of
95.9% was 2.9% better than scan mode’s recall performance of 93%, for the
‘Running’ phase test images. Therefore, in the cases where processes are found
running in a memory image, MemTri’s normal mode generally provides a better
balance of recall and precision performance, compared to to scan mode. However,
for the ‘Stopped’ and ‘Delayed’ phase test images, MemTri’s normal mode recall
performance dropped by over 55% to 40.8% and 31.5% respectively. MemTri’s
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scan mode on the other hand, experienced a much smaller drop in recall perfor-
mance of ≈21% for the ‘Stopped’ and ‘Delayed’ phase test images, to 71.4% and
69.9% respectively. The significant drop in MemTri’s normal mode F1-measure
performance is mainly due the large fall in recall for the ‘Stopped’ and ‘Delayed’
phase test images previously discussed in Section 8.1.3.

8.1.5 Overall Performance

Generally the accuracy, precision, recall and F-measure performance of MemTri
indicates that if the targeted application processes are running, the better ap-
proach for locating evidence in memory is to search the committed virtual address
space of the running process as done with normal mode. However, if the targeted
application processes have been exited, the scan mode approach implemented by
MemTri of simply searching the entire memory image, is better in such cases.

Overall, MemTri’s scan mode implementation produces more stable results
across all three phases during which the test images were collected. The normal
mode implementation however, better identifies the relevant evidence artefacts
in a memory image when the targeted application processes are still running.
Both normal and scan mode exhibit progressive reduction in performance after a
process has terminated. As such, the Digital Investigator should work speedily in
collecting a memory image, in order to gather the best results to triage a criminal
investigation.

8.2 Output Rating

This section analyses the output ratings results produced by MemTri’s normal
and scan mode executions on the three phase sets of test images (see Appen-
dices L.1–L.6). As aforementioned, the Bayesian Network Analyser (BNA) com-
ponent of MemTri produces an output rating result for a test image, based on the
expert knowledge gathered from the digital forensics expert questionnaire (see
Appendix F). An analysis of responses to Question 4 (see Appendix M) indi-
cate that digital forensics experts on average view that criminals are most likely
to use internet browsers to commit illegal firearms trading, followed by instant
messengers, document processors and lastly FTP clients, as illustrated by the
’Yes’ likelihood weighted average probabilities in Figure 8.6.Therefore, MemTri
essentially weights the importance of the evidence found to the illegal firearms
investigation, in accordance with average expert’s knowledge that the various
types of target applications are used, as shown in Figure 8.6.
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Figure 8.6: Average ’Yes’ Likelihood that a specific application type was used to
commit illegal firearms trading based on Question 4 results of the Digital Forensics
Expert Questionnaire

Table 8.2 shows a list of the projected output ratings sorted in descending
order, that would be generated if evidence artefacts are found for every scenario
performed in the experiments (see Appendix G). Figure 8.7 illustrates that the
projected output rating ranking order of Table 8.2, is ideally not just based
on the number of scenarios performed, but rather as a weighted analysis of the
evidence artefacts located using the expert knowledge gathered for this project.
For example, experiment #14 test images in 2nd position, has a higher ranking
than experiment #8 test images in 6th position, though experiment #14 test
images are generated with a smaller number of scenarios, i.e 6 scenarios, compared
to experiment #8 test images that are generated with 9 scenarios.
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Rank Exp. # Image #s Projected Final Rating Total Scenarios
1 20 20,40,60 0.717506 14
2 14 14,34,54 0.677529 6
3 17 17,37,57 0.674098 7
4 12 12,32,52 0.654734 6
5 9 9,29,49 0.636555 8
6 8 8,28,48 0.621815 9
7 19 19,39,59 0.61594 7
8 10 10,30,50 0.613153 9
9 11 11,31,51 0.604515 8
10 7 7,27,47 0.570682 5
11 1 1,21,41 0.562135 4
12 13 13,33,53 0.538656 6
13 5 5,25,45 0.529689 5
14 18 18,38,58 0.51653 7
15 15 15,35,55 0.500454 6
16 2 2,22,42 0.489403 4
17 6 6,26,46 0.486984 5
18 4 4,24,44 0.346346 3
19 16 16,36,56 0.344473 6
20 3 3,23,43 0.335388 3

Table 8.2: Projected Ranking of Test Image experiments based on expert knowl-
edge questionnaire results encoded into BNA

Figure 8.7: The projected ranking for each experiment performed in reference to
the total number of scenarios performed
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The projected ranking in Table 8.2 essentially represents the best priority
order to the three phase sets of test memory images based on the various scenarios
performed in each experiment.

Therefore, to measure MemTri’s performance in ranking the test images based
the level of illegal firearms trading activity, the standard deviation of MemTri’s
reported ranking results (see Appendices L.1–L.6) from the projected rankings
in Table 8.2 was calculated. The calculated standard deviations for each of the
three phase sets of test images are shown in Table 8.3.

Running Stopped Delayed

Std. Dev. Normal Mode 1.49 4.70 4.53

Std. Dev. Scan Mode 3.34 4.30 4.47

Table 8.3: Standard deviations between MemTri’s test image ranking results and
the ideal projected ranking

Figure 8.8: Standard deviation of MemTri’s normal and scan mode ranking results
for the three phase sets of test images

Figure 8.8 gives a more intuitive view of the standard deviation results in Ta-
ble 8.3. MemTri’s normal mode of execution on the ‘Running’ phase test images
reported the best ranking results, since it has the lowest (standard) deviation of
1.49 away from the ideal projected ranking. In other words, if a Digital Inves-
tigator uses normal mode to rank a set of suspect memory images that contain
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running target processes, the ranking results on average are likely to only be off
by about +/-1 rank position (see Figure 8.8). Therefore, MemTri’s normal mode
produced better ranking results than scan mode for ‘Running’ phase test images
which had a standard deviation of 3.34.

However, for the ‘Stopped’ and ‘Delayed’ phase test images, MemTri’s normal
mode standard deviation results of 4.70 and 4.53 respectively, was worse than that
of scan mode which has standard deviation results of 4.30 and 4.47 respectively.
This is expected since MemTri’s normal mode generally has a worse performance
when executed on ‘Stopped’ and ‘Delayed’ phase test images as discussed in the
Performance Section 8.1.

Overall, the projected output ratings produced by MemTri, demonstrate that
MemTri successfully uses the digital forensics expert knowledge gathered in this
work, to produce an output rating that is a reflection of the likelihood level of
illegal firearms activity found in the memory image. Additionally, the ability of
MemTri to ideally rank the test images diminishes as the targeted application
processes are terminated. MemTri’s normal mode produces the best ranking
results if the targeted application processes are running. However, MemTri’s scan
mode produces better ranking results if the targeted application processes has
been terminated.

8.3 Observation and Anomalies

This section discusses any observations and anomalies that were noted throughout
the execution of this project. Apart from that, the description of the observations
and anomalies is coupled with an in depth discussion regarding their impact on
the generated results.

8.3.1 Cross Application Memory Content

This first section discusses a common anomaly observed within various test images
generated for this project. The observation was that the virtual memory addresses
of a target application process dump at times contained data that was generated
by another target application. For example with test image #10, data generated
from performing scenario id W1 with the Tor browser application, was found
within the process dump for the Skype messenger application. This data was
then identified by MemTri as being generated by the scenario id M2 which is
illustrated by the reported FP in Appendix J.1.

This anomaly could have simply occurred due to freed memory addresses from
the Tor application being acquired by the Skype application. As mentioned in
Section 4.5, when memory is freed in a Windows OS environment, its content
remains intact until overwritten by the activity of another application process.

Another reason for this anomaly can be due to a phenomenon that occasion-
ally occurs during memory acquisition which is referred to as ’page smear’ [77].
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Page smear occurs when a memory image contains pages of data that is asso-
ciated with varying times of system activity. Therefore, it is possible that at
the time Skype’s ( EPROCESS) structure was captured, it’s currently referenced
virtual memory space could have been later updated with pages resulting from
concurrent activity performed by the Tor application process. However, based
on the high atomicity rating of memory images captured by visualisation meth-
ods (see Section 4.6.2.3), it is less likely that page smear has contributed to the
observed anomaly.

8.3.2 Concentration of Evidence Artefacts

According the average responses for each Question 5–8 in the questionnaire (see
Appendix F), digital forensics expert viewed that it was most likely to find ev-
idence for internet browsers, followed by instant messengers, then FTP clients
and document processors. These calculated average likelihood values based on
Questions 5–8 are shown in Figure 8.10.

Figure 8.9: Average likelihood of finding evidence artefacts for the various appli-
cation types based on expert questionnaire responses to Questions 4–8

This expert likelihood order of finding evidence is consistent with observa-
tions made in this project. The observation made was that when all the SASs
were performed for an internet browser, thousands (about 4,000+) of relevant ev-
idence artefacts were generated. The next highest number of evidence artefacts
generated was for instant messenger SASs, which were about a few hundreds
(about 300+). This was followed by FTP client and document processor SASs
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which generated less than a hundred evidence artefacts (about 60+ and 40+
respectively).

8.3.3 Irrelevant Memory Artefacts

It was observed that there were instances where artefacts identified by MemTri
was irrelevant to the fictitious Illegal Firearms Investigation setup for this project.
For example, MemTri reported that it located evidence based on the case words
‘value’ and ’piece’, which is not relevant in the context of an Illegal Firearms In-
vestigation as shown in Figure 8.10. This resulted in MemTri reporting FP results
as demonstrated with scenario id D1 for image #11 shown in Appendix J.2.

Figure 8.10: Example of an irrelevant case evidence artefact identified by MemTri
for scenario id D1 of image #11
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Chapter 9

Conclusions & Future Work

Actions carried out by a suspect on a computer generates various forms of data
artefacts in volatile main memory. The Memory Forensics triage tool, named
MemTri, developed in this project, identifies data artefacts in memory for certain
Internet Browsers, Instant Messengers, Document Processors and FTP Client
applications, using regular expressions. This work demonstrated that even after
a targeted application process was terminated, some data artefacts could still be
extracted from unallocated regions of memory. However, MemTri’s performance
diminished after the targeted application’s processes were terminated, which was
due to the evidence artefacts gradually being overwritten by OS activity. MemTri
was implemented with two modes of operation, i.e normal mode and scan mode.
MemTri’s normal mode implementation produced more accurate results in the
cases where the targeted processes were still running, since it effectively filtered
out noise patterns. However, its performance was severely impacted when pro-
cesses were terminated. Scan mode on the other hand, maintained a fairly high
and stable performance even after processes were terminated.

The Bayesian Network developed in this work, encodes expert knowledge
gathered from a designed digital forensics expert questionnaire, and successfully
uses it to provide a probabilistic output rating that a memory image contains
evidence of illegal firearms trading activity. MemTri’s output rating results were
then sorted in descending order to build a priority ranking list for the set of test
images collected. The reported results showed the MemTri’s priority ranking lists
were more likely to deviate significantly from the ideal priority ranking list for
test images that contain terminated processes, compared to the test images where
the targeted processes were still running.

Overall, this work demonstrates that a significant amount of data artefacts
can be found in main memory, which can offer valuable information to a law
enforcement personnel seeking to triage an investigation. It is possible to develop
Memory Forensics Triage tools, such as MemTri, to quickly capture and analyse
this data using regular expressions and a (SML) Bayesian Network approach
respectively. However, the accuracy of the results generated based on the actual
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event that occurred, is likely to diminish if the targeted application processes are
terminated in main memory.

9.1 Challenges and Limitations

This section highlights some of the challenges and limitations encountered during
the development of the memory forensics triage (MemTri) application in this
project.

The main challenge faced was getting a large number of digital forensics expert
responses for the designed questionnaire (see Appendix F). Though the question-
naire was sent to several digital forensics companies and practitioners, only 7
responses were gathered within the available time frame. One of the suspected
reasons for the low response rate is that the questionnaire targets a specific area
of digital forensics, i.e. memory forensics, which may not be a common area
of expertise among digital forensics experts. Nevertheless, the responses were
sufficient to perform and complete the project.

Another challenge faced was that there were often clashes between the ’grep’ [75]
regular expressions syntax and the windows command-line syntax upon execu-
tion via MemTri’s C++ code. For example, searching for quotes within grep had
to be replaced with a dot (which matches any single character) since the win-
dows command-line could not differentiate between statement quotes and those
belonging to the regular expression search.

One of the major limitations of MemTri is that it can only locate evidence data
that is either in ASCII or Unicode format. As demonstrated in this work, if a
suspect opens a letter using a document processor program such as Libre Writer,
MemTri is able to examine the ASCII/Unicode contents of the document for
evidence. However, if the suspect opens the same letter document in a graphical
format such as a ’.pdf’ or ’.tif’, MemTri is unable to analyse the contents of the
letter for evidence, since it is not stored in ASCII/Unicode format.

Another limiting factor is that MemTri’s design specifically focuses on locating
evidence artefacts in the target applications (see Table 6.1) utilised in this project.
There are some regular expressions that are not application dependent, such as
Google’s search query patterns (see example in Appendix H). However, most of
the regular expressions developed for MemTri are essentially designed to only
identify artefacts that are specifically generated by a targeted application.

The SASs performed in this work, were done with only a few selected words
that were deemed relevant to an illegal firearms investigation (see Appendix D).
As such, MemTri’s implementation for this project is limited to only detecting
evidence based on the aforementioned selected words. An improvement to remove
this limitation is suggested in the Future Work section 9.2.
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9.2 Future Work

It is hoped that this project would inspire further research into developing digital
forensics triage tools, specifically geared at assessing criminal activity found in
main memory. Some significant improvements have been identified to prepare
MemTri for use in actual criminal investigations.

Firstly, this work only utilised a limited set of case-specific words to locate
evidence. The next stage is to implement a Knowledge-based Natural Language
Processing (NLP) system into MemTri’s Evidence Search Engine (ESE) which
utilises a domain-specific dictionary [76] (for example, a dictionary of illegal
firearms related words). This upgrade will allow MemTri to effectively locate
evidence in the context of any specified criminal investigation, thus making it
practical for use in a real-life environment.

Another important aspect of triage is speed. By upgrading MemTri’s ESE
code to utilise multi-threading (similar to bulk extractor [50]), this will increase
the number of regular expressions that can be executed simultaneously to search
for evidence.

MemTri current implementation also does not cater for misspelt words. Fur-
ther work is therefore needed to implement a fuzzy search algorithm [53] as part of
MemTri’s ESE, which is able to detect small variations in a word’s letter positions,
that is most likely as a result of a word being misspelt.

Time did not permit to gather more digital forensic expert knowledge via the
designed questionnaire. The rank assigned to a given set of images is directly
linked to the data gathered from digital forensics experts. Therefore, more re-
sponses is likely to yield better ‘Likelihood’ probability averages, which further
removes any biases which may be incorporated into the Bayesian Network. It was
also analysed that the habits of criminals may be different based on geographical
location. The designed questionnaire collected data on the geographical area in
which the digital forensics experts practised. Therefore, a planned future work
is to include a parameter for MemTri’s BNA component that allows it to assess
evidence based on a specific geographical region.

An initial plan in this project was for MemTri to be able to assign weights to
certain kinds of evidence based on it’s importance to a specific criminal investiga-
tion. This was not possible with the ‘dlib’ C++ library utilised in MemTri. The
Weka 3 [78] data mining library, which is commonly used in the academic commu-
nity, has the ability to build weighted Bayesian solutions. However Weka 3 [78]
is implemented in Java and as such may not be easily ported into MemTri’s C++
code.

After observing the performance of MemTri’s normal and scan modes, it was
decided that the next step should be to combine both methods to incorporate the
strengths of each. Normal mode performed better when applications processes
were found in the OS’s list of active processes. Therefore, if a process is found
in this active process list, then MemTri should use normal mode’s approach of
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extracting the process’ virtual memory to search for evidence. Scan mode on
the other hand, performed significantly better when processes were no longer in
the active process list. Therefore the remaining physical address space that was
not analysed by normal mode’s approach should then be automatically analysed
using scan mode.

Additionally, further work can be done to allow MemTri to simultaneously
differentiate between evidence artefacts, that are relevant to two different types
of criminal activity. By implementing the domain specific dictionary previously
mentioned, MemTri can classify certain words as being significant to one or both
types of criminal investigations. Since MemTri’s implementation of its Bayesian
Network model (BNM) is not tied to any specific type of investigation, two in-
stances of the same BNM can be used to simultaneously calculate output ratings
for both investigations.

Finally, an interesting direction would be to incorporate MemTri into cloud-
based services and also use it to investigate data collected through participatory
sensing applications [79, 80]. More precisely, our vision is to install MemTri on
a Trusted Cloud Service provider [81, 82, 83, 84] and give the option to users to
run regular experiments in order to identify possible malicious behaviours. To
do so, MemTri will have to develop an API that will be available via a Platform-
as-a-Service infrastructure similar to the one described in [85]. By doing this,
MemTri will be able to offer a reliable solution to many applications that today
suffer from poor investigation of malicious behaviours. For example, the health
sector that is gradually moving to the cloud will gain lot of benefits since personal
health records are considered as sacrosanct [86, 87, 88] and needs to be properly
protected. In addition to that, by moving MemTri with cloud-based services, we
will be able to further enhance the accuracy of our tool by incorporating specific
techniques [89, 90, 91] where users’ will be able to rate the veracity of the tool in
an anonymous and privacy-preserving way [92, 93].

9.3 Critical Evaluation

For the most part, MemTri achieved its main aim, which is to provide a measurable
output rating that law enforcement personnel can use to rank illegal activity in
memory images, seized as part of a criminal investigation. The following is a
break-down evaluation of the objectives that were accomplished, based on the
work done in the development of the MemTri application. As such, the following
evaluation points give further details about how the aim of this project was
achieved.

Base Objectives:

1. Build an Evidence Search Engine to extract artefacts from internet browsers,
instant messengers and document processors, and link the evidence arte-
facts to their applications process.
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9.3 Critical Evaluation

Achieved?: Yes

MemTri successfully identified and extracted artefacts from the aforemen-
tioned applications. The regular expressions developed for MemTri to iden-
tify evidence artefacts in the test images, did so successfully with an average
accuracy of 95.7%. MemTri identified artefacts generated by a targeted ap-
plication even after its process was terminated. However, MemTri’s scan
mode was more successful in locating evidence artefacts in such cases, com-
pared to normal mode. On the other hand, scan mode was analysed to
produce less accurate results than normal mode, in the cases where the
targeted application processes were still running.

2. Develop an Evidence Weighting System that assigns numeric weights to
evidence based on the importance/value of an evidence artefact to a criminal
investigation.

Achieved?: No

This was not attempted since the dlib C++ used to implement the Bayesian
Network model did not support applying weighted edges to the nodes. As
such, this was scheduled as future work.

3. Develop a mechanism for users to modify the keywords or patterns used to
search for evidence.

Achieved?: Yes

The text files in the ‘case database’ folder for MemTri can be easily updated
by the user with specific keywords or regular expression patterns that are
used for evidence searching. However, the user must be aware that certain
entered symbols will have reserved meanings to both the ’grep’ utility and
Windows command line prompt.

4. Design a Bayesian Network Model that incorporates the knowledge of dig-
ital forensics experts about the likelihood that a specific evidence artefact,
if found, has contributed to performing a specific criminal offence.

Achieved?: Somewhat

Only 7 responses were collected for the designed digital forensics expert
questionnaire. More responses are required to better estimate on average,
the likelihood that a specific evidence artefact, if found, contributed to
a specific criminal offence. Nevertheless, the responses were sufficient to
successfully execute this project.

5. Build a Bayesian Network Analyser that processes the features found in a
memory image and provides a numeric Bayesian Network output rating,
which is a measurement of the likelihood that a specific criminal offence
was committed
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9.3 Critical Evaluation

Achieved?: Yes

The Bayesian Network Analyser (BNA) provided a numeric output rating
of the likelihood that a suspect was involved in illegal firearms trading
activity based on the expert knowledge collected. The Bayesian Network
model not only supported producing a final output rating, but logically
provided an output rating based on each type of application utilised in the
project. However, the results showed that when the target processes are
terminated, the priority ranking of the test images had a standard deviation
of about +/- 5 positions from the ideal ranking list.

6. Collect a set of training and test memory images at three different phase
points; (1) while the targeted applications are running, (2) immediately
after the targeted applications have been terminated and (3) Five minutes
after the targeted applications have been terminated.

Achieved?: Yes

The training and test memory images were successfully collected at the
three phase points by simply suspending the VMware virtual machine after
performing each phase and collecting the .vmem memory dump file that
was produced.

Enhanced Objectives:

1. Build a Case Classifier that is able to provide a numeric Bayesian Network
output rating for two different kinds of criminal offences.

Achieved?: No

Time did not permit to attempt this and was scheduled as future work.

2. Upgrade the Evidence Search Engine to extract evidence artefacts from an
email client and link the artefact to the applications process.

Achieved?: Yes

Evidence artefacts were extracted from an FTP Client instead of an email
client. The main point of this objective was to expand MemTri to search for
evidence in another kind of application. It was analysed that email client
was somewhat similar to Instant Messenger in that they are both used to
send messages, therefore another kind of application (i.e FTP Client) was
chosen.

3. Provide a Case Evidence Report that shows where in the memory image
evidence was found, the application process associated with evidence and
the total number of evidence artefacts found etc.

Achieved?: No
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9.3 Critical Evaluation

MemTri only provides a summary report of the evidence artefacts found
based on a regular expression match hits. It does not give a break down of
the total number of individual artefacts found for each application etc.
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Appendix A

CR3 and Paging-Structure
Entries

Figure A.1: Format of the CR3 and Paging-Structure Entries for 32-Bit Paging [2]
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Appendix B

Windows OS Architecture

Figure B.1: Overview of the Windows OS Architecture [5]
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Appendix C

Windows OS Objects

Figure C.1: List of Windows Executive Objects [1]
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Appendix D

Case Database Files

D.1 Trigger Words.txt

Browning.Hi-Power Walther(.)?PP Webley gat

AK(.)?47 MP5A4 Benelli(.)?M4 heater

FN(.)?sSCAR MP5SD3 L22A2 biscuit

Howdah piece SIG(.)?Sauer chopper

L85A2 boom(.)?stick Glock cuete

D.2 Context Words.txt

buy advertise value exchange

sell deal trade stock

purchase market auction vendor

amount wholesale payment contract

cost retail price bargain
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D.3 Flagged Websites.txt

D.3 Flagged Websites.txt

www.deepdotweb.com

www.agoramarketplace.org

darkwebnews.com

dnstats.net

D.4 Flagged Contacts.txt

cfsuser2

cfsproject2

live:cfsproject2

D.5 Download Links.txt

https://d3l1h3n4or6wo9.cloudfront.net/UGAR/product/undergroundak47buildmanual.pdf

http://stevespages.com/pdf/browning hipower field.pdf

http://stevespages.com/pdf/glock.pdf

http://stevespages.com/pdf/hk mp5a4.pdf
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Appendix E

SASs Performance Template

E.1 Internet Browser

Scenario W1

1. Launch an Internet Browser
2. Go to www.google.com
3. Enter a search query that contains a <trigger word(s)> and <context

word(s)>

Scenario W2

1. Launch an Internet Browser
2. Got to a <flagged website>

Scenario W3

1. Launch an Internet Browser
2. Got to a <download link>
3. Save the name of the file with a <trigger word(s)>

Scenario W4

1. Launch Tor Browser

E.2 Instant Messenger

Scenario M1

1. Launch Instant Messenger
2. Add a <flagged contact>

Scenario M2
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E.3 Document Processor

1. Launch Instant Messenger
2. Click on the contact to send message
3. Type a message that contains a <trigger word(s)> and a <context word(s)>

Scenario M3

1. Launch Instant Messenger
2. Click on the contact to send file
3. Browse to file that includes a <trigger word(s)> in its name

Scenario M4

1. Launch Wickr application

E.3 Document Processor

Scenario D1

1. Launch Document Processor
2. Open a new document
3. Type a sentence that contains a <trigger word(s)> and a <context word(s)>

Scenario D2

1. Double click to open a file that includes a <trigger word(s)> in its name

Or
2. Launch Document Processor
3. Open a new document
4. Save the document with a filename that includes a <trigger word(s)>

Scenario D3

1. Double click to open a password protected file
2. Enter the password

E.4 FTP Client

Scenario F1 F2

1. Launch FTP Client
2. Enter Server IP
3. Enter username and password
4. Connect to FTP Server

Scenario F3

1. All of Scenario 1 2
2. Upload a file that includes a <trigger word(s)> in its name

Or
3. All of Scenario 1 2
4. Download a file that includes a <trigger word(s)> in its name
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Appendix F

Memory Forensics Expert
Questionnaire
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Appendix G

Template for generating Test
Images
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Sampling Criteria Collection IDs Scenario IDs Performed

Exp.# Img.#s W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3 Count

All scenarios for 1 1,21,41 X X X X 4

1 application 2 2,22,42 X X X X 4

3 3,23,43 X X X 3

4 4,24,44 X X X 3

At least 1 scenario 5 5,25,45 X X X X X 5

for each application 6 6,26,46 X X X X X 5

7 7,27,47 X X X X X 5

At least 2 scenarios 8 8,28,48 X X X X X X X X X 9

for each application 9 9,29,49 X X X X X X X X 8

10 10,30,50 X X X X X X X X X 9

11 11,31,51 X X X X X X X X 8

At least 3 scenarios 12 12,32,52 X X X X X X 6

for 2 applications 13 13,33,53 X X X X X X 6

14 14,34,54 X X X X X X 6

15 15,35,55 X X X X X X 6

16 16,36,56 X X X X X X 6

At least 2 scenarios 17 17,37,57 X X X X X X X 7

for 3 applications 18 18,38,58 X X X X X X X 7

19 19,39,59 X X X X X X X 7

All of each application 20 20,40,60 X X X X X X X X X X X X X X 14

Table G.1: Template for collecting test images based on experiments involving multiple scenario ids
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Appendix H

Sample Regular Expressions &
Data Artefacts
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Code Line# Scenario ID Example of Data Artefact matched by the Regular Expression

32 – 35 W1 https://www.google.co.uk/#q=how+to+operate+a+browning+hi+power+pistol

46 – 48 W2 Referer: https://www.edx.org/

88 – 91 W3 file:///C:/Users/Project/Downloads/hk g36er.pdf

251 – 253 M1 people<ContactHandle><SID>AGENT</SID><OID>concierge</OID></ContactHandle>

274 – 278 M2 TTextMessage-From cfsuser 2, yea its works well and fullyjuiced

297 – 300 M3 <URIObject type=”File.1” uri=”https://api.asm.skype.com [..Snipped...]

”original filename”:”hipowermanual.pdf”}

160 – 164 D2 ”<node oor:name=”0” oor:op=”replace”><prop oor:name=”HistoryItemRef” oor:op=”fuse”>

<value>file:///C:/Users/Project/Documents/purchase order browning.odt</value>

190 – 192 D3 0Enter password to open file:

390 & 402 F1 & F2 CFSProject - ftpes://ftpuser@10.100.116.28 - FileZilla

413 – 418 F3 Status: Starting download of /files/cfs file1.txt

Table H.1: Example of Data Artefacts matched by the Regular Expressions in the evidence search engine.cpp
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Appendix I

Lines in MemTri’s code
containing the Regular
Expressions
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Regular Expression App. Launch Scenario
RegExp # Code line(s) Type Verification? Matched

1 28 – 29 Strong n/a W1

2 33 – 34 Strong n/a W1

3 38 – 39 Strong n/a W1

4 47 Strong n/a W2

5 52 Strong n/a W2

6 57 Strong n/a W2

7 62 Weak NO W2

8 71 Strong n/a W3

9 75 – 80 Strong n/a W3

10 84 Weak NO W3

11 89 Weak NO W3

12 252 Strong n/a M1

13 257 Strong n/a M1

14 262 Strong n/a M1

15 267 Strong n/a M1

16 275 – 277 Strong n/a M2

17 282 –284 Strong n/a M2

18 289 – 290 Weak YES M2

19 298 – 299 Strong n/a M3

20 304 –305 Strong n/a M3

21 311 – 312 Weak NO M3

22 318 – 319 Weak NO M3

23 153 – 154 Weak YES D1

24 162 – 163 Strong n/a D2

25 169 — 170 Weak NO D2

26 175 – 176 Strong n/a D2

27 182 – 183 Strong n/a D2

28 191 Weak NO D3

29 390 Strong n/a F1

30 394 Weak YES F1

31 402 Strong n/a F2

32 406 Weak YES F2

33 413 – 417 Strong n/a F3

Table I.1: Lines in the evidence search engine.cpp file where the Regular Expres-
sions are implemented
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Appendix J

Results of Scenarios Found
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J.1 Scenarios Found Results for Running Phase: Normal Mode

J.1 Scenarios Found Results for Running Phase: Nor-
mal Mode

Scenarios Found in Running Phase (Normal Mode)

Image # Exp.# W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3

1 1 TP TP TP TP TN TN TN TN TN TN TN TN TN TN

2 2 TN TN TN TN TP TP TP TP TN TN TN TN TN TN

3 3 TN TN TN TN TN TN TN TN TP TP TP TN TN TN

4 4 TN TN TN TN TN TN TN TN TN TN TN TP TP TP

5 5 TP TN TN TN TN TP TN TN FP TN TP TP TP TN

6 6 TN TP TN TN TN TN TN TP TP TN TN TP TP TN

7 7 TN TN TN TP TP TN TN TN TN TN TP TP TP TN

8 8 TP TN TP TN TP TN TP TN TP TP TN TP TP TP

9 9 TN FN TP TN TP TP FP TN FP TP TP TP TP TN

10 10 TP TN TN TP TP FP TN TP TP TP TN TP TP TP

11 11 TN TP TN TP TN TN TP TP TN TP TP TP TP TN

12 12 TP TP TP TN TN TP TP TP TN TN TN TN TN TN

13 13 TP TN FP TP TN TN TN TN TP TP TP TN TN TN

14 14 TP TP TN TP TP TP TN TP TN TN TN TN TN TN

15 15 TN TN TN TN TP TP TP TN TN TN TN TP TP TP

16 16 TN TN TN TN TN TN TN TN TP TP TP TP TP TP

17 17 TP TN TP TN TP TP FP TN TN TN TN TP TP TN

18 18 TP TN TN TP TN TN TN TN FP TP TP TP TP TP

19 19 TP TP TP TN TN FP FP TP FP TP TN TN TN TN

20 20 TP TP TP TP TP TP FP TP TP TP TP TP TP TP

Table J.1: Scenarios Found results for MemTri’s Normal Mode execution on Run-
ning Phase test images
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J.2 Scenarios Found Results for Running Phase: Scan Mode

J.2 Scenarios Found Results for Running Phase: Scan
Mode

Scenarios Found in Running Phase (Scan Mode)

Image # Exp.# W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3

1 1 TP TP TP TP TN FP TN TN TN TN TN TN TN TN

2 2 TN TN TN TN TP TP TP TP TN TN TN TN TN TN

3 3 TN TN TN TN TN TN TN TN TP TP TP TN TN TN

4 4 TN TN TN TN TN TN TN TN TN TN TN TP TP TP

5 5 TP TN TN TN TN TP TN TN FP TN TP TP TP TN

6 6 TN TP TN TN TN FP TN TP TP TN TN TP TP TN

7 7 TN TN TN TP TP TN TN TN TN TN TP TP TP TN

8 8 TP TN TP TN TP TN TP TN TP TP TN TP TP TP

9 9 TN FN TP TN TP TP TN TN FP TP TP TP TP TN

10 10 TP TN TN TP TP FP TN TP TP TP TN TP TP TP

11 11 TN TP TN TP TN FP FN TP FP TP TP TP TP TN

12 12 TP TP TP TN TN TP FN TP TN TN TN TN TN TN

13 13 TP TN FP TP TN FP TN TN TP TP TP TN TN TN

14 14 TP TP TN TP TP TP TN TP TN TN TN TN TN TN

15 15 TN TN FP TN TP TP TP TN TN TN TN TP TP TP

16 16 TN TN TN TN TN TN TN TN TP TP TP TP TP TP

17 17 TP TN TP TN TP TP FN TN TN TN TN TP TP TN

18 18 TP TN TN TP TN TN TN TN FP FN TP TP TP TP

19 19 TP TP TP TN TN FP TN TP FP TP TN TN TN TN

20 20 TP TP TP TP TP TP FN TP TP TP TP TP TP TP

Table J.2: Scenarios Found results for MemTri’s Scan Mode execution on Running
Phase test images
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J.3 Scenarios Found Results for Stopped Phase: Normal Mode

J.3 Scenarios Found Results for Stopped Phase: Nor-
mal Mode

Scenarios Found in Stopped Phase (Normal Mode)

Image # Exp.# W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3

21 1 FN TP TP FN TN TN TN TN TN TN TN TN TN TN

22 2 TN TN TN TN FN FN FN FN TN TN TN TN TN TN

23 3 TN TN TN TN TN TN TN TN FN FN FN TN TN TN

24 4 TN TN TN TN TN TN TN TN TN TN TN FN FN FN

25 5 TP TN TN TN TN FN TN TN TN TN FN FN FN TN

26 6 TN FN TN TN TN TN TN FN FN TN TN FN FN TN

27 7 TN TN TN FN FN TN TN TN TN TN FN FN FN TN

28 8 TP TN TP TN TP TN TP TN FN FN TN FN FN FN

29 9 TN FN TP TN FN FN TN TN TN FN FN FN FN TN

30 10 FN TN TN FN FN FP TN TP FN FN TN FN FN FN

31 11 TN FN TN FN TN TN FN TP TN FN FN FN FN TN

32 12 FN FN TP TN TN FP FN TP TN TN TN TN TN TN

33 13 FN TN FN FN TN TN TN TN FN FN FN TN TN TN

34 14 FN FN TN FN FN FN TN TP TN TN TN TN TN TN

35 15 TN TN TN TN FN FN FN TN TN TN TN FN FN FN

36 16 TN TN TN TN TN TN TN TN FN FN FN FN FN FN

37 17 TP TN TP TN FN FN FN TN TN TN TN FN FN TN

38 18 FN TN TN FN TN TN TN TN TN FN FN FN FN FN

39 19 FN TP TP TN TN TP FP TP FN FN TN TN TN TN

40 20 TP TP TP FN FN FN FN FN FN FN FN FN FN FN

Table J.3: Scenarios Found results for MemTri’s Normal Mode execution on
Stopped Phase test images
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J.4 Scenarios Found Results for Stopped Phase: Scan Mode

J.4 Scenarios Found Results for Stopped Phase: Scan
Mode

Scenarios Found in Stopped Phase (Scan Mode)

Image # Exp.# W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3

21 1 FN TP TP FN TN FP TN TN TN TN TN TN TN TN

22 2 TN TN TN TN TP FN FN FN TN TN TN TN TN TN

23 3 TN TN TN TN TN TN TN TN TP TP TP TN TN TN

24 4 TN TN TN TN TN TN TN TN TN TN TN TP TP FN

25 5 TP TN TN TN TN FN TN TN FP TN TP TP TP TN

26 6 TN FN TN TN TN FP TN TP TP TN TN TP TP TN

27 7 TN TN TN TP TP TN TN TN TN TN TP TP TP TN

28 8 TP TN TP TN TP TN TP TN TP TP TN TP TP FN

29 9 TN FN TP TN TP TP TN TN FP TP TP TP TP TN

30 10 FN TN TN TP FN FP TN TP TP TP TN TP TP FN

31 11 TN FN TN TP TN FP FN TP FP TP TP TP TP TN

32 12 TP FN TP TN TN FP FN TP TN TN TN TN TN TN

33 13 FN TN FP TP TN FP TN TN TP TP TP TN TN TN

34 14 FN FN TN FN FN FP TN TP TN TN TN TN TN TN

35 15 TN TN FP TN TP FN FN TN TN TN TN TP TP FN

36 16 TN TN TN TN TN TN TN TN FP TP TP TP TP FN

37 17 TP TN TP TN TP FN FN TN TN TN TN TP TP TN

38 18 FN TN TN TP TN TN TN TN FP FN TP TP TP FN

39 19 FN TP TP TN TN FP TN TP FP TP TN TN TN TN

40 20 TP TP TP FN TP FP FN TP TP TP TP TP TP FN

Table J.4: Scenarios Found results for MemTri’s Scan Mode execution on Stopped
Phase test images
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J.5 Scenarios Found Results for Delayed Phase: Normal Mode

J.5 Scenarios Found Results for Delayed Phase: Nor-
mal Mode

Scenarios Found in Delayed Phase (Normal Mode)

Image # Exp.# W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3

41 1 FN TP TP FN TN TN TN TN TN TN TN TN TN TN

42 2 TN TN TN TN FN FN FN FN TN TN TN TN TN TN

43 3 TN TN TN TN TN TN TN TN FN FN FN TN TN TN

44 4 TN TN TN TN TN TN TN TN TN TN TN FN FN FN

45 5 FN TN TN TN TN FN TN TN TN TN FN FN FN TN

46 6 TN FN TN TN TN TN TN FN FN TN TN FN FN TN

47 7 TN TN TN FN FN TN TN TN TN TN FN FN FN TN

48 8 TP TN TP TN FN TN FN TN FN FN TN FN FN FN

49 9 TN FN TP TN FN FN TN TN TN FN FN FN FN TN

50 10 FN TN TN FN FN FP TN TP FN FN TN FN FN FN

51 11 TN FN TN FN TN TN FN TP TN FN FN FN FN TN

52 12 FN FN TP TN TN FP FN TP TN TN TN TN TN TN

53 13 FN TN FN FN TN TN TN TN FN FN FN TN TN TN

54 14 FN FN TN FN FN FN TN TP TN TN TN TN TN TN

55 15 TN TN TN TN FN FN FN TN TN TN TN FN FN FN

56 16 TN TN TN TN TN TN TN TN FN FN FN FN FN FN

57 17 TP TN TP TN FN FN FN TN TN TN TN FN FN TN

58 18 FN TN TN FN TN TN TN TN TN FN FN FN FN FN

59 19 FN TP TP TN TN FN FP TP FN FN TN TN TN TN

60 20 TP TP TP FN FN FN FN FN FN FN FN FN FN FN

Table J.5: Scenarios Found results for MemTri’s Normal Mode execution on De-
layed Phase test images
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J.6 Scenarios Found Results for Delayed Phase: Scan Mode

J.6 Scenarios Found Results for Delayed Phase: Scan
Mode

Scenarios Found in Delayed Phase (Scan Mode)

Image # Exp.# W1 W2 W3 W4 M1 M2 M3 M4 D1 D2 D3 F1 F2 F3

41 1 FN TP TP FN TN FP TN TN TN TN TN TN TN TN

42 2 TN TN TN TN TP FN FN FN TN TN TN TN TN TN

43 3 TN TN TN TN TN TN TN TN FN TP TP TN TN TN

44 4 TN TN TN TN TN TN TN TN TN TN TN TP TP FN

45 5 TP TN TN TN TN FN TN TN FP TN TP TP TP TN

46 6 TN FN TN TN TN FP TN TP TP TN TN TP TP TN

47 7 TN TN TN FN TP TN TN TN TN TN TP TP TP TN

48 8 TP TN TP TN TP TN FN TN FP TP TN TP TP FN

49 9 TN FN TP TN TP FN TN TN TN TP TP TP TP TN

50 10 FN TN TN TP FN FP TN TP TP TP TN TP TP FN

51 11 TN FN TN FN TN FP FN TP FP TP TP TP TP TN

52 12 TP FN TP TN TN FP FN TP TN TN TN TN TN TN

53 13 FN TN FP FN TN FP TN TN TP TP TP TN TN TN

54 14 FN FN TN FN FN FP TN TP TN TN TN TN TN TN

55 15 TN TN FP TN TP FN FN TN TN TN TN TP TP FN

56 16 TN TN TN TN TN TN TN TN FP TP TP TP TP FN

57 17 TP TN TP TN TP FN FN TN TN TN TN TP TP TN

58 18 FN TN TN FN TN TN TN TN FP FN TP TP TP FN

59 19 FN TP TP TN TN FP TN TP FP TP TN TN TN TN

60 20 TP TP TP FN TP FP FN TP FP TP TP TP TP FN

Table J.6: Scenarios Found results for MemTri’s Scan Mode execution on Delayed
Phase test images
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Appendix K

Performance Results
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K.1 Performance Results for Running Phase: Normal Mode

K.1 Performance Results for Running Phase: Normal
Mode

Running Performance (Normal mode)

Image # Exp.# Accuracy Precision Recall F measure Duration

1 1 1 1 1 1 402

2 2 1 1 1 1 138

3 3 1 1 1 1 113

4 4 1 1 1 1 69

5 5 0.929 0.833 1 0.909 388

6 6 1 1 1 1 351

7 7 1 1 1 1 351

8 8 1 1 1 1 546

9 9 0.786 0.778 0.875 0.824 525

10 10 0.929 0.9 1 0.947 304

11 11 1 1 1 1 311

12 12 1 1 1 1 361

13 13 0.9 0.833 1 0.909 193

14 14 1 1 1 1 153

15 15 1 1 1 1 145

16 16 1 1 1 1 169

17 17 0.929 0.857 1 0.3 418

18 18 0.929 0.875 1 0.933 286

19 19 0.786 0.625 1 0.769 405

20 20 0.929 0.929 1 0.963 701

Average 0.957 0.932 0.994 0.959 316

Table K.1: Performance Results for MemTri’s Normal Mode execution on Running
Phase test images. Note duration in seconds
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K.2 Performance Results for Running Phase: Scan Mode

K.2 Performance Results for Running Phase: Scan
Mode

Running Performance (Normal mode)

Image # Exp.# Accuracy Precision Recall F measure Duration

1 1 0.926 0.8 1 0.889 193

2 2 1 1 1 1 154

3 3 1 1 1 1 124

4 4 1 1 1 1 127

5 5 0.929 0.833 1 0.909 304

6 6 0.929 0.833 1 0.909 301

7 7 1 1 1 1 318

8 8 1 1 1 1 360

9 9 0.857 0.875 0.875 0.875 336

10 10 0.929 0.9 1 0.947 308

11 11 0.786 0.778 0.875 0.824 365

12 12 0.929 1 0.833 0.909 346

13 13 0.857 0.714 1 0.833 538

14 14 1 1 1 1 365

15 15 0.929 0.857 1 0.923 265

16 16 1 1 1 1 322

17 17 0.929 1 0.857 0.923 297

18 18 0.857 0.857 0.857 0.857 288

19 19 0.857 0.714 1 0.833 160

20 20 0.929 1 0.929 0.963 405

Average 0.932 0.908 0.961 0.930 294

Table K.2: Performance Results for MemTri’s Scan Mode execution on Running
Phase test images. Note duration in seconds
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K.3 Performance Results for Stopped Phase: Normal Mode

K.3 Performance Results for Stopped Phase: Normal
Mode

Stopped Performance (Normal mode)

Image # Exp.# Accuracy Precision Recall F measure Duration

21 1 0.857 1 0.5 0.667 58

22 2 0.714 - 0 - 8

23 3 0.786 - 0 - 7

24 4 0.786 - 0 - 8

25 5 0.714 1 0.2 0.333 60

26 6 0.643 - 0 - 58

27 7 0.643 - 0 - 9

28 8 0.643 1 0.444 0.615 103

29 9 0.5 1 0.125 0.222 57

30 10 0.357 0.5 0.111 0.181 64

31 11 0.5 1 0.125 0.222 61

32 12 0.714 0.667 0.4 0.5 96

33 13 0.571 - 0 - 8

34 14 0.643 1 0.167 0.286 58

35 15 0.571 - 0 - 9

36 16 0.571 - 0 - 8

37 17 0.643 1 0.286 0.444 58

38 18 0.5 - 0 - 7

39 19 0.714 0.8 0.571 0.667 95

40 20 0.214 1 0.214 0.353 56

Average 0.614 0.906 0.157 0.408 44

Table K.3: Performance Results for MemTri’s Normal Mode execution on Stopped
Phase test images. Note duration in seconds
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K.4 Performance Results for Stopped Phase: Scan Mode

K.4 Performance Results for Stopped Phase: Scan
Mode

Stopped Performance (Scan mode)

Image # Exp.# Accuracy Precision Recall F measure Duration

21 1 0.786 0.667 0.5 0.571 261

22 2 0.786 1 0.25 0.4 134

23 3 1 1 1 1 120

24 4 0.929 1 0.667 0.8 105

25 5 0.857 0.8 0.8 0.8 279

26 6 0.857 0.8 0.8 0.8 290

27 7 1 1 1 1 281

28 8 0.929 1 0.889 0.941 339

29 9 0.857 0.875 0.875 0.875 295

30 10 0.714 0.857 0.667 0.75 291

31 11 0.714 0.75 0.75 0.75 334

32 12 0.786 0.75 0.6 0.667 326

33 13 0.786 0.667 0.8 0.727 269

34 14 0.643 0.5 0.2 0.286 337

35 15 0.714 0.75 0.5 0.6 243

36 16 0.857 0.8 0.8 0.8 318

37 17 0.857 1 0.714 0.833 262

38 18 0.714 0.8 0.571 0.667 261

39 19 0.786 0.667 0.8 0.727 238

40 20 0.714 0.909 0.769 0.833 339

Average 0.814 0.830 0.698 0.741 266

Table K.4: Performance Results for MemTri’s Scan Mode execution on Stopped
Phase test images. Note duration in seconds
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K.5 Performance Results for Delayed Phase: Normal Mode

K.5 Performance Results for Delayed Phase: Normal
Mode

Delayed Performance (Normal mode)

Image # Exp.# Accuracy Precision Recall F measure Duration

41 1 0.857 1 0.5 0.667 58

42 2 0.714 - 0 - 8

43 3 0.786 - 0 - 7

44 4 0.786 - 0 - 7

45 5 0.643 - 0 - 59

46 6 0.643 - 0 - 57

47 7 0.643 - 0 - 9

48 8 0.5 1 0.222 0.364 55

49 9 0.5 1 0.125 0.222 54

50 10 0.357 0.5 0.111 0.182 61

51 11 0.5 1 0.125 0.222 61

52 12 0.714 0.667 0.4 0.5 97

53 13 0.571 - 0 - 8

54 14 0.643 1 0.167 0.286 58

55 15 0.571 - 0 - 8

56 16 0.571 - 0 - 7

57 17 0.643 1 0.286 0.444 59

58 18 0.5 - 0 - 7

59 19 0.643 0.75 0.429 0.545 97

60 20 0.214 1 0.214 0.353 55

Average 0.6 0.892 0.129 0.741 41

Table K.5: Performance Results for MemTri’s Normal Mode execution on Delayed
Phase test images. Note duration in seconds
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K.6 Performance Results for Delayed Phase: Scan Mode

K.6 Performance Results for Delayed Phase: Scan
Mode

Delayed Performance (Scan mode)

Image # Exp.# Accuracy Precision Recall F measure Duration

41 1 0.786 0.667 0.5 0.571 288

42 2 0.786 1 0.25 0.4 257

43 3 0.929 1 0.667 0.8 253

44 4 0.929 1 0.667 0.8 237

45 5 0.857 0.8 0.8 0.8 296

46 6 0.857 0.8 0.8 0.8 290

47 7 0.929 1 0.8 0.889 294

48 8 0.786 0.857 0.75 0.8 317

49 9 0.857 1 0.75 0.857 308

50 10 0.714 0.857 0.667 0.75 290

51 11 0.643 0.714 0.625 0.667 360

52 12 0.786 0.75 0.6 0.667 351

53 13 0.714 0.6 0.6 0.6 298

54 14 0.643 0.5 0.2 0.286 362

55 15 0.714 0.75 0.5 0.6 262

56 16 0.857 0.8 0.8 0.8 346

57 17 0.857 1 0.714 0.833 279

58 18 0.643 0.75 0.429 0.545 287

59 19 0.786 0.667 0.8 0.727 263

60 20 0.643 0.818 0.75 0.783 339

Average 0.786 0.817 0.633 0.699 298

Table K.6: Performance Results for MemTri’s Scan Mode execution on Delayed
Phase test images. Note duration in seconds
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Appendix L

Priority Rankings and Output
Rating Results

141



L.1 Output Rating Results for Running Phase: Normal Mode

L.1 Output Rating Results for Running Phase: Nor-
mal Mode

Running Output Ratings (Normal mode)

Rank Image # W Rating M Rating D Rating F Rating Final Rating

1 20 0.909 0.905 0.729 0.553 0.718

2 14 0.853 0.848 0.329 0.323 0.678

3 17 0.758 0.878 0.332 0.493 0.674

4 10 0.799 0.838 0.516 0.561 0.664

5 19 0.807 0.821 0.515 0.327 0.656

6 12 0.808 0.824 0.331 0.325 0.655

7 8 0.739 0.760 0.520 0.567 0.622

8 11 0.781 0.692 0.654 0.505 0.605

9 9 0.611 0.865 0.737 0.501 0.601

10 7 0.714 0.603 0.657 0.510 0.571

11 1 0.890 0.393 0.335 0.332 0.562

12 13 0.845 0.382 0.743 0.337 0.539

13 5 0.598 0.583 0.746 0.518 0.521

14 18 0.755 0.370 0.746 0.584 0.508

15 15 0.401 0.859 0.329 0.574 0.500

16 2 0.392 0.886 0.325 0.322 0.489

17 6 0.585 0.537 0.521 0.523 0.487

18 4 0.343 0.333 0.338 0.595 0.346

19 16 0.348 0.328 0.755 0.598 0.344

20 3 0.339 0.329 0.754 0.339 0.335

Table L.1: Output Rating Results for MemTri’s Normal Mode execution on Run-
ning Phase test images.
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L.2 Output Rating Results for Running Phase: Scan Mode

L.2 Output Rating Results for Running Phase: Scan
Mode Running Output Ratings (Scan mode)

Rank Image # W Rating M Rating D Rating F Rating Final Rating

1 20 0.905 0.846 0.731 0.557 0.692

2 14 0.853 0.848 0.329 0.323 0.678

3 10 0.799 0.838 0.516 0.561 0.664

4 17 0.748 0.788 0.334 0.498 0.641

5 1 0.899 0.634 0.332 0.327 0.628

6 8 0.739 0.760 0.520 0.567 0.622

7 19 0.795 0.727 0.519 0.331 0.616

8 12 0.797 0.730 0.334 0.329 0.615

9 13 0.858 0.621 0.737 0.332 0.606

10 15 0.609 0.869 0.331 0.565 0.598

11 7 0.714 0.603 0.657 0.510 0.571

12 9 0.598 0.770 0.740 0.507 0.566

13 6 0.613 0.699 0.514 0.512 0.558

14 11 0.762 0.561 0.744 0.515 0.540

15 5 0.598 0.583 0.746 0.518 0.521

16 18 0.755 0.370 0.746 0.584 0.508

17 2 0.392 0.886 0.325 0.322 0.489

18 4 0.343 0.333 0.338 0.595 0.346

19 16 0.348 0.328 0.755 0.598 0.344

20 3 0.339 0.329 0.754 0.339 0.335

Table L.2: Output Rating Results for MemTri’s Scan Mode execution on Running
Phase test images.
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L.3 Output Rating Results for Stopped Phase: Normal Mode

L.3 Output Rating Results for Stopped Phase: Nor-
mal Mode

Stopped Output Ratings (Normal mode)

Rank Image # W Rating M Rating D Rating F Rating Final Rating

1 19 0.749 0.817 0.333 0.327 0.634

2 8 0.745 0.766 0.333 0.328 0.620

3 20 0.775 0.379 0.339 0.336 0.523

4 12 0.579 0.708 0.334 0.331 0.521

5 1 0.709 0.372 0.341 0.339 0.500

6 17 0.709 0.372 0.341 0.339 0.500

7 5 0.586 0.357 0.344 0.344 0.458

8 9 0.543 0.355 0.338 0.337 0.427

9 10 0.369 0.692 0.331 0.329 0.423

10 11 0.350 0.529 0.336 0.336 0.367

11 14 0.350 0.529 0.336 0.336 0.367

12 2 0.333 0.333 0.333 0.333 0.333

13 3 0.333 0.333 0.333 0.333 0.333

14 4 0.333 0.333 0.333 0.333 0.333

15 6 0.333 0.333 0.333 0.333 0.333

16 7 0.333 0.333 0.333 0.333 0.333

17 13 0.333 0.333 0.333 0.333 0.333

18 15 0.333 0.333 0.333 0.333 0.333

19 16 0.333 0.333 0.333 0.333 0.333

20 18 0.333 0.333 0.333 0.333 0.333

Table L.3: Output Rating Results for MemTri’s Normal Mode execution on Stopped
Phase test images.
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L.4 Output Rating Results for Stopped Phase: Scan Mode

L.4 Output Rating Results for Stopped Phase: Scan
Mode

Stopped Output Ratings (Scan mode)

Rank Image # W Rating M Rating D Rating F Rating Final Rating

1 20 0.805 0.837 0.733 0.496 0.664

2 8 0.742 0.763 0.519 0.500 0.631

3 10 0.723 0.715 0.523 0.506 0.599

4 19 0.733 0.718 0.521 0.333 0.594

5 12 0.736 0.721 0.336 0.332 0.594

6 13 0.810 0.614 0.739 0.334 0.589

7 17 0.729 0.610 0.338 0.507 0.580

8 7 0.714 0.603 0.657 0.510 0.571

9 1 0.729 0.610 0.337 0.333 0.569

10 9 0.598 0.770 0.740 0.507 0.566

11 11 0.693 0.549 0.747 0.519 0.515

12 15 0.577 0.594 0.337 0.513 0.512

13 18 0.689 0.364 0.748 0.521 0.492

14 5 0.573 0.350 0.752 0.528 0.451

15 6 0.386 0.687 0.511 0.518 0.450

16 14 0.369 0.692 0.331 0.329 0.423

17 2 0.358 0.571 0.331 0.330 0.396

18 4 0.346 0.336 0.337 0.529 0.354

19 16 0.350 0.331 0.754 0.532 0.352

20 3 0.339 0.329 0.754 0.339 0.335

Table L.4: Output Rating Results for MemTri’s Scan Mode execution on Stopped
Phase test images.
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L.5 Output Rating Results for Delayed Phase: Normal Mode

L.5 Output Rating Results for Delayed Phase: Nor-
mal Mode

Delayed Output Ratings (Normal mode)

Rank Image # W Rating M Rating D Rating F Rating Final Rating

1 19 0.731 0.691 0.337 0.333 0.581

2 20 0.775 0.379 0.339 0.336 0.523

3 12 0.579 0.708 0.334 0.331 0.521

4 1 0.709 0.372 0.341 0.339 0.500

5 8 0.709 0.372 0.341 0.339 0.500

6 17 0.709 0.372 0.341 0.339 0.500

7 9 0.543 0.355 0.338 0.337 0.427

8 10 0.369 0.692 0.331 0.329 0.423

9 11 0.350 0.529 0.336 0.336 0.367

10 14 0.350 0.529 0.336 0.336 0.367

11 2 0.333 0.333 0.333 0.333 0.333

12 3 0.333 0.333 0.333 0.333 0.333

13 4 0.333 0.333 0.333 0.333 0.333

14 5 0.333 0.333 0.333 0.333 0.333

15 6 0.333 0.333 0.333 0.333 0.333

16 7 0.333 0.333 0.333 0.333 0.333

17 13 0.333 0.333 0.333 0.333 0.333

18 15 0.333 0.333 0.333 0.333 0.333

19 16 0.333 0.333 0.333 0.333 0.333

20 18 0.333 0.333 0.333 0.333 0.333

Table L.5: Output Rating Results for MemTri’s Normal Mode execution on Delayed
Phase test images.
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L.6 Output Rating Results for Delayed Phase: Normal Mode

L.6 Output Rating Results for Delayed Phase: Nor-
mal Mode

Stopped Output Ratings (Scan mode)

Rank Image # W Rating M Rating D Rating F Rating Final Rating

1 20 0.805 0.837 0.733 0.496 0.664

2 10 0.723 0.715 0.523 0.506 0.599

3 19 0.733 0.718 0.521 0.333 0.594

4 12 0.736 0.721 0.336 0.332 0.594

5 17 0.729 0.610 0.338 0.507 0.580

6 8 0.726 0.608 0.524 0.508 0.578

7 1 0.729 0.610 0.337 0.333 0.569

8 9 0.578 0.589 0.661 0.515 0.512

9 15 0.577 0.594 0.337 0.513 0.512

10 13 0.569 0.586 0.745 0.336 0.490

11 5 0.573 0.350 0.752 0.528 0.451

12 6 0.386 0.687 0.511 0.518 0.450

13 7 0.378 0.568 0.666 0.522 0.425

14 14 0.369 0.692 0.331 0.329 0.423

15 2 0.358 0.571 0.331 0.330 0.396

16 11 0.364 0.515 0.753 0.531 0.381

17 4 0.346 0.336 0.337 0.529 0.354

18 16 0.350 0.331 0.754 0.532 0.352

19 18 0.350 0.331 0.754 0.532 0.352

20 3 0.342 0.332 0.671 0.338 0.342

Table L.6: Output Rating Results for MemTri’s Scan Mode execution on Delayed
Phase test images.
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Appendix M

Data Collected from Digital
Forensics Expert Questionnaire

Likelihood Responses W. Avg. Likelihood

Question VL* L* ALAN* UL* VUL* Unc. W. Avg. Yes No Unc.

4a 2 2 1 0 0 2 3.7 52.86 18.57 28.57

4b 3 1 1 1 0 1 4.2 60 25.71 28.57

4c 0 1 3 0 0 2 2.2 30 41.43 25

4d 0 0 3 2 0 2 2.1 26.25 48.75 28.57

5a 2 2 1 1 0 1 4 57.14 28.57 14.29

5b 2 2 1 1 0 1 4 57.14 28.57 14.29

5c 1 3 1 1 0 1 3.8 54.29 31.43 14.28

5d 2 1 1 2 1 0 3.7 52.86 47.14 0

6a 1 2 3 1 0 0 4.1 58.57 41.43 0

6b 2 0 4 1 0 0 4.1 58.57 41.43 0

6c 0 4 2 0 0 1 3.8 54.29 31.43 14.28

6d 3 1 3 0 0 0 4.9 70 30 0

7a 1 2 2 1 0 1 3.6 51.43 34.29 14.28

7b 0 1 3 1 0 2 2.5 35.71 35.71 28.58

7c 2 3 1 1 0 0 4.7 67.14 32.86 0

8a 1 1 3 1 1 0 3.5 50 50 0

8b 1 2 2 1 1 0 3.7 52.86 47.14 0

8c 0 3 2 1 0 1 3.4 48.57 37.14 14.29

Table M.1: Data Collected from Digital Forensics Expert Questionnaire; VL*=Very Likely,
L*=Likely, ALAN=As Likely As Not, UL*=Unlikely, VUL=Very Unlikely, Unc.=Uncertain,
W. Avg.= Likelihood Weighted Average
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Appendix N

MemTri User Manaul

======= INSTALLATION ========

1. Copy the following files/folders to the ‘C:\MemTri’ directory:

• auxillary.h

• auxillary.cpp

• bayesian network analyser.h

• bayesian network analyser.cpp

• evidence search engine.h

• evidence search engine.cpp

• memtri.cpp

• case database

• dlib

• grep.exe

• strings2.exe

• volatility.exe

2. Compile the memtri.cpp file using a C++11 compliler

======= RUN ========

1. Open the windows command line

2. Enter the command ‘cd C:\MemTri’

3. MemTri can be executed in two modes

• For normal mode enter ‘memtri.exe image file.vmem’

149



• For scan mode enter ‘memtri.exe image file.vmem’ -s

======= RESULTS ========

1. The process dump files is located in ‘C:\MemTri\procdump’

2. The extracted ASCII & Unicode text files is located in ‘C:\MemTri\proctext’

3. The extracted evidence artefacts is located in ‘C:\MemTri\procevdn’

4. The output ratings are displayed to screen after MemTri’s execution com-
pletes
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Appendix O

MemTri C++ Code

O.1 List of the main functions of MemTri

1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

1.1 process filter() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

1.2 process dump() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

1.3 process text() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

1.4 process evidence() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

2 Evidence Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

2.1 find web evidence() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

2.2 find doc evidence() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

2.3 find im evidence() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

2.4 find ftp evidence() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

2.5 load case words() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

2.6 print evidence summary() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3 Bayesian Network Analyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

3.1 mark observed evidence() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

3.2 intialize BN() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

3.3 set conditional probabilities() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

3.4 load bn probabilities() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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O.2 memtri.cpp

O.2 memtri.cpp
1   #include <windows.h>
2   #include <string>
3   #include <iostream>
4   #include <stdio.h>
5   #include <conio.h>
6   #include <time.h> 
7   #include <sstream>
8   #include <stdlib.h>
9   #include <fstream>

10   #include <TCHAR.H>
11   #include <io.h>
12   #include <sys/types.h>
13   #include <sys/stat.h>
14   #include "dlib/bayes_utils.h"
15   #include "dlib/graph_utils.h"
16   #include "dlib/graph.h"
17   #include "dlib/directed_graph.h"
18   
19   #define MAX_PROCTYPE 20
20   #define MAX_FEATURES 20
21   
22   
23   using namespace std;
24   using namespace dlib;
25   
26   #include "evidence_search_engine.h"
27   #include "auxillary.h"
28   #include "bayesian_network_analyser.h"
29   
30   
31   typedef struct
32   {
33   char proc_name[20];
34   char type;
35   }Proc_Type;
36   
37   Proc_Type proctyp [MAX_PROCTYPE];
38   
39   string mem_img_loc,mem_img_name, mem_img_fname;
40   string work_dir;
41   string strings_util,strings_util_pd,volatility_util,grep_util;
42   bool toggle_trace = false;
43   bool scan_mode = false;
44   bool gen_folder = false;
45   int gen_fldr_retry = 0;
46   int time_2_wait = 1000;
47   
48   void process_filter(string proc_list);
49   char get_proc_type(char* name);
50   void populate_proc_type ();
51   void process_dump();
52   void process_text();
53   void process_evidence();
54   
55   
56   
57   int main (int argc, char* argv[])
58   {  
59   //toggle_trace = true;
60   clock_t t1,t2;
61   t1=clock();
62   work_dir = ExePath();
63   mem_img_loc = "";
64   
65   if (argc < 2)
66   {//Help Ussage Message
67   cout << "\n\n";
68   cout << "USAGE:    memtri.exe image_file mode\n";
69   cout << "EXAMPLE:  memtri.exe C:\\directory\\img.vmem -s\n";
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O.2 memtri.cpp
70   cout << "MODE:     Execution mode type to be carried out on image_file. Runs if 

normal mode if no parameters specified\n";
71   cout << "\t\t-s :scan mode = pool scans for processes\n\n";
72   }
73   
74   if (argc > 1)
75   {//Store Memory Image Name
76   mem_img_fname = mem_img_name = argv[1];
77   mem_img_loc = work_dir + "\\" + mem_img_fname;
78   mem_img_name.erase(mem_img_name.find_last_of("."), mem_img_name.length() - 

mem_img_name.find_last_of("."));
79   
80   if (argc > 2)
81   {
82   if (strcmp(argv[2],"-s") == 0)
83   {//Set application mode to scanmode
84   scan_mode = true;
85   if (toggle_trace) cout << "Trace: Scan mode intiated\n\n";
86   }
87   
88   }
89   }
90   
91   
92   if (mem_img_loc.empty() || !FileExists(mem_img_loc.c_str()))
93   {
94   cout << "Invalid memory image location " << mem_img_loc << endl;
95   //system("pause");
96   return -1;
97   }
98   
99   volatility_util =  work_dir + "\\volatility.exe";

100   if (!FileExists(volatility_util.c_str()))
101   {
102   cout << "Cannot find " << volatility_util <<  "\n";
103   //system("pause");
104   return -1;
105   }
106   
107   strings_util = work_dir + "\\strings2.exe";
108   strings_util_pd = work_dir + "\\procdump\\strings2.exe";
109   if (!FileExists(strings_util.c_str()))
110   {
111   cout << "Cannot find " << strings_util <<  "\n";
112   //system("pause");
113   return -1;
114   }
115   
116   grep_util = work_dir + "\\grep.exe";
117   if (!FileExists(strings_util.c_str()))
118   {
119   cout << "Cannot find " << strings_util <<  "\n";
120   //system("pause");
121   return -1;
122   }
123   
124   
125   string str_command, cur_dir;
126   
127   clear_features();
128   clear_evidence_markers();
129   unload_case_words();
130   populate_proc_type();
131   
132   if (true){//TOOGLE INTIALIZE FEATURES PROCEDURE
133   
134   cout << "STATUS: Searching for Processes and Intialising Features\n\n";
135   str_command = volatility_util + " -f \"" + mem_img_loc + "\" --profile Win7SP1x86 ";
136   
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O.2 memtri.cpp
137   if (scan_mode)
138   str_command+="psscan";
139   else
140   str_command+="pslist";
141   
142   string cmd_result = cmd_exec(str_command.c_str());
143   process_filter(cmd_result);
144   
145   }//TOOGLE INTIALIZE FEATURES PROCEDURE
146   
147   
148   if (true){//TOOGLE DUMPING PROCESS PROCEDURE
149   
150   if (!scan_mode)
151   {
152   cout << "STATUS: Dumping Processes that match targeted application types\n\n";
153   
154   SetCurrentDirectory(work_dir.c_str());
155   cur_dir = work_dir + "\\procdump";
156   if (DirectoryExists(cur_dir.c_str()))
157   {
158   if (toggle_trace) cout << "Trace: Found dump folder\n";
159   if (DeleteDirectory(cur_dir.c_str()))
160   {
161   if (toggle_trace) cout << "Trace: Delete dump folder\n";
162   
163   while (!gen_folder && gen_fldr_retry <= time_2_wait)
164   {
165   if (CreateDirectory(cur_dir.c_str(),NULL) != 0)
166   {
167   if (toggle_trace) cout << "Trace: Gen dump folder\n\n";
168   gen_folder = true;
169   }
170   gen_fldr_retry++;
171   }
172   
173   if (gen_fldr_retry > time_2_wait)
174   {
175   cout << "Failed to create procdump directory\n\n";
176   return -1;
177   }
178   
179   gen_folder = false;
180   gen_fldr_retry =0;
181   
182   while (!gen_folder && gen_fldr_retry <= time_2_wait)
183   {
184   copyFile(strings_util.c_str(),strings_util_pd.c_str());
185   if (FileExists(strings_util_pd.c_str()))
186   {
187   if (toggle_trace) cout << "Trace: Copied strings utility\n\n";
188   gen_folder = true;
189   }
190   gen_fldr_retry++;
191   }
192   
193   if (gen_fldr_retry > time_2_wait)
194   {
195   cout << "Failed to copy strings utility\n\n";
196   return -1;
197   }
198   
199   process_dump();
200   gen_folder = false;
201   gen_fldr_retry =0;
202   }
203   }
204   else
205   {
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O.2 memtri.cpp
206   if (toggle_trace) cout << "Trace: No dump folder\n";
207   while (!gen_folder && gen_fldr_retry <= time_2_wait)
208   {
209   if (CreateDirectory(cur_dir.c_str(),NULL) != 0)
210   {
211   if (toggle_trace) cout << "Trace: Gen dump folder\n\n";
212   gen_folder = true;
213   }
214   gen_fldr_retry++;
215   }
216   
217   if (gen_fldr_retry > time_2_wait)
218   {
219   cout << "Failed to create procdump directory\n\n";
220   return -1;
221   }
222   
223   gen_folder = false;
224   gen_fldr_retry =0;
225   
226   while (!gen_folder && gen_fldr_retry <= time_2_wait)
227   {
228   copyFile(strings_util.c_str(),strings_util_pd.c_str());
229   if (FileExists(strings_util_pd.c_str()))
230   {
231   if (toggle_trace) cout << "Trace: Copied strings utility\n\n";
232   gen_folder = true;
233   }
234   gen_fldr_retry++;
235   }
236   
237   if (gen_fldr_retry > time_2_wait)
238   {
239   cout << "Failed to copy strings utility\n\n";
240   return -1;
241   }
242   
243   process_dump();
244   gen_folder = false;
245   gen_fldr_retry =0;
246   }
247   }
248   
249   }//TOOGLE DUMPING PROCESS PROCEDURE
250   
251   
252   if (true){//TOOGLE EXTRACTING TEXT PROCEDURE
253   
254   if (scan_mode)
255   cout << "STATUS: Extracting ASCII and Unicode Text from Memory Image\n\n";
256   else
257   cout << "STATUS: Extracting ASCII and Unicode Text from Dumped Processes\n\n";
258   
259   SetCurrentDirectory(work_dir.c_str());
260   cur_dir = work_dir + "\\proctext";
261   if (DirectoryExists(cur_dir.c_str()))
262   {
263   if (toggle_trace) cout << "Trace: Found text folder\n";
264   if (DeleteDirectory(cur_dir.c_str()))
265   {
266   if (toggle_trace) cout << "Trace: Delete text folder\n";
267   
268   while (!gen_folder && gen_fldr_retry <= time_2_wait)
269   {
270   if (CreateDirectory(cur_dir.c_str(),NULL) != 0)
271   {
272   if (toggle_trace) cout << "Trace: Gen text folder\n\n";
273   gen_folder = true;
274   }
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O.2 memtri.cpp
275   gen_fldr_retry++;
276   }
277   
278   if (gen_fldr_retry > time_2_wait)
279   {
280   cout << "Failed to create proctext directory\n\n";
281   return -1;
282   }
283   
284   process_text();
285   gen_folder = false;
286   gen_fldr_retry =0;
287   }
288   }
289   else
290   {
291   if (toggle_trace) cout << "Trace: No text folder\n";
292   while (!gen_folder && gen_fldr_retry <= time_2_wait)
293   {
294   if (CreateDirectory(cur_dir.c_str(),NULL) != 0)
295   {
296   if (toggle_trace) cout << "Trace: Gen text folder\n\n";
297   gen_folder = true;
298   }
299   gen_fldr_retry++;
300   }
301   
302   if (gen_fldr_retry > time_2_wait)
303   {
304   cout << "Failed to create proctext directory\n\n";
305   return -1;
306   }
307   
308   process_text();
309   gen_folder = false;
310   gen_fldr_retry =0;
311   }
312   
313   }//TOOGLE EXTRACTING TEXT PROCEDURE
314   
315   
316   if (true){//TOOGLE EXTRACTING EVIDENCE PROCEDURE
317   
318   if (scan_mode)
319   cout << "STATUS: Extracting Evidence Artefacts from Memory Image Text\n\n";
320   else
321   cout << "STATUS: Extracting Evidence Artefacts from Process Text\n\n";
322   
323   SetCurrentDirectory(work_dir.c_str());
324   cur_dir = work_dir + "\\procevdn";
325   if (DirectoryExists(cur_dir.c_str()))
326   {
327   if (toggle_trace) cout << "Trace: Found evidence folder\n";
328   if (DeleteDirectory(cur_dir.c_str()))
329   {
330   if (toggle_trace) cout << "Trace: Delete evidence folder\n";
331   
332   while (!gen_folder && gen_fldr_retry <= time_2_wait)
333   {
334   if (CreateDirectory(cur_dir.c_str(),NULL) != 0)
335   {
336   if (toggle_trace) cout << "Trace: Gen evidence folder\n\n";
337   gen_folder = true;
338   }
339   gen_fldr_retry++;
340   }
341   
342   if (gen_fldr_retry > time_2_wait)
343   {
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O.2 memtri.cpp
344   cout << "Failed to create procevdn directory\n\n";
345   return -1;
346   }
347   
348   process_evidence();
349   gen_folder = false;
350   gen_fldr_retry =0;
351   }
352   }
353   else
354   {
355   if (toggle_trace) cout << "Trace: No evidence folder\n";
356   while (!gen_folder && gen_fldr_retry <= time_2_wait)
357   {
358   if (CreateDirectory(cur_dir.c_str(),NULL) != 0)
359   {
360   if (toggle_trace) cout << "Trace: Gen evidence folder\n\n";
361   gen_folder = true;
362   }
363   gen_fldr_retry++;
364   }
365   
366   if (gen_fldr_retry > time_2_wait)
367   {
368   cout << "Failed to create procevdn directory\n\n";
369   return -1;
370   }
371   
372   process_evidence();
373   gen_folder = false;
374   gen_fldr_retry =0;
375   }
376   
377   
378   cout << "STATUS: Printing Summary of Evidence Artefact Types Found per Scenario\n\n";
379   print_evidence_summary();
380   
381   
382   }//TOOGLE EXTRACTING EVIDENCE PROCEDURE
383   
384   
385   if (true){//TOOGLE EXTRACTING ARTEFACTS PROCEDURE
386   
387   cout << "STATUS: Analysing Evidence Artefacts and Calculating Output Rating\n\n";
388   bayesian_network_analyser();
389   
390   }//TOOGLE EXTRACTING ARTEFACTS PROCEDURE
391   
392   
393   t2=clock();
394   float run_time ((float)t2-(float)t1);
395   cout << "INFO: Total run time: " << run_time / CLOCKS_PER_SEC << " seconds\n\n";
396   cout << "INFO: The extracted evidence results for each scenario can be found in the 

procevdn folder\n\n";
397   
398   //system("pause");
399   return 0;
400   }
401   
402   
403   void process_filter (string proc_list)
404   {//Searches for target application processes in memory
405   
406   int proc_id=-1, line_cnt=0;
407   char proc_name[21], offset[21];
408   istringstream iss(proc_list);
409   string line;
410   
411   while (getline(iss, line))
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O.2 memtri.cpp
412   {
413   std::cout << line << std::endl;
414   
415   line_cnt++;
416   if (line_cnt > 2)
417   {
418   strcpy(proc_name,"");
419   
420   if (scan_mode)
421   {
422   sscanf(line.c_str(),"%18c %16c %d",offset,proc_name,&proc_id);
423   proc_name[16] = '\0';
424   }
425   else
426   {
427   sscanf(line.c_str(),"%10c %20c %d",offset,proc_name,&proc_id);
428   proc_name[20] = '\0';
429   }
430   
431           rstrip(proc_name);
432   
433           if (get_proc_type(proc_name) == 'D')
434           {//Populate Document Features
435   doc_features[doc_cnt].proc_id = proc_id;
436   strcpy(doc_features[doc_cnt].proc_name,proc_name);
437   doc_cnt++;
438   }
439   else if (get_proc_type(proc_name) == 'M')
440           {//Populate Messenger Features
441   im_features[im_cnt].proc_id = proc_id;
442   strcpy(im_features[im_cnt].proc_name,proc_name);
443   im_cnt++;
444   }
445   else if (get_proc_type(proc_name) == 'W')
446           {//Populate Browser Features
447   web_features[web_cnt].proc_id = proc_id;
448   strcpy(web_features[web_cnt].proc_name,proc_name);
449   web_cnt++;
450   }
451   else if (get_proc_type(proc_name) == 'F')
452           {//Populate FTP Features
453   ftp_features[ftp_cnt].proc_id = proc_id;
454   strcpy(ftp_features[ftp_cnt].proc_name,proc_name);
455   ftp_cnt++;
456   }
457   }
458   
459       }
460       cout << "\n\n";
461   }
462   
463   void populate_proc_type ()
464   {//Saves a list of the various types of target applications
465   
466   memset(&proctyp,0,sizeof(proctyp));
467   
468   //Internet Browsers
469   strcpy(proctyp[0].proc_name,"chrome.exe");
470   proctyp[0].type = 'W';
471   strcpy(proctyp[1].proc_name,"tor.exe");
472   proctyp[1].type = 'W';
473   strcpy(proctyp[2].proc_name,"firefox.exe");
474   proctyp[2].type = 'W';
475   
476   //Document Processors
477   strcpy(proctyp[3].proc_name,"soffice.exe");
478   proctyp[3].type = 'D';
479   strcpy(proctyp[4].proc_name,"soffice.bin");
480   proctyp[4].type = 'D';
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481   strcpy(proctyp[5].proc_name,"notepad.exe");
482   proctyp[5].type = 'D';
483   
484   //Instant Messenger
485   strcpy(proctyp[6].proc_name,"Skype.exe");
486   proctyp[6].type = 'M';
487   strcpy(proctyp[7].proc_name,"Wickr Me.exe");
488   proctyp[7].type = 'M';
489   
490   //FTP Client
491   strcpy(proctyp[8].proc_name,"filezilla.exe");
492   proctyp[8].type = 'F';
493   
494   }
495   
496   char get_proc_type(char* name)
497   {//Gets the type of process based on the process name
498   
499   int i;
500   
501   for (i=0; i<MAX_PROCTYPE; i++)
502   if (strcmpi(name,proctyp[i].proc_name) == 0)
503   return proctyp[i].type;
504   
505   return -1;
506   }
507   
508   void process_dump()
509   {//Dumps the physical memory contents of a process
510   
511   string str_command, str_pid;
512   int i;
513   
514   
515   for (i=0; i<im_cnt && i<MAX_FEATURES; i++)
516   {
517   cout << "PROGRESS: Dumping Instant Messenger Process " << 

im_features[i].proc_name << " .....\n\n";
518   str_pid = IntToString(im_features[i].proc_id);
519   str_command =volatility_util + " -f \"" + mem_img_loc + "\" --profile 

Win7SP1x86 memdump -p " + str_pid + " -D procdump"; 
520   cmd_exec(str_command.c_str());
521   }
522   
523   for (i=0; i<doc_cnt && i<MAX_FEATURES; i++)
524   {
525   cout << "PROGRESS: Dumping Document Processor Process " << 

doc_features[i].proc_name << " .....\n\n";
526   str_pid = IntToString(doc_features[i].proc_id);
527   str_command =  volatility_util + " -f \"" + mem_img_loc + "\" --profile 

Win7SP1x86 memdump -p " + str_pid + " -D procdump"; 
528   cmd_exec(str_command.c_str());
529   }
530   
531   for (i=0; i<web_cnt && i<MAX_FEATURES; i++)
532   {
533   cout << "PROGRESS: Dumping Internet Browser Process " << 

web_features[i].proc_name << " .....\n\n";
534   str_pid = IntToString(web_features[i].proc_id);
535   str_command = volatility_util + " -f \"" + mem_img_loc + "\" --profile 

Win7SP1x86 memdump -p " + str_pid + " -D procdump"; 
536   cmd_exec(str_command.c_str());
537   }
538   
539     for (i=0; i<ftp_cnt && i<MAX_FEATURES; i++)
540   {
541   cout << "PROGRESS: Dumping FTP Client Process " << ftp_features[i].proc_name << 

" .....\n\n";
542   str_pid = IntToString(ftp_features[i].proc_id);
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543   str_command = volatility_util + " -f \"" + mem_img_loc + "\" --profile 

Win7SP1x86 memdump -p " + str_pid + " -D procdump"; 
544   cmd_exec(str_command.c_str());
545   }
546   
547   }
548   
549   void process_text()
550   {//Extracts the ASCII and Unicode content from memory image or process dump
551   
552   string str_command, str_pid, dump_dir;
553   int i;
554   
555   dump_dir = work_dir + "\\procdump";
556   
557   if (scan_mode)
558   {
559   cout << "PROGRESS: Extracting Text from Memory Image " << mem_img_fname << " 

.....\n\n";
560   str_command =  strings_util_pd + " -nh -l 5 " + mem_img_fname + " > \"" + 

work_dir + "\\proctext\\" + mem_img_name + ".txt\"";
561   //str_command =  strings_util + " -q -o -n 5 \"" + mem_img_loc + "\" > \"" + 

work_dir + "\\proctext\\" + mem_img_name + ".txt\""; 
562   if (toggle_trace) cout << "Trace: " << str_command << "\n\n";
563   cmd_exec(str_command.c_str());
564   return;
565   }
566   
567   for (i=0; i<im_cnt && i<MAX_FEATURES; i++)
568   {
569   str_pid = IntToString(im_features[i].proc_id);
570   cout << "PROGRESS: Extracting Text from Instant Messenger Process " << 

im_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
571   str_command =  "cd " + dump_dir + " & " + strings_util_pd + " -nh -l 5 " + 

str_pid + ".dmp > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
572   //str_command =  strings_util + " -q -o -n 5 \"" + work_dir + "\\procdump\\" + 

str_pid + ".dmp\" > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
573   if (toggle_trace) cout << "Trace: " << str_command << "\n\n";
574   cmd_exec(str_command.c_str());
575   }
576   
577   for (i=0; i<doc_cnt && i<MAX_FEATURES; i++)
578   {
579   str_pid = IntToString(doc_features[i].proc_id);
580   cout << "PROGRESS: Extracting Text from Document Processor Process " << 

doc_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
581   str_command =  "cd " + dump_dir + " & " + strings_util_pd + " -nh -l 5 " + 

str_pid + ".dmp > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
582   //str_command = strings_util + " -q -o -n 5 \"" + work_dir + "\\procdump\\" + 

str_pid + ".dmp\" > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
583   if (toggle_trace) cout << "Trace: " << str_command << "\n\n";
584   cmd_exec(str_command.c_str());
585   }
586   
587   for (i=0; i<web_cnt && i<MAX_FEATURES; i++)
588   {
589   str_pid = IntToString(web_features[i].proc_id);
590   cout << "PROGRESS: Extracting Text from Internet Browser Process " << 

web_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
591   str_command =  "cd " + dump_dir + " & " + strings_util_pd + " -nh -l 5 " + 

str_pid + ".dmp > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
592   //str_command = strings_util + " -q -o -n 5 \"" + work_dir + "\\procdump\\" + 

str_pid + ".dmp\" > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
593   if (toggle_trace) cout << "Trace: " << str_command << "\n\n";
594   cmd_exec(str_command.c_str());
595   }
596   
597     for (i=0; i<ftp_cnt && i<MAX_FEATURES; i++)
598   {
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599   str_pid = IntToString(ftp_features[i].proc_id);
600   cout << "PROGRESS: Extracting Text from Internet Browser Process " << 

ftp_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
601   str_command =  "cd " + dump_dir + " & " + strings_util_pd + " -nh -l 5 " + 

str_pid + ".dmp > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
602   //str_command = strings_util + " -q -o -n 5 \"" + work_dir + "\\procdump\\" + 

str_pid + ".dmp\" > \"" + work_dir + "\\proctext\\" + str_pid + ".txt\""; 
603   if (toggle_trace) cout << "Trace: " << str_command << "\n\n";
604   cmd_exec(str_command.c_str());
605   }
606   
607   }
608   
609   void process_evidence()
610   {//Extracts the ASCII and Unicode content from memory image or process dump
611   
612       string str_command, str_pid,fl_path,result_path;
613   int i, scenario_idx;
614   
615   if (scan_mode)
616   {
617   load_case_words();
618   
619   cout << "PROGRESS: Extracting Evidence Artefacts from Memory Image " << 

mem_img_fname << " .....\n\n";
620   fl_path = work_dir + "\\proctext\\" + mem_img_name + ".txt" ;
621   
622   result_path = work_dir + "\\procevdn\\" + mem_img_name;
623   
624   find_im_evidence(fl_path,&im_features[MAX_FEATURES],result_path);
625   find_doc_evidence(fl_path,&doc_features[MAX_FEATURES],result_path);
626   find_web_evidence(fl_path, &web_features[MAX_FEATURES],result_path);
627   find_ftp_evidence(fl_path, &ftp_features[MAX_FEATURES],result_path);
628   
629   //Search for evidence based on process name
630   for (i=0; i<web_cnt && i<MAX_FEATURES; i++)
631   {
632   if (strcmpi(web_features[i].proc_name,"tor.exe") == 0)
633   {
634   scenario_idx = 3;
635   web_features[MAX_FEATURES].proc_evd[scenario_idx].type = 'W';
636   web_features[MAX_FEATURES].proc_evd[scenario_idx].count++;
637   if (toggle_trace) cout << "Trace: Web Scenario #" << (scenario_idx+1) 

<< ": Count = " << 
web_features[MAX_FEATURES].proc_evd[scenario_idx].count << "\n\n";

638   baynet_web[scenario_idx]++;
639   }
640   }
641   
642   for (i=0; i<im_cnt && i<MAX_FEATURES; i++)
643   {
644   if (strcmpi(im_features[i].proc_name,"wickr me.exe") == 0)
645   {
646   scenario_idx = 3;
647   im_features[MAX_FEATURES].proc_evd[scenario_idx].type = 'W';
648   im_features[MAX_FEATURES].proc_evd[scenario_idx].count++;
649   if (toggle_trace) cout << "Trace: Messenger Scenario #" << 

(scenario_idx+1) << ": Count = " << 
im_features[MAX_FEATURES].proc_evd[scenario_idx].count << "\n\n";

650   baynet_im[scenario_idx]++;
651   }
652   }
653   
654   unload_case_words();
655   return;
656   }
657   
658   load_case_words();
659   
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660   for (i=0; i<im_cnt && i<MAX_FEATURES; i++)
661   {
662   str_pid = IntToString(im_features[i].proc_id);
663   cout << "PROGRESS: Extracting Evidence Artefacts from Instant Messenger Process 

" << im_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
664   fl_path = work_dir + "\\proctext\\" + str_pid + ".txt";
665   result_path = work_dir + "\\procevdn\\" + str_pid;
666   
667   find_im_evidence(fl_path,&im_features[i],result_path);
668   }
669   
670   for (i=0; i<doc_cnt && i<MAX_FEATURES; i++)
671   {
672   str_pid = IntToString(doc_features[i].proc_id);
673   cout << "PROGRESS: Extracting Evidence Artefacts from Document Processor 

Process " << doc_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
674   fl_path = work_dir + "\\proctext\\" + str_pid + ".txt";
675   result_path = work_dir + "\\procevdn\\" + str_pid;
676   
677   find_doc_evidence(fl_path,&doc_features[i],result_path);
678   }
679   
680   for (i=0; i<web_cnt && i<MAX_FEATURES; i++)
681   {
682   str_pid = IntToString(web_features[i].proc_id);
683   cout << "PROGRESS: Extracting Evidence Artefacts from Internet Browser Process 

" << web_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
684   fl_path = work_dir + "\\proctext\\" + str_pid + ".txt";
685   result_path = work_dir + "\\procevdn\\" + str_pid;
686   
687   find_web_evidence(fl_path, &web_features[i],result_path);
688   }
689   
690   for (i=0; i<ftp_cnt && i<MAX_FEATURES; i++)
691   {
692   str_pid = IntToString(ftp_features[i].proc_id);
693   cout << "PROGRESS: Extracting Evidence Artefacts from FTP Client Process " << 

ftp_features[i].proc_name << "; PID:" + str_pid + " .....\n\n";
694   fl_path = work_dir + "\\proctext\\" + str_pid + ".txt";
695   result_path = work_dir + "\\procevdn\\" + str_pid;
696   
697   find_ftp_evidence(fl_path, &ftp_features[i],result_path);
698   }
699   
700   unload_case_words();
701   
702   }
703   
704   #include "auxillary.cpp"
705   #include "evidence_search_engine.cpp"
706   #include "bayesian_network_analyser.cpp"
707   
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1   typedef struct
2   {
3   char type;
4   int count;
5   int offset[100];
6   }Evidence;
7   
8   typedef struct
9   {

10   int proc_id;
11   char proc_name[20];
12   Evidence proc_evd[4];
13   }Feature;
14   
15   
16   Feature im_features[MAX_FEATURES+1];
17   Feature doc_features[MAX_FEATURES+1];
18   Feature web_features[MAX_FEATURES+1];
19   Feature ftp_features[MAX_FEATURES+1];
20   
21   
22   int im_cnt = 0;
23   int doc_cnt = 0;
24   int web_cnt = 0;
25   int ftp_cnt = 0;
26   
27   string case_trigger_words,case_context_words,case_flagged_websites,case_flagged_contacts;
28   
29   void find_doc_evidence(string data_path, Feature * feature_info, string result_path);
30   void find_im_evidence(string data_path, Feature * feature_info, string result_path);
31   void find_web_evidence(string data_path, Feature * feature_info, string result_path);
32   void find_ftp_evidence(string data_path, Feature * feature_info, string result_path);
33   void fetch_case_words(string * case_var, string case_flname);
34   void load_case_words();
35   void unload_case_words();
36   void clear_features();
37   void print_summary(string e_type,int scn_count,int baynet_evd[]);
38   void print_evidence_summary();
39   
40   string verify_doc_launch =  "(<item 

oor:path=./org.openoffice.Office.UI.WriterWindowState)|(C:\\\\Windows\\\\system32\\\\NOTE
PAD.EXE.\\sC)";

41   string verify_msg_launch = "(freeWickrApp|initWickrApp|initWickrOutbox|freeWickrOutbox)";
42   string verify_ftp_launch = "<filezilla.xml~";
43   
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1   
2   void find_web_evidence(string data_path, Feature * feature_info, string result_path)
3   {//Searches for evidence pertaining to Internet Browser Applications
4   
5   int i,scenario_idx =0;
6   string reg_exp = "";
7   string result_path_sufxd;
8   
9   string repeat_search_pattern1 = "([\\w]+(\\+|%20)){0,}";

10   string repeat_search_pattern2 = "((\\+|%20)[\\w]+){0,}";
11   
12   string repeat_fname_pattern1 = "[^\\?\\*\\|\\\\/:><\\r\\n\\.]";
13   string repeat_weburl_pattern1 = "[\\w|_|\\-|.]";
14   
15   
16   for (i=1; i<=11; i++)
17   {
18   reg_exp.clear();
19   if (i > 3) scenario_idx = 1;
20   if (i > 7) scenario_idx = 2;
21   
22   
23   switch(i)
24   {
25   //======= Web Scenario 1: Web Engine Search ========
26   
27   case 1: //---- WS1 Chrome Pattern 2,3,4,5------
28   reg_exp = "(/search\\?([\\w]+[=|\\-|&]){0,}q=" + repeat_search_pattern1 

+ "((" + case_context_words + ")(\\+|%20)){1,}" + 
repeat_search_pattern1 + "(" + case_trigger_words + "))|"; 

29   reg_exp += "(/search\\?([\\w]+[=|\\-|&]){0,}q=" + 
repeat_search_pattern1 + "((" + case_trigger_words + ")(\\+|%20)){1,}" 
+ repeat_search_pattern1 + "(" + case_context_words + "))"; //Strong 
Regular Expression

30   break;
31   
32   case 2: //---- WS1 Chrome Pattern 1------
33   reg_exp = "(www.google(\\.[\\w]+){1,}/#q=" + repeat_search_pattern1 + 

"((" + case_context_words + ")(\\+|%20)){1,}" + repeat_search_pattern1 
+ "(" + case_trigger_words + "))|";

34   reg_exp += "(www.google(\\.[\\w]+){1,}/#q=" + repeat_search_pattern1 + 
"((" + case_trigger_words + ")(\\+|%20)){1,}" + repeat_search_pattern1 
+ "(" + case_context_words + "))"; //Strong Regular Expression

35   break;
36   
37   case 3: //---- WS1 Chrome Pattern 6------
38   reg_exp = "(q=" + repeat_search_pattern1 + "((" + case_context_words + 

")(\\+|%20)){1,}" + repeat_search_pattern1 + "(" + case_trigger_words + 
")" + repeat_search_pattern2 + "&start=)|"; 

39   reg_exp += "(q=" + repeat_search_pattern1 + "((" + case_trigger_words + 
")(\\+|%20)){1,}" + repeat_search_pattern1 + "(" + case_context_words + 
")" + repeat_search_pattern2 + "&start=)"; //Strong Regular Expression

40   break;
41   
42   
43   
44   //======= Web Scenario 2: Visited Flagged Website ========
45   
46   case 4: //---- WS2 Chrome Pattern 3------
47   reg_exp = "Referer: http[s]*://(" + case_flagged_websites+ ")"; 

//Strong Regular Expression
48   break;
49   
50   case 5: //---- WS2 Chrome Pattern 4,5------
51   if (strcmpi(feature_info->proc_name,"chrome.exe") !=0 && !scan_mode) 

continue;
52   reg_exp = "(" + case_flagged_websites+ ")_[\\d]\\.localstorage"; 

//Strong Regular Expression
53   break;
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54   
55   case 6: //---- WS3 Tor Pattern 1,3------
56   if ((strcmpi(feature_info->proc_name,"tor.exe") !=0 && 

(strcmpi(feature_info->proc_name,"firefox.exe") !=0)) && !scan_mode) 
continue;

57   reg_exp = "STREAM[\\s][\\d]{1,}[\\s][\\w]{1,}[\\s][\\d]{1,}[\\s](" + 
case_flagged_websites+ "):[\\d]{1,}";  //Strong Regular Expression

58   break;
59   
60   case 7: //---- WS3 Chrome Pattern 2------
61   if (strcmpi(feature_info->proc_name,"chrome.exe") !=0) continue;
62   reg_exp =  "domain=(" + case_flagged_websites+ "); path="; //Weak 

Regular Expression
63   break;
64   
65   
66   
67   //======= Web Scenario 3: Downloaded File ========
68   
69   case 8: //---- WS3 Chrome Pattern 2------
70   if (strcmpi(feature_info->proc_name,"chrome.exe") !=0 && !scan_mode) 

continue;
71   reg_exp =  "(" + case_trigger_words + ")" + repeat_fname_pattern1 + 

"{0,}\\.[\\w]{1,4}.crdownload"; //Strong Regular Expression
72   break;
73   
74   case 9: //---- WS3 Chrome Pattern 5------
75   reg_exp =  "(Resource Path:C:\\\\Users\\\\" + repeat_fname_pattern1 + 

"{1,}\\\\Downloads\\\\(" + repeat_fname_pattern1 + "{1,}\\\\){0,}" + 
76   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 

+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}\\|" + 
77   "http[s]*://(" + repeat_weburl_pattern1 + "{1,}/){1,}" + 

repeat_fname_pattern1 + "{1,}\\.[\\w]{1,4})|"; //Strong 
Regular Expression

78   
79   reg_exp +=  "(Resource Path:C:\\\\Users\\\\" + repeat_fname_pattern1 + 

"{1,}\\\\Downloads\\\\(" + repeat_fname_pattern1 + "{1,}\\\\){0,}" + 
repeat_fname_pattern1 + "{1,}\\.[\\w]{1,4}\\|" + 

80   "http[s]*://(" + repeat_weburl_pattern1 + "{1,}/){1,}" + 
repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + 
"{0,}\\.[\\w]{1,4})";

81   break;
82   
83   case 10: //---- WS3 Tor Pattern 3------
84   reg_exp =  "[\\d]+<(" + case_trigger_words + ")" + 

repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak Regular Expression
85   break;
86   
87   case 11://---- WS3 Chrome Pattern 1,3------
88   if (scan_mode) continue;
89   reg_exp =  "file:[/]{3,4}C:/User[s]/" + repeat_fname_pattern1 + 

"{1,}/Download[s]/(" + repeat_fname_pattern1 + "{1,}/){0,}" + 
90   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 

+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak 
Regular Expression

91   break;
92   
93   }
94   
95   
96   if (reg_exp.length() > 0)
97   {
98   
99   string str_command = "grep -P -i \"" + reg_exp + "\" \"" + data_path + "\"" ;

100   if (toggle_trace) cout << "Trace:\n" << str_command << "\n\n";
101   string cmd_result = cmd_exec(str_command.c_str());
102   if (toggle_trace) cout << "Trace:\n" << cmd_result << "\n\n";
103   //system("pause");
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54   
55   case 6: //---- WS3 Tor Pattern 1,3------
56   if ((strcmpi(feature_info->proc_name,"tor.exe") !=0 && 

(strcmpi(feature_info->proc_name,"firefox.exe") !=0)) && !scan_mode) 
continue;

57   reg_exp = "STREAM[\\s][\\d]{1,}[\\s][\\w]{1,}[\\s][\\d]{1,}[\\s](" + 
case_flagged_websites+ "):[\\d]{1,}";  //Strong Regular Expression

58   break;
59   
60   case 7: //---- WS3 Chrome Pattern 2------
61   if (strcmpi(feature_info->proc_name,"chrome.exe") !=0) continue;
62   reg_exp =  "domain=(" + case_flagged_websites+ "); path="; //Weak 

Regular Expression
63   break;
64   
65   
66   
67   //======= Web Scenario 3: Downloaded File ========
68   
69   case 8: //---- WS3 Chrome Pattern 2------
70   if (strcmpi(feature_info->proc_name,"chrome.exe") !=0 && !scan_mode) 

continue;
71   reg_exp =  "(" + case_trigger_words + ")" + repeat_fname_pattern1 + 

"{0,}\\.[\\w]{1,4}.crdownload"; //Strong Regular Expression
72   break;
73   
74   case 9: //---- WS3 Chrome Pattern 5------
75   reg_exp =  "(Resource Path:C:\\\\Users\\\\" + repeat_fname_pattern1 + 

"{1,}\\\\Downloads\\\\(" + repeat_fname_pattern1 + "{1,}\\\\){0,}" + 
76   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 

+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}\\|" + 
77   "http[s]*://(" + repeat_weburl_pattern1 + "{1,}/){1,}" + 

repeat_fname_pattern1 + "{1,}\\.[\\w]{1,4})|"; //Strong 
Regular Expression

78   
79   reg_exp +=  "(Resource Path:C:\\\\Users\\\\" + repeat_fname_pattern1 + 

"{1,}\\\\Downloads\\\\(" + repeat_fname_pattern1 + "{1,}\\\\){0,}" + 
repeat_fname_pattern1 + "{1,}\\.[\\w]{1,4}\\|" + 

80   "http[s]*://(" + repeat_weburl_pattern1 + "{1,}/){1,}" + 
repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + 
"{0,}\\.[\\w]{1,4})";

81   break;
82   
83   case 10: //---- WS3 Tor Pattern 3------
84   reg_exp =  "[\\d]+<(" + case_trigger_words + ")" + 

repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak Regular Expression
85   break;
86   
87   case 11://---- WS3 Chrome Pattern 1,3------
88   if (scan_mode) continue;
89   reg_exp =  "file:[/]{3,4}C:/User[s]/" + repeat_fname_pattern1 + 

"{1,}/Download[s]/(" + repeat_fname_pattern1 + "{1,}/){0,}" + 
90   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 

+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak 
Regular Expression

91   break;
92   
93   }
94   
95   
96   if (reg_exp.length() > 0)
97   {
98   
99   string str_command = "grep -P -i \"" + reg_exp + "\" \"" + data_path + "\"" ;

100   if (toggle_trace) cout << "Trace:\n" << str_command << "\n\n";
101   string cmd_result = cmd_exec(str_command.c_str());
102   if (toggle_trace) cout << "Trace:\n" << cmd_result << "\n\n";
103   //system("pause");

166



O.4 evidence search engine.cpp
104   
105   if (cmd_result.length() > 0)
106   {
107   feature_info->proc_evd[scenario_idx].type = 'W';
108   feature_info->proc_evd[scenario_idx].count++;
109   if (toggle_trace) cout << "Trace: Web Scenario #" << (scenario_idx+1) 

<< ": Count = " << feature_info->proc_evd[scenario_idx].count << "\n\n";
110   baynet_web[scenario_idx]++;
111   result_path_sufxd = result_path + "_WEB_Scenario" + 

IntToString(scenario_idx+1) + ".txt";
112   write_2_file(result_path_sufxd,cmd_result);
113   }
114   }
115   
116   }
117   
118   
119   if (strcmpi(feature_info->proc_name,"tor.exe") == 0)
120   {
121   scenario_idx = 3;
122   feature_info->proc_evd[scenario_idx].type = 'W';
123   feature_info->proc_evd[scenario_idx].count++;
124   if (toggle_trace) cout << "Trace: Web Scenario #" << (scenario_idx+1) << ": 

Count = " << feature_info->proc_evd[scenario_idx].count << "\n\n";
125   baynet_web[scenario_idx]++;
126   }
127   
128   }
129   
130   
131   void find_doc_evidence(string data_path, Feature * feature_info, string result_path)
132   {//Searches for evidence pertaining to Document Processor Applications
133   
134   int i,scenario_idx=0;
135   string reg_exp = "";
136   string result_path_sufxd;
137   
138   string repeat_fname_pattern1 = "[^\\?\\*\\|\\\\/:><\\r\\n\\.]";
139   string repeat_word_spacing = "([\\w|\\.]+[\\s]{1,}){0,5}"; //Strengten this regular 

expression
140   
141   
142   for (i=1; i<=6; i++)
143   {
144   reg_exp.clear();
145   if (i > 1) scenario_idx = 1;
146   if (i > 5) scenario_idx = 2;
147   
148   switch(i)
149   {
150   //======= Document Scenario 1: Typed Content========
151   
152   case 1: //---- DS1 Libre------
153   reg_exp = "((" + case_context_words + ")\\s" + repeat_word_spacing + 

"(" + case_trigger_words + ")\\W)|"; 
154   reg_exp += "((" + case_trigger_words + ")\\s" + repeat_word_spacing + 

"(" + case_context_words + ")\\W)"; //Weak Regular Expression
155   break;
156   
157   
158   //======= Document Scenario 2: Open/Save Document ========
159   
160   case 2: //---- DS2 Notepad Pattern 4------
161   if (strcmpi(feature_info->proc_name,"notepad.exe") !=0 && !scan_mode) 

continue;
162   reg_exp = 

"C:\\\\Windows\\\\system32\\\\NOTEPAD\\.EXE.\\sC:\\\\Users\\\\" + 
repeat_fname_pattern1 + "{1,}\\\\(Downloads|Documents)\\\\(" + 
repeat_fname_pattern1 + "{1,}\\\\){0,}" + 
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163   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 

+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Strong 
Regular Expression

164   break;
165   
166   case 3:
167   //---- DS2 Libre Pattern 1a------
168   if (scan_mode) continue;
169   reg_exp =  "(Visited|[\\d]+):[\\s][\\w]+@file:[/]{3,4}C:/User[s]/" + 

repeat_fname_pattern1 + "{1,}/(Downloads|Documents)/(" + 
repeat_fname_pattern1 + "{1,}/){0,}" + 

170   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak 
Regular Expression

171   break;
172   
173   case 4:
174   //---- DS2 Libre Pattern 3a------
175   reg_exp =  "<node oor:name=.file:[/]{3,4}C:/User[s]/" + 

repeat_fname_pattern1 + "{1,}/(Downloads|Documents)/(" + 
repeat_fname_pattern1 + "{1,}/){0,}" + 

176   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}[(\\\")]"; 
//Strong Regular Expression

177   break;
178   
179   case 5:
180   //---- DS2 Libre Pattern 2a------
181   
182   reg_exp =  

"prop[\\s]oor:name=.(OriginalURL|HistoryItemRef).[\\s]oor:op=.fuse.><valu
e>file:///C:/User[s]/" + repeat_fname_pattern1 + 
"{1,}/(Downloads|Documents)/(" + repeat_fname_pattern1 + "{1,}/){0,}" + 

183   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}</value>"; 
//Strong Regular Expression

184   break;
185   
186   
187   //======= Document Scenario 3: Password Protected ========
188   
189   case 6: //---- DS3 Libre Pattern 1,2------
190   if ((strcmpi(feature_info->proc_name,"soffice.exe") !=0 && 

(strcmpi(feature_info->proc_name,"soffice.bin") !=0)) && !scan_mode) 
continue;

191   reg_exp = "Enter[\\s]password[\\s]to[\\s](open|modify)[\\s]file:"; 
//Weak Regular Expression

192   break;
193   }
194   
195   
196   if (reg_exp.length() > 0)
197   {
198   string str_command = "grep -P -i \"" + reg_exp + "\" \"" + data_path + "\"" ;
199   if (toggle_trace) cout << "Trace:\n" << str_command << "\n\n";
200   string cmd_result = cmd_exec(str_command.c_str());
201   if (toggle_trace)cout << "Trace:\n" << cmd_result << "\n\n";
202   
203   if (cmd_result.length() > 0 && scan_mode && i == 1)
204   {//Verify Weak Pattern(s) by checking if Document Processor application was 

likely launched
205   string str_command2 = "grep -P -i \"(" + verify_doc_launch + ")\" \"" + 

data_path + "\"";
206   string cmd_result2 = cmd_exec(str_command2.c_str());
207   //result_path_sufxd = result_path + "_DOC_Scenario" + 

IntToString(scenario_idx+1) + "_APP.txt";
208   //write_2_file(result_path_sufxd,cmd_result2);
209   if (cmd_result2.length() == 0) cmd_result = "";
210   else if (toggle_trace) cout << "Trace: Found Document Processor Launch 
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Pattern\n\n";

211   }
212   
213   if (cmd_result.length() > 0)
214   {
215   feature_info->proc_evd[scenario_idx].type = 'D';
216   feature_info->proc_evd[scenario_idx].count++;
217   if (toggle_trace) cout << "Trace: Document Scenario #" << 

(scenario_idx+1) << ": Count = " << 
feature_info->proc_evd[scenario_idx].count << "\n\n";

218   baynet_doc[scenario_idx]++;
219   result_path_sufxd = result_path + "_DOC_Scenario" + 

IntToString(scenario_idx+1) + ".txt";
220   write_2_file(result_path_sufxd,cmd_result);
221   }
222   }
223   
224   }
225   
226   
227   }
228   
229   
230   void find_im_evidence(string data_path, Feature * feature_info, string result_path)
231   {//Searches for evidence pertaining to Instant Messenger Applications
232   int i,scenario_idx=0;
233   string reg_exp = "";
234   string result_path_sufxd;
235   
236   string repeat_fname_pattern1 = "[^\\?\\*\\|\\\\/:><\\r\\n\\.]";
237   string repeat_word_spacing = "([\\w|\\.]+[\\s]{1,})"; //Strengten this regular 

expression
238   string repeat_word_prox = "{0,5}";
239   
240   for (i=1; i<=11; i++)
241   {
242   reg_exp.clear();
243   if (i > 4) scenario_idx = 1;
244   if (i > 7) scenario_idx = 2;
245   
246   switch(i)
247   {
248   //======= Messenger Scenario 1: Contact Information ========
249   
250   case 1: //---- MS1 Skype Pattern 1------
251   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
252   reg_exp = "people<ContactHandle><SID>SKYPE</SID><AN>(.)+</AN><OID>(" + 

case_flagged_contacts + ")</OID></ContactHandle>"; //Strong Regular 
Expression

253   break;
254   
255   case 2: //---- MS1 Skype Pattern 2------
256   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
257   reg_exp = "<s[\\s]n=.SKP.><Skypename>(" + case_flagged_contacts + 

")</Skypename></s>"; //Strong Regular Expression
258   break;
259   
260   case 3: //---- MS1 Skype Pattern 3------
261   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
262   reg_exp = "__PersonSkypenames__[\\s](" + case_flagged_contacts + ")"; 

//Strong Regular Expression
263   break;
264   
265   case 4: //---- MS1 Wickr Pattern 1------
266   if (strcmpi(feature_info->proc_name,"wickr me.exe") !=0 && !scan_mode) 

continue;
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267   reg_exp = "Wickr[\\s]ID:[\\s]+(" + case_flagged_contacts + ")"; 

//Strong Regular Expression
268   break;
269   
270   
271   //======= Messenger Scenario 2: Sent Message ========
272   
273   case 5: //---- MS2 Skype Pattern 3------
274   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
275   reg_exp = "TTextMessage-From[\\s](.)+,[\\s]" + repeat_word_spacing + 

"{0,}";
276   reg_exp += "(((" + case_context_words + ")\\s" + repeat_word_spacing + 

repeat_word_prox + "(" + case_trigger_words + ")\\W)|"; 
277   reg_exp += "((" + case_trigger_words + ")\\s" + repeat_word_spacing + 

repeat_word_prox + "(" + case_context_words + ")\\W))"; //Strong 
Regular Expression

278   break;
279   
280   case 6:
281   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
282   reg_exp = "<messagetype>Text</messagetype><content>" + 

repeat_word_spacing + "{0,}";
283   reg_exp += "(((" + case_context_words + ")\\s" + repeat_word_spacing + 

repeat_word_prox + "(" + case_trigger_words + ")\\W)|"; 
284   reg_exp += "((" + case_trigger_words + ")\\s" + repeat_word_spacing + 

repeat_word_prox + "(" + case_context_words + ")\\W))"; //Strong 
Regular Expression

285   break;
286   
287   case 7: //---- MS1 Wickr Pattern 1------
288   if (strcmpi(feature_info->proc_name,"wickr me.exe") !=0 && !scan_mode) 

continue;
289   reg_exp += "(((" + case_context_words + ")\\s" + repeat_word_spacing + 

repeat_word_prox + "(" + case_trigger_words + ")\\W)|"; 
290   reg_exp += "((" + case_trigger_words + ")\\s" + repeat_word_spacing + 

repeat_word_prox + "(" + case_context_words + ")\\W))"; //Weak Regular 
Expression

291   break;
292   
293   
294   //======= Messenger Scenario 3: Sent/Received File ========
295   
296   case 8: //---- MS3 Skype Pattern 1------
297   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
298   reg_exp = 

"(<|(&lt;))URIObject[\\s]type=.File\\.[\\d]+.[\\s]uri=.https://api\\.asm\
\.skype\\.com[^\\r\\n]{1,}";

299   reg_exp += "(<|(&lt;))OriginalName[\\s]v=." + repeat_fname_pattern1 + 
"{0,}(" + case_trigger_words + ")" + repeat_fname_pattern1 + 
"{0,}\\.[\\w]{1,4}./(>|(&gt;))(<|(&lt;))/URIObject(>|(&gt;))"; //Strong 
Regular Expression

300   break;
301   
302   case 9: //---- MS3 Skype Pattern 2------
303   if (strcmpi(feature_info->proc_name,"skype.exe") !=0 && !scan_mode) 

continue;
304   reg_exp = 

".status_location.:.https://weu1-api\\.asm\\.skype\\.com[^\\r\\n]{1,}.sca
n.:{.status.:.[\\w|\\s]+.},.original_filename.:.";

305   reg_exp += repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" + 
repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}.}"; //Strong Regular 
Expression

306   break;
307   
308   case 10:
309   //---- MS3 Skype Pattern 5------
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310   if (scan_mode) continue;
311   reg_exp =  "(Visited|[\\d]+):[\\s][\\w]+@file:[/]{3,4}C:/User[s]/" + 

repeat_fname_pattern1 + "{1,}/(Downloads|Documents)/(" + 
repeat_fname_pattern1 + "{1,}/){0,}" + 

312   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak 
Regular Expression

313   break;
314   
315   case 11:
316   //---- MS3 Wickr Pattern ------
317   if (strcmpi(feature_info->proc_name,"wickr me.exe") !=0) continue;
318   reg_exp =  "C:\\\\Users\\\\" + repeat_fname_pattern1 + 

"{1,}\\\\(Downloads|Documents)\\\\(" + repeat_fname_pattern1 + 
"{1,}\\\\){0,}" + 

319   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}"; //Weak 
Regular Expression

320   break;
321   
322   }
323   
324   
325   if (reg_exp.length() > 0)
326   {
327   string str_command = "grep -P -i \"" + reg_exp + "\" \"" + data_path + "\"" ;
328   if (toggle_trace) cout << "Trace:\n" << str_command << "\n\n";
329   string cmd_result = cmd_exec(str_command.c_str());
330   if (toggle_trace) cout << "Trace:\n" << cmd_result << "\n\n";
331   //system("pause");
332   
333   if (cmd_result.length() > 0 && scan_mode && i == 7)
334   {//Verify Weak Pattern(s) by checking if Instant Messenger application was 

likely launched
335   string str_command2 = "grep -P -i \"(" + verify_msg_launch + ")\" \"" + 

data_path + "\"" ;
336   string cmd_result2 = cmd_exec(str_command2.c_str());
337   if (cmd_result2.length() == 0) cmd_result = "";
338   else if (toggle_trace) cout << "Trace: Found Instant Messenger Launch 

Pattern\n\n";
339   }
340   
341   if (cmd_result.length() > 0)
342   {
343   feature_info->proc_evd[scenario_idx].type = 'M';
344   feature_info->proc_evd[scenario_idx].count++;
345   if (toggle_trace) cout << "Trace: Messenger Scenario #" << 

(scenario_idx+1) << ": Count = " << 
feature_info->proc_evd[scenario_idx].count << "\n\n";

346   baynet_im[scenario_idx]++;
347   result_path_sufxd = result_path + "_MSG_Scenario" + 

IntToString(scenario_idx+1) + ".txt";
348   write_2_file(result_path_sufxd,cmd_result);
349   }
350   }
351   
352   }
353   
354   if (strcmpi(feature_info->proc_name,"wickr me.exe") == 0)
355   {
356   scenario_idx = 3;
357   feature_info->proc_evd[scenario_idx].type = 'M';
358   feature_info->proc_evd[scenario_idx].count++;
359   if (toggle_trace) cout << "Trace: Messenger Scenario #" << (scenario_idx+1) << 

": Count = " << feature_info->proc_evd[scenario_idx].count << "\n\n";
360   baynet_im[scenario_idx]++;
361   }
362   
363   
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364   }
365   
366   
367   void find_ftp_evidence(string data_path, Feature * feature_info, string result_path)
368   {//Searches for evidence pertaining to FTP Client Applications
369   int i,scenario_idx=0;
370   string reg_exp = "";
371   string result_path_sufxd;
372   
373   string repeat_fname_pattern1 = "[^\\?\\*\\|\\\\/:><\\r\\n\\.]";
374   string repeat_ipv4_pattern1 = "(\\d{1,3}(\\.\\d{1,3}){3})";
375   
376   
377   for (i=1; i<=5; i++)
378   {
379   reg_exp = "";
380   if (i > 2) scenario_idx = 1;
381   if (i > 4) scenario_idx = 2;
382   
383   switch(i)
384   {
385   //======= FTP Scenario 1: Sever IP ========
386   
387   case 1: //---- FS1 Filezilla Pattern ------
388   if (strcmpi(feature_info->proc_name,"filezilla.exe") !=0 && !scan_mode) 

continue;
389   //reg_exp = "\\s\\-\\sftp(es)?://\\w+@" + repeat_ipv4_pattern1 + 

"\\s\\-\\sFileZilla"; //Strong Regular Expression
390   reg_exp = "\\w+@" + repeat_ipv4_pattern1 + "\\s\\-\\sFileZilla"; 

//Strong Regular Expression
391   break;
392   
393   case 2: //---- FS1 Filezilla Pattern ------
394   reg_exp = "<Host>" + repeat_ipv4_pattern1 + "</Host>"; //Weak Regular 

Expression
395   break;
396   
397   
398   //======= FTP Scenario 2: User Credentials ========
399   
400   case 3: //---- FS2 Filezilla Pattern ------
401   if (strcmpi(feature_info->proc_name,"filezilla.exe") !=0 && !scan_mode) 

continue;
402   reg_exp = "\\w+@" + repeat_ipv4_pattern1 + "\\s\\-\\sFileZilla"; 

//Strong Regular Expression
403   break;
404   
405   case 4:  //---- FS2 Filezilla Pattern ------
406   reg_exp = "<User>.{1,20}</User>"; //Weak Regular Expression
407   break;
408   
409   
410   //======= FTP Scenario 3: Transferred file========
411   
412   case 5: //---- FS3 Filezilla Pattern 1------
413   reg_exp = "Starting (download|upload)\\sof\\s"; //Strong Regular 

Expression
414   reg_exp += "((/(" + repeat_fname_pattern1 + "{1,}/){0,}" +  
415   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 

+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4})|";
416   reg_exp +=  "(C:\\\\Users\\\\" + repeat_fname_pattern1 + 

"{1,}\\\\(Downloads|Documents)\\\\(" + repeat_fname_pattern1 + 
"{1,}\\\\){0,}" + 

417   repeat_fname_pattern1 + "{0,}(" + case_trigger_words + ")" 
+ repeat_fname_pattern1 + "{0,}\\.[\\w]{1,4}))";//Strong 
Regular Expression

418   break;
419   
420   }
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421   
422   
423   if (reg_exp.length() > 0)
424   {
425   string str_command = "grep -P -i \"" + reg_exp + "\" \"" + data_path + "\"" ;
426   if (toggle_trace) cout << "Trace:\n" << str_command << "\n\n";
427   string cmd_result = cmd_exec(str_command.c_str());
428   if (toggle_trace) cout << "Trace:\n" << cmd_result << "\n\n";
429   //system("pause");
430   
431   if (cmd_result.length() > 0 && scan_mode && (i == 2 || i == 4))
432   {//Verify Weak Pattern(s) by checking if FTP Client application was likely 

launched
433   string str_command2 = "grep -P -i \"(" + verify_ftp_launch + ")\" \"" + 

data_path + "\"";
434   string cmd_result2 = cmd_exec(str_command2.c_str());
435   if (cmd_result2.length() == 0) cmd_result = "";
436   else if (toggle_trace) cout << "Trace: Found FTP Client Launch 

Pattern\n\n";
437   }
438   
439   if (cmd_result.length() > 0)
440   {
441   feature_info->proc_evd[scenario_idx].type = 'F';
442   feature_info->proc_evd[scenario_idx].count++;
443   if (toggle_trace) cout << "Trace: FTP Scenario #" << (scenario_idx+1) 

<< ": Count = " << feature_info->proc_evd[scenario_idx].count << "\n\n";
444   baynet_ftp[scenario_idx]++;
445   result_path_sufxd = result_path + "_FTP_Scenario" + 

IntToString(scenario_idx+1) + ".txt";
446   write_2_file(result_path_sufxd,cmd_result);
447   }
448   }
449   
450   }
451   
452   }
453   
454   
455   void load_case_words()
456   {//Loads words from files specfic to the case being investigated
457   fetch_case_words(&case_trigger_words,"trigger_words.txt");
458   fetch_case_words(&case_context_words,"context_words.txt");
459   fetch_case_words(&case_flagged_websites,"flagged_websites.txt");
460   fetch_case_words(&case_flagged_contacts,"flagged_contacts.txt");
461   }
462   
463   void unload_case_words()
464   {//Empy case word variables
465   case_trigger_words = case_context_words = case_flagged_websites = 

case_flagged_contacts = "";
466   }
467   
468   void fetch_case_words(string * case_var, string case_flname)
469   {//Gets all the words from case_flname and places it in case_var
470   
471   string fl_path = work_dir + "\\case_database\\" + case_flname;
472   
473   ifstream txt_fl(fl_path.c_str());
474   string fl_line;
475   
476   *case_var = "";
477   
478   while (getline(txt_fl, fl_line))
479       {
480   *case_var +=fl_line + "|";
481       }
482   
483       if (case_var->length() > 0)
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484       {
485   case_var->erase(case_var->length()-1, 1);
486   }
487   
488   if (toggle_trace) cout << "Trace: Case words: " << *case_var << "\n\n";
489   txt_fl.close();
490   }
491   
492   
493   void clear_features()
494   {
495   memset(&im_features,0,sizeof(im_features));
496   memset(&doc_features,0,sizeof(doc_features));
497   memset(&web_features,0,sizeof(web_features));
498   memset(&ftp_features,0,sizeof(ftp_features));
499   }
500   
501   void print_evidence_summary()
502   {
503   print_summary("WEB",4,baynet_web);
504   print_summary("MSG",4,baynet_im);
505   print_summary("DOC",3,baynet_doc);
506   print_summary("FTP",3,baynet_ftp);
507   }
508   
509   void print_summary(string e_type,int scn_count,int baynet_evd[])
510   {//Prints a summary of the number of application patterns found for each scenario 

performed
511   
512   string scn_idx,scn_result,scn_tot;
513   int sum_tot=0;
514   
515   cout << "=============================\n";
516   printf("|SUMMARY: %3.3s Evidence Found|\n",e_type.c_str());
517   cout << "=============================\n";
518   for (int i=0; i < scn_count; i++)
519   {
520   scn_idx = IntToString(i+1);
521   scn_result = IntToString(baynet_evd[i]);
522   sum_tot+=baynet_evd[i];
523   printf("|Scenario #%-3.3s|%13.13s|\n",scn_idx.c_str(),scn_result.c_str());
524   }
525   
526   scn_tot = IntToString(sum_tot);
527   cout << "=============================\n";
528   printf("|TOTAL:       |%13.13s|\n",scn_tot.c_str());
529   cout << "=============================\n\n";
530   }
531   

174



O.5 bayesian network anaylser.h
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1   
2   
3   #define YES 2
4   #define NO 1
5   #define UNKN 0
6   
7   #define NUM_NODES 19
8   
9   int baynet_im[4];

10   int baynet_doc[4];
11   int baynet_web[4];
12   int baynet_ftp[4];
13   
14   //Declare names for the nodes in the graph
15   enum BNodes
16   {
17       H = 0, //Main Hypothesis
18       H1 = 1, //Internet Browser Hypothesis
19       H2 = 2, //Instant Messenger Hypothesis
20       H3 = 3, //Document Processor Hypothesis
21       H4 = 4, //FTP Client Hypothesis
22       IBE1 = 5, //Internet Browser Evidence1: Webengine Search
23       IBE2 = 6, //Internet Browser Evidence2: Website URL
24       IBE3 = 7, //Internet Browser Evidence3: Downloaded file's location
25       IBE4 = 8, //Internet Browser Evidence4: Anonymous browser
26       IME5 = 9, //Instant Messenger Evidence5: Contact Information
27       IME6 = 10, //Instant Messenger Evidence6: Sent Message
28       IME7 = 11, //Instant Messenger Evidence7: Transferred filename location
29       IME8 = 12, //Instant Messenger Evidence8: Anti-disk forensics
30       DPE9 = 13, //Document Processor Evidence9: Typed content
31       DPE10 = 14, //Document Processor Evidence10: Open/Save filename location
32       DPE11 = 15, //Document Processor Evidence11: Password Protected
33       FPE12 = 16, //FTP Client Evidence12: Server IP
34       FPE13 = 17, //FTP Client Evidence13: Login Credentials
35       FPE14 = 18 //FTP Client Evidence14: Transferred file location
36   };
37   
38   double Init_Probablities[3] = {0.333,0.333,0.333};
39   //double HNY_CProbablities[3] = {0.6,0.35,0.05};
40   //double HNN_CProbablities[3] = {0.35,0.6,0.05};
41   //double HNU_CProbablities[3] = {0.05,0.05,0.9};
42   //double EY_CProbablities[3] = {0.85,0.15,0};
43   //double EN_CProbablities[3] = {0.15,0.85,0};
44   //double EU_CProbablities[3] = {0,0,1};
45   
46   double BN_Y_Probabilities [NUM_NODES][3];
47   double BN_N_Probabilities [NUM_NODES][3];
48   double BN_U_Probabilities [NUM_NODES][3];
49   
50   
51   void bayesian_network_analyser();
52   void intialize_BN(directed_graph<bayes_node>::kernel_1a_c *bn_ptr);
53   void set_conditional_probabilities(directed_graph<bayes_node>::kernel_1a_c 

*bn_ptr,unsigned long p_node,unsigned long p_state,unsigned long c_node, double 
c_state_vals[]);

54   void print_BN_probabilities( bayesian_network_join_tree *bn_inference);
55   void mark_observed_evidence(directed_graph<bayes_node>::kernel_1a_c *bn_ptr, int 

baynet_evidence[],int e_count, int node_offset);
56   void clear_evidence_markers();
57   void load_bn_probabilities();
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1   using namespace bayes_node_utils;
2   
3   void bayesian_network_analyser()
4   {//This functions analyses the evidence found by the ESE using the Bayesian Network Model
5   
6   try
7   {
8   //cout << "Intialising BN" << endl; system("pause");
9   

10    // This statement declares a bayesian network called bn.  Note that a bayesian 
network

11           // in the dlib world is just a directed_graph object that contains a special 
kind 

12           // of node called a bayes_node.
13   
14   directed_graph<bayes_node>::kernel_1a_c bn;
15           intialize_BN(&bn);
16   
17   
18           //cout << "Setting up BN for Inference" << endl; system("pause");
19   
20           //The next lines takes the probability values within the BN and uses the join 

tree algorithm to perform the Bayesian Inference
21           typedef dlib::set<unsigned long>::compare_1b_c set_type;
22           typedef graph<set_type, set_type>::kernel_1a_c join_tree_type;
23           join_tree_type join_tree;
24   
25           create_moral_graph(bn, join_tree);
26           create_join_tree(join_tree, join_tree);
27           bayesian_network_join_tree init_bn_inference(bn, join_tree);
28   
29           if (toggle_trace) print_BN_probabilities(&init_bn_inference);
30   
31           // Marks the state of the nodes as observed based on evidence found
32           mark_observed_evidence(&bn,baynet_web,4,5);
33           mark_observed_evidence(&bn,baynet_im,4,9);
34           mark_observed_evidence(&bn,baynet_doc,3,13);
35           mark_observed_evidence(&bn,baynet_ftp,3,16);
36   
37           bayesian_network_join_tree final_bn_inference(bn, join_tree);
38           if (toggle_trace) print_BN_probabilities(&final_bn_inference);
39   
40           cout << "========================RESULTS========================\n\n";
41           cout << "RESULT: Final BN Output Rating: " << 

final_bn_inference.probability(H)(YES) << "\n";
42           cout << "RESULT: WEB Output Rating: " << 

final_bn_inference.probability(H1)(YES) << "\n";
43           cout << "RESULT: MSG Output Rating: " << 

final_bn_inference.probability(H2)(YES) << "\n";
44           cout << "RESULT: DOC Output Rating: " << 

final_bn_inference.probability(H3)(YES) << "\n";
45           cout << "RESULT: FTP Output Rating: " << 

final_bn_inference.probability(H4)(YES) << "\n\n";
46            cout << "=======================================================\n\n";
47   
48   }
49       catch (std::exception& e)
50       {
51           cout << "Bayesian Network Analyser exception thrown: " << endl;
52           cout << e.what() << endl;
53           cout << "hit enter to terminate" << endl;
54           cin.get();
55       }
56   }
57   
58   void mark_observed_evidence(directed_graph<bayes_node>::kernel_1a_c *bn_ptr, int 

baynet_evidence[],int e_count, int node_offset)
59   {//Marks an evidence node as observed if the evidence was found in the ESE
60   int i;
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61   
62   for (i=0; i<e_count; i++)
63   {
64   if (baynet_evidence[i] > 0)
65   {
66   BNodes e_node = static_cast<BNodes>(i+node_offset);
67   set_node_value(*bn_ptr, e_node, YES);
68   set_node_as_evidence(*bn_ptr, e_node); //Marks a node as observed by 

setting the 'Yes' state of the node
69   }
70   }
71   
72   }
73   
74   void intialize_BN(directed_graph<bayes_node>::kernel_1a_c *bn_ptr)
75   {//Builds the acyclic graph of nodes for the Bayesian Network
76   
77   //cout << "Setting Up BN node edges" << endl; system("pause");
78   
79   //Set the edges for the nodes in the BN
80   bn_ptr->set_number_of_nodes(NUM_NODES);
81       bn_ptr->add_edge(H, H1);
82       bn_ptr->add_edge(H, H2);
83   bn_ptr->add_edge(H, H3);
84       bn_ptr->add_edge(H, H4);
85   
86       bn_ptr->add_edge(H1, IBE1);
87       bn_ptr->add_edge(H1, IBE2);
88       bn_ptr->add_edge(H1, IBE3);
89       bn_ptr->add_edge(H1, IBE4);
90   
91       bn_ptr->add_edge(H2, IME5);
92       bn_ptr->add_edge(H2, IME6);
93       bn_ptr->add_edge(H2, IME7);
94       bn_ptr->add_edge(H2, IME8);
95   
96       bn_ptr->add_edge(H3, DPE9);
97       bn_ptr->add_edge(H3, DPE10);
98       bn_ptr->add_edge(H3, DPE11);
99   

100       bn_ptr->add_edge(H4, FPE12);
101       bn_ptr->add_edge(H4, FPE13);
102       bn_ptr->add_edge(H4, FPE14);
103   
104   
105   //cout << "Intailising Node states" << endl; system("pause");
106   
107   //Set number of possible state values for each node
108   set_node_num_values(*bn_ptr, H, 3);
109       set_node_num_values(*bn_ptr, H1, 3);
110       set_node_num_values(*bn_ptr, H2, 3);
111       set_node_num_values(*bn_ptr, H3, 3);
112       set_node_num_values(*bn_ptr, H4, 3);
113       set_node_num_values(*bn_ptr, IBE1, 3);
114       set_node_num_values(*bn_ptr, IBE2, 3);
115       set_node_num_values(*bn_ptr, IBE3, 3);
116       set_node_num_values(*bn_ptr, IBE4, 3);
117       set_node_num_values(*bn_ptr, IME5, 3);
118       set_node_num_values(*bn_ptr, IME6, 3);
119       set_node_num_values(*bn_ptr, IME7, 3);
120       set_node_num_values(*bn_ptr, IME8, 3);
121       set_node_num_values(*bn_ptr, DPE9, 3);
122       set_node_num_values(*bn_ptr, DPE10, 3);
123       set_node_num_values(*bn_ptr, DPE11, 3);
124       set_node_num_values(*bn_ptr, FPE12, 3);
125       set_node_num_values(*bn_ptr, FPE13, 3);
126       set_node_num_values(*bn_ptr, FPE14, 3);
127   
128   
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129       //cout << "Adding Conditional Probabilities" << endl; system("pause");
130   
131   load_bn_probabilities();
132       //==== Set Conditional Proababilities ====
133       set_conditional_probabilities(bn_ptr,H,-1,H,Init_Probablities);
134   
135       int i=1; 
136       // P(H1 = <state> | H = <state>)
137       set_conditional_probabilities(bn_ptr,H,YES,H1,BN_Y_Probabilities[i]);
138       set_conditional_probabilities(bn_ptr,H,NO,H1,BN_N_Probabilities[i]);
139       set_conditional_probabilities(bn_ptr,H,UNKN,H1,BN_U_Probabilities[i]);
140       i++;
141       // P(H2 = <state> | H = <state>)
142       set_conditional_probabilities(bn_ptr,H,YES,H2,BN_Y_Probabilities[i]);
143       set_conditional_probabilities(bn_ptr,H,NO,H2,BN_N_Probabilities[i]);
144       set_conditional_probabilities(bn_ptr,H,UNKN,H2,BN_U_Probabilities[i]);
145       i++;
146       // P(H3 = <state> | H = <state>)
147       set_conditional_probabilities(bn_ptr,H,YES,H3,BN_Y_Probabilities[i]);
148       set_conditional_probabilities(bn_ptr,H,NO,H3,BN_N_Probabilities[i]);
149       set_conditional_probabilities(bn_ptr,H,UNKN,H3,BN_U_Probabilities[i]);
150       i++;
151       // P(H4 = <state> | H = <state>)
152       set_conditional_probabilities(bn_ptr,H,YES,H4,BN_Y_Probabilities[i]);
153       set_conditional_probabilities(bn_ptr,H,NO,H4,BN_N_Probabilities[i]);
154       set_conditional_probabilities(bn_ptr,H,UNKN,H4,BN_U_Probabilities[i]);
155       i++;
156       // P(IBE1 = <state> | H1 = <state>)
157       set_conditional_probabilities(bn_ptr,H1,YES,IBE1,BN_Y_Probabilities[i]);
158       set_conditional_probabilities(bn_ptr,H1,NO,IBE1,BN_N_Probabilities[i]);
159       set_conditional_probabilities(bn_ptr,H1,UNKN,IBE1,BN_U_Probabilities[i]);
160       i++;
161       // P(IBE2 = <state> | H1 = <state>)
162       set_conditional_probabilities(bn_ptr,H1,YES,IBE2,BN_Y_Probabilities[i]);
163       set_conditional_probabilities(bn_ptr,H1,NO,IBE2,BN_N_Probabilities[i]);
164       set_conditional_probabilities(bn_ptr,H1,UNKN,IBE2,BN_U_Probabilities[i]);
165       i++;
166       // P(IBE3 = <state> | H1 = <state>)
167       set_conditional_probabilities(bn_ptr,H1,YES,IBE3,BN_Y_Probabilities[i]);
168       set_conditional_probabilities(bn_ptr,H1,NO,IBE3,BN_N_Probabilities[i]);
169       set_conditional_probabilities(bn_ptr,H1,UNKN,IBE3,BN_U_Probabilities[i]);
170       i++;
171       // P(IBE4 = <state> | H1 = <state>)
172       set_conditional_probabilities(bn_ptr,H1,YES,IBE4,BN_Y_Probabilities[i]);
173       set_conditional_probabilities(bn_ptr,H1,NO,IBE4,BN_N_Probabilities[i]);
174       set_conditional_probabilities(bn_ptr,H1,UNKN,IBE4,BN_U_Probabilities[i]);
175       i++;
176       // P(IME5 = <state> | H2 = <state>)
177       set_conditional_probabilities(bn_ptr,H2,YES,IME5,BN_Y_Probabilities[i]);
178       set_conditional_probabilities(bn_ptr,H2,NO,IME5,BN_N_Probabilities[i]);
179       set_conditional_probabilities(bn_ptr,H2,UNKN,IME5,BN_U_Probabilities[i]);
180       i++;
181       // P(IME6 = <state> | H2 = <state>)
182       set_conditional_probabilities(bn_ptr,H2,YES,IME6,BN_Y_Probabilities[i]);
183       set_conditional_probabilities(bn_ptr,H2,NO,IME6,BN_N_Probabilities[i]);
184       set_conditional_probabilities(bn_ptr,H2,UNKN,IME6,BN_U_Probabilities[i]);
185       i++;
186       // P(IME7 = <state> | H2 = <state>)
187       set_conditional_probabilities(bn_ptr,H2,YES,IME7,BN_Y_Probabilities[i]);
188       set_conditional_probabilities(bn_ptr,H2,NO,IME7,BN_N_Probabilities[i]);
189       set_conditional_probabilities(bn_ptr,H2,UNKN,IME7,BN_U_Probabilities[i]);
190       i++;
191       // P(IME8 = <state> | H2 = <state>)
192       set_conditional_probabilities(bn_ptr,H2,YES,IME8,BN_Y_Probabilities[i]);
193       set_conditional_probabilities(bn_ptr,H2,NO,IME8,BN_N_Probabilities[i]);
194       set_conditional_probabilities(bn_ptr,H2,UNKN,IME8,BN_U_Probabilities[i]);
195       i++;
196       // P(DPE9 = <state> | H3 = <state>)
197       set_conditional_probabilities(bn_ptr,H3,YES,DPE9,BN_Y_Probabilities[i]);
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198       set_conditional_probabilities(bn_ptr,H3,NO,DPE9,BN_N_Probabilities[i]);
199       set_conditional_probabilities(bn_ptr,H3,UNKN,DPE9,BN_U_Probabilities[i]);
200       i++;
201       // P(DPE10 = <state> | H3 = <state>)
202       set_conditional_probabilities(bn_ptr,H3,YES,DPE10,BN_Y_Probabilities[i]);
203       set_conditional_probabilities(bn_ptr,H3,NO,DPE10,BN_N_Probabilities[i]);
204       set_conditional_probabilities(bn_ptr,H3,UNKN,DPE10,BN_U_Probabilities[i]);
205       i++;
206       // P(DPE11 = <state> | H3 = <state>)
207       set_conditional_probabilities(bn_ptr,H3,YES,DPE11,BN_Y_Probabilities[i]);
208       set_conditional_probabilities(bn_ptr,H3,NO,DPE11,BN_N_Probabilities[i]);
209       set_conditional_probabilities(bn_ptr,H3,UNKN,DPE11,BN_U_Probabilities[i]);
210       i++;
211       // P(FP12 = <state> | H4 = <state>)
212       set_conditional_probabilities(bn_ptr,H4,YES,FPE12,BN_Y_Probabilities[i]);
213       set_conditional_probabilities(bn_ptr,H4,NO,FPE12,BN_N_Probabilities[i]);
214       set_conditional_probabilities(bn_ptr,H4,UNKN,FPE12,BN_U_Probabilities[i]);
215       i++;
216       // P(FP13 = <state> | H4 = <state>)
217       set_conditional_probabilities(bn_ptr,H4,YES,FPE13,BN_Y_Probabilities[i]);
218       set_conditional_probabilities(bn_ptr,H4,NO,FPE13,BN_N_Probabilities[i]);
219       set_conditional_probabilities(bn_ptr,H4,UNKN,FPE13,BN_U_Probabilities[i]);
220       i++;
221       // P(FP14 = <state> | H4 = <state>)
222       set_conditional_probabilities(bn_ptr,H4,YES,FPE14,BN_Y_Probabilities[i]);
223       set_conditional_probabilities(bn_ptr,H4,NO,FPE14,BN_N_Probabilities[i]);
224       set_conditional_probabilities(bn_ptr,H4,UNKN,FPE14,BN_U_Probabilities[i]);
225   
226       cout << "\n\n";
227   }
228   
229   void set_conditional_probabilities(directed_graph<bayes_node>::kernel_1a_c 

*bn_ptr,unsigned long p_node,unsigned long p_state,unsigned long c_node, double 
c_state_vals[])

230   {//Sets the conditional probablities for a node in the Bayesian Network
231   
232   //Set the conditional probablities of each node
233   assignment parent_state;
234   
235   if (c_node != H)
236   {
237   parent_state.add(p_node, p_state);
238   }
239   
240   //P(c_node = <state> | p_node = <state>)
241   set_node_probability(*bn_ptr, c_node, YES, parent_state, c_state_vals[0]); 
242       set_node_probability(*bn_ptr, c_node, NO, parent_state, c_state_vals[1]);
243   set_node_probability(*bn_ptr, c_node, UNKN, parent_state, c_state_vals[2]);
244   if (toggle_trace)cout << "YES: " << c_state_vals[0] << " NO: " << c_state_vals[1] 

<< " UNKN: " << c_state_vals[2] << "\n";
245   }
246   
247   
248   void print_BN_probabilities( bayesian_network_join_tree *bn_inference)
249   {//Prints the Prior Probailities values based on the current state of the Bayesian 

Network
250   
251   //cout << "Print Prior Probailities" << endl; system("pause");
252   
253       for(int i=0; i<NUM_NODES; i++)
254       {
255   BNodes node = static_cast<BNodes>(i);
256   cout << "p(N" << i << " = YES) = " << bn_inference->probability(node)(YES) << 

"\t\t";
257   cout << "p(N" << i << " = NO) = " << bn_inference->probability(node)(NO) << 

"\t\t";
258   cout << "p(N" << i << " = UNKN) = " << bn_inference->probability(node)(UNKN) << 

endl;
259   }
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260   
261   cout << "\n\n";
262   }
263   
264   void clear_evidence_markers()
265   {
266   memset(&baynet_im,0,sizeof(baynet_im));
267   memset(&baynet_doc,0,sizeof(baynet_doc));
268   memset(&baynet_web,0,sizeof(baynet_web));
269   memset(&baynet_ftp,0,sizeof(baynet_ftp));
270   }
271   
272   
273   void load_bn_probabilities()
274   {//Loads the conditional probabilites collected from the weighted average results of 

questionnaire
275   
276   string fl_path = work_dir + "\\case_database\\bn_probabilities.txt";
277   
278   ifstream txt_fl(fl_path.c_str());
279   string fl_line;
280   double yes_prob, no_prob, unkn_prob;
281   int i = 1,tempa,tempb,tempc;
282   
283   memset(&BN_Y_Probabilities,0,sizeof(BN_Y_Probabilities));
284   memset(&BN_N_Probabilities,0,sizeof(BN_N_Probabilities));
285   memset(&BN_U_Probabilities,0,sizeof(BN_U_Probabilities));
286   
287   
288   while (getline(txt_fl, fl_line) && i < NUM_NODES) 
289       {
290   yes_prob = no_prob = unkn_prob = 0;
291   tempa = tempb = tempc = 0;
292   sscanf(fl_line.c_str(),"%lf;%lf;%lf",&yes_prob,&no_prob,&unkn_prob);
293   
294   yes_prob = yes_prob * .01;
295   no_prob = no_prob * .01;
296   unkn_prob = unkn_prob * .01;
297   
298   //Store the Conditional Probablity Table for each node in the Bayesian Ntework
299   BN_Y_Probabilities[i][0] = yes_prob;
300   BN_Y_Probabilities[i][1] = no_prob;
301   BN_Y_Probabilities[i][2] = unkn_prob;
302   
303   BN_N_Probabilities[i][0] = no_prob;
304   BN_N_Probabilities[i][1] = yes_prob;
305   BN_N_Probabilities[i][2] = unkn_prob;
306   
307   tempa = BN_Y_Probabilities[i][0] * 10000.00;
308   tempb = BN_N_Probabilities[i][0] * 10000.00;
309   tempc = 10000.00 - (tempa + tempb);
310   BN_U_Probabilities[i][0] = tempc * 0.0001;
311   tempa = BN_Y_Probabilities[i][1] * 10000.00;
312   tempb = BN_N_Probabilities[i][1] * 10000.00;
313   tempc = 10000.00 - (tempa + tempb);
314   BN_U_Probabilities[i][1] = tempc * 0.0001;
315   tempa = BN_Y_Probabilities[i][2] * 10000.00;
316   tempb = BN_N_Probabilities[i][2] * 10000.00;
317   tempc = 10000.00 - (tempa + tempb);
318   BN_U_Probabilities[i][2] =tempc * 0.0001;
319   
320   i++;
321       }
322   
323       txt_fl.close();
324   }
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1   string cmd_exec(const char* cmd) {
2   char buffer[128];
3   
4       FILE* pipe = popen(cmd, "r");
5       if (!pipe) return "ERROR";
6   
7       string result = "";
8   
9       while (!feof(pipe)) 

10   {
11           if (fgets(buffer, 128, pipe) != NULL)
12           {
13   result += buffer;
14   }
15       }
16       pclose(pipe);
17       return result;
18   }
19   
20   
21   string ExePath() {
22       char buffer[MAX_PATH];
23       GetModuleFileName( NULL, buffer, MAX_PATH );
24       string::size_type pos = string( buffer ).find_last_of( "\\/" );
25       return string( buffer ).substr( 0, pos);
26   }
27   
28   //http://www.codeproject.com/Articles/9089/Deleting-a-directory-along-with-sub-folders
29   BOOL DeleteDirectory(const TCHAR* sPath) {
30       HANDLE hFind;  // file handle
31       WIN32_FIND_DATA FindFileData;
32   
33       TCHAR DirPath[MAX_PATH];
34       TCHAR FileName[MAX_PATH];
35   
36       _tcscpy(DirPath,sPath);
37       _tcscat(DirPath,"\\*");    // searching all files
38       _tcscpy(FileName,sPath);
39       _tcscat(FileName,"\\");
40   
41       hFind = FindFirstFile(DirPath,&FindFileData); // find the first file
42       if(hFind == INVALID_HANDLE_VALUE) return FALSE;
43       _tcscpy(DirPath,FileName);
44   
45       bool bSearch = true;
46       while(bSearch) { // until we finds an entry
47           if(FindNextFile(hFind,&FindFileData)) {
48               if(IsDots(FindFileData.cFileName)) continue;
49               _tcscat(FileName,FindFileData.cFileName);
50               if((FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
51   
52                   // we have found a directory, recurse
53                   if(!DeleteDirectory(FileName)) { 
54                       FindClose(hFind); 
55                       return FALSE; // directory couldn't be deleted
56                   }
57                   RemoveDirectory(FileName); // remove the empty directory
58                   _tcscpy(FileName,DirPath);
59               }
60               else {
61                   if(FindFileData.dwFileAttributes & FILE_ATTRIBUTE_READONLY)
62                       _chmod(FileName, _S_IWRITE); // change read-only file mode
63                   if(!DeleteFile(FileName)) {  // delete the file
64                       FindClose(hFind); 
65                       return FALSE; 
66                   }                 
67                   _tcscpy(FileName,DirPath);
68               }
69           }
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70           else {
71               if(GetLastError() == ERROR_NO_MORE_FILES) // no more files there
72               bSearch = false;
73               else {
74                   // some error occured, close the handle and return FALSE
75                   FindClose(hFind); 
76                   return FALSE;
77               }
78   
79           }
80   
81       }
82       FindClose(hFind);  // closing file handle
83   
84       return RemoveDirectory(sPath); // remove the empty directory
85   
86   }
87   
88   BOOL IsDots(const TCHAR* str) {
89       if(_tcscmp(str,".") && _tcscmp(str,"..")) return FALSE;
90       return TRUE;
91   }
92   
93   BOOL DirectoryExists(LPCTSTR szPath)
94   {
95     DWORD dwAttrib = GetFileAttributes(szPath);
96   
97     return (dwAttrib != INVALID_FILE_ATTRIBUTES && 
98            (dwAttrib & FILE_ATTRIBUTE_DIRECTORY));
99   }

100   
101   //http://stackoverflow.com/questions/5590381/easiest-way-to-convert-int-to-string-in-c
102   string IntToString (int a)
103   {
104       ostringstream temp;
105       temp<<a;
106       return temp.str();
107   }
108   
109   //

http://stackoverflow.com/questions/4403986/c-which-is-the-best-method-of-checking-for-fil
e-existence-on-windows-platform

110   bool FileExists(const TCHAR *fileName)
111   {
112       DWORD       fileAttr;
113   
114       fileAttr = GetFileAttributes(fileName);
115       if (0xFFFFFFFF == fileAttr && GetLastError()==ERROR_FILE_NOT_FOUND)
116           return false;
117       return true;
118   }
119   
120   void rstrip(char * word)
121   {
122   int i = strlen(word);
123   
124   while (i>0 && word[i-1] == ' ')
125   {
126   word[i-1]='\0';
127   i--;
128   }
129   }
130   
131   void write_2_file(string fpath,string text)
132   {
133     ofstream myfile;
134     myfile.open (fpath.c_str(),ios::out | ios::app);
135     myfile << text;
136     myfile.close();
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137   }
138   
139   bool copyFile(const char *SRC, const char* DEST)
140   {
141       std::ifstream src(SRC, std::ios::binary);
142       std::ofstream dest(DEST, std::ios::binary);
143       dest << src.rdbuf();
144       return src && dest;
145   }
146   
147   
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