
Ad Hoc Networks 15 (2014) 53–66
Contents lists available at SciVerse ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Multi-party trust computation in decentralized environments
in the presence of malicious adversaries
1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.04.013

⇑ Corresponding author at: Computer Engineering Dept., Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait.

E-mail addresses: tassos.dimitriou@ieee.org (T. Dimitriou), amic@
ait.edu.gr (A. Michalas).
Tassos Dimitriou a,b,⇑, Antonis Michalas c,d

a Computer Technology Institute, Greece
b Computer Engineering Dept., Kuwait University, Kuwait
c Athens Information Technology, Greece
d Aalborg University, Denmark

a r t i c l e i n f o
Article history:
Received 30 October 2012
Received in revised form 18 April 2013
Accepted 30 April 2013
Available online 10 May 2013

Keywords:
Decentralized reputation systems
Security
Voter privacy
Anonymous feedback
a b s t r a c t

In this paper, we describe a decentralized privacy-preserving protocol for securely casting
trust ratings in distributed reputation systems. Our protocol allows n participants to cast
their votes in a way that preserves the privacy of individual values against both internal
and external attacks. The protocol is coupled with an extensive theoretical analysis in
which we formally prove that our protocol is resistant to collusion against as many as
n � 1 corrupted nodes in both the semi-honest and malicious adversarial models.

The behavior of our protocol is tested in a real P2P network by measuring its communi-
cation delay and processing overhead. The experimental results uncover the advantages of
our protocol over previous works in the area; without sacrificing security, our decentral-
ized protocol is shown to be almost one order of magnitude faster than the previous best
protocol for providing anonymous feedback.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

During the last few years, online communities have met
great development. The main reasons for this lie on the fact
that comprehension and use have become easier, but also
on the availability of information and accessibility of ser-
vices. There is no doubt that we have become a society of
sharing to the detriment of our personal privacy since we
continue over-sharing without considering the privacy
ramifications. Social media for example, provide a way to
share every aspect of our life not only with people we
know but with strangers as well. Corrupted users can take
advantage of the freedom that they are given to create
counterfeit identities and steal, damage or alter the infor-
mation and data of legitimate users.
The difficulty of gathering (reliable) evidence about
unidentified transaction partners makes it hard to decide
if a user is legitimate or corrupted, or to differentiate be-
tween a high and a low quality service provider. As a result,
the topic of trust in computer networks is receiving signif-
icant attention in both the academic community and the
e-commerce industry [1]. Trust management has been
proposed by many researchers as a solution for providing
a minimum level of security between two or more entities
that belong to the same network and want to make reliable
transactions or interactions with each other.

An established technique that aims at assisting users to
avoid interacting with malicious or unreliable agents is the
use of reputation systems. A reputation system assesses the
behavior of users according to the quality of the service(s)
provided, and reveals this information to the community in
order to decide whether a network entity is trustworthy or
not. A user’s behavior and the conclusions of a reputation
system regarding that user are referred to as evidence.
Evidence can be collected offline as well as online and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2013.04.013&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
mailto:tassos.dimitriou@ieee.org
mailto:amic@ ait.edu.gr
mailto:amic@ ait.edu.gr
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

54 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
may be linked to already established trust relations. Hence,
trust has a significant role in the decisions reached by net-
work communities.

Nevertheless, feedback providers’ privacy is a problem
regarding reputation systems that has been scarcely an-
swered in the literature. Notwithstanding the existence
of numerous reputation and trust establishment schemes,
only a few deal with securing the ratings (or votes) of par-
ticipating nodes. Lack of privacy of this type can lead to
various problems, including the operation of the network
itself. Furthermore, the lack of schemes providing privacy
in decentralized environments, e.g. ad hoc networks, is
even more accentuated. According to observations in [2],
users of a reputation system may abstain from providing
honest feedback since they are afraid of retaliation, in case
reputation scores cannot be computed in a method that se-
cures privacy. As a result, eBay changed the feedback pol-
icy in order for sellers not to leave negative/neutral
feedback for buyers, claiming that ‘‘it will help buyers
leave an honest feedback’’ [3].

Consequently, developing reputation protocols that can
be used to provide anonymous feedback is necessary for
the survival of online communities and electronic market-
places. One could say that providing anonymous feedback
to a reputation system is analogous to that of anonymous
voting in electronic elections. Secrecy provides freedom
from explicit or implicit influence but also encourages
truthfulness. Even though this freedom could potentially
be exploited by dishonest feedback providers who tend
to report exaggerated feedbacks, it seems highly beneficial
to honest users, protecting the latter from being influenced
by malicious behavior [4].

Until now, many reputation and trust establishment
schemes that preserve privacy have been proposed mostly
for traditional (centralized) environments where there is a
standard topology and the connectivity between nodes is
not an issue. In contrast, there is a lack of research that tar-
gets decentralized environments such as ad hoc networks.
These kinds of networks offer new challenges and opportu-
nities for research for two main reasons: First, because col-
lection of evidence is difficult due to the mobility or the
resource constraints of the nodes that further restrain the
trust evaluation process. Second, not only because submis-
sion of ‘‘votes’’ must be kept hidden from all nodes but also
because it has to be distributed to the whole network due
to lack of trusted authorities.

Contribution. The contribution of this work is twofold.
We first present a protocol that preserves the privacy of
votes in decentralized environments under the semi-hon-
est adversarial model. The protocol allows n participants
to securely cast their ratings in a way that preserves the
privacy of individual votes against both internal and exter-
nal attacks. More precisely, we analyze the protocol and
prove that it is resistant to collusion even against up to
n � 1 corrupted insiders. The insights we obtain from this
analysis allow us to refine the protocol and come up with
a lighter version that is equally secure and uses only stan-
dard cryptographic mechanisms. This lighter protocol
compares favorably with protocols for secure multi-party
sum computation and we consider it as another important
contribution of this work. While the previous two proto-
cols work against semi-honest adversaries, we show how
to extend these protocols to handle adversaries that can
exhibit more malicious behavior. The whole analysis is
coupled with extensive experimental results that demon-
strate the protocol’s validity and efficiency over previous
works in the area.

Second, we present a list of attacks that can be applied
to additive reputation systems. We use this analysis to
guide us in the development of our secure protocol but also
demonstrate the inefficiencies of existing systems. This
comprehensive list of protocol flaws provides essential
knowledge to protocol designers. By answering questions
of the form ‘‘Did you know that sort of attack?’’ they can
avoid common pitfalls and design even better feedback
systems.

Organization of the paper. In Section 2, we review some
of the most important schemes that provide private trust
ratings in decentralized environments. In Section 3, we de-
scribe the problem of secure trust aggregation and we de-
fine the basic terms that we use in the rest of the paper. In
Section 4, we describe two basic (yet insecure) protocols
that will help us understand the vulnerabilities of existing
systems through a series of attacks that can be applied to
additive reputation protocols. In Section 5, we present
StR, our main protocol, while in Section 5.1 we provide a
security discussion in which we show the resistance of
our protocol against numerous attacks. Section 6 describes
the more efficient version of StR while in Section 7, we
present experimental evidence that shows the effective-
ness of our protocol. In Section 8 we present StRM, an
extension of StR, that provides security under the mali-
cious adversarial model. In Section 9, we elaborate on the
applications that can benefit from the use of our scheme.
Finally, Section 10 concludes this paper.
2. Related work

Although there are many reputation and trust establish-
ment schemes, only some of them deal with the problem of
securing the vote(s) of each individual node. The difficul-
ties of building reputation systems that can also preserve
privacy can be found in [5]. Furthermore, the absence of
schemes that provide (partial) privacy in decentralized
environments, such as ad hoc networks, is even bigger. In
this section, we classify the most widely known decentral-
ized systems that preserve the privacy of votes according
to the adversarial model (semi-honest or malicious) used.
2.1. Protocols under the semi-honest model

The authors in [6] presented an inclusive analysis of
trust and privacy in which they showed that these two no-
tions are strongly related to each other. More precisely,
they dealt with the questions of how much privacy is lost
and how much trust is gained by revealing a specific cre-
dential and what is the minimal degree of privacy that
must be lost to gain a satisfactory amount of trust.

In [7], a secure framework was proposed to handle trust
relationships in super peer networks. Privacy of the nodes is
guaranteed with the use of threshold cryptography and

T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66 55
homomorphic encryption. The use of a threshold crypto-
system ensures that no faulty or malicious node can de-
crypt the report submitted by a node. Furthermore, the
sum of votes from all voters is calculated step by step in
an encrypted manner and thus it is impossible for a mali-
cious node to infer this result since each vote is encrypted
with the public key of a trusted Certification Authority. The
key difference from the work presented in this paper is the
fact that super peers are trusted to handle the votes cor-
rectly, something that is not necessarily true here.

In [8], the authors considered the problem of distrib-
uted reputation management in large systems of autono-
mous and heterogeneous agents. In such systems, it is
generally inadvisable to assume that there exist trustwor-
thy entities who can declare the trustworthiness of differ-
ent users. Instead, both the reputation of users and the
ratings they provide are stored locally and known only to
the corresponding entity. The challenge therefore is to
compute the reputation while maintaining private data.
Three works that deal with the problem of computing rat-
ings in decentralized reputation systems can be found in
[4,9,10].

Pavlov et al. [4] showed that when n � 1 malicious
nodes collude with the querying node to reveal the vote
of the remaining node then perfect privacy is not feasible.
Furthermore, they proposed three protocols that allow vot-
ing to be privately provided in decentralized additive rep-
utation systems. The first protocol is not resilient against
collusion of nodes and can be used when there are no dis-
honest peers. The other two protocols are based on a prob-
abilistic peers’ selection scheme and are resistant to
collusion of up to n � 1 peers only with a certain degree
of probability.

Hasan et al. [9] proposed a privacy preserving protocol
under the semi-honest adversarial model. It’s main differ-
ence from Pavlov’s protocols is that each Ui sends her
shares to at most k < n � 1 nodes that are considered
‘‘trustworthy’’ by Ui. During initialization, the querying
agent Aq sends to each Ui the whole list of participating
users U. Each Ui selects up to k nodes from U in such a
way that the probability that all the selected nodes will
collude to break Ui’s privacy, is low. Then it splits the vote
into k shares and distributes it among the k trustworthy
agents. The role of Aq is simply to accumulate the shares
into a collective vote.

Dolev et al. [10] proposed two main decentralized
schemes where the number of messages exchanged is pro-
portional to the number n of participants (however, the
length of each message is O(n)). The first protocol AP
(and its weighted variant WAP) assumes that the querying
agent Aq is not compromised while the next protocol,
namely MPKP (and its weighted variant MPWP) assumes
that any node can act maliciously. Apart from that, all
the proposed schemes rely on the use of homomorphic
encryption. More precisely, the AP and WAP protocols are
based on the Paillier cryptosystem [11], while the more se-
cure MPKP and MPWP are based on the Benaloh cryptosys-
tem [12]. It is exactly this dependency that makes
decryption cumbersome. The weakness of Dolev’s proto-
cols is the fact that unnecessary and inefficient computa-
tions are taking place.
One cannot help but notice the relevance of this prob-
lem to secure multi-party computation, where a number of
distributed entities collaborate to compute a common
function of their inputs while preserving the privacy of
these inputs. One such well known example is the secure
sum protocol [13], which uses randomization to securely
compute the sum of the individual inputs. This protocol
is a natural fit for the problem at hand but it suffers from
a number of attacks and falls prey to honest-but-curious
insiders which can easily infer the private input of any
entity.

The protocols in [4,9,10] can be thought as attempts to
recover from the security inefficiencies of secure sum,
properly applied to the context of reputation management.
Our protocol, shown in Section 6, not only improves upon
these schemes but can also be applied directly for secure
sum computation, refining earlier results in this area [14].

2.2. Protocols under the malicious model

Dolev et al. [15] proposed CEBP, a protocol that is func-
tioning under the malicious adversarial model in the sense
that the query agent Aq can easily verify that all submitted
votes lies in a certain range. Moreover, authors manage to
avoid the use of zero-knowledge proofs and thus avoid
complex computations, since at the last round Ag receives
a list with all the individual votes in a random order. How-
ever, their protocol is using commutative encryption
schemes, like the Pohlig–Hellman scheme [16]. Existing
commutative encryption schemes in general do not pro-
vide formal methods of security [17], and may lead to secu-
rity breaches in real world applications. Furthermore, the
protocol does not support robustness since users, espe-
cially the last one (Un) can change all the votes of the pre-
vious n � 1 users and thus send to Aq a false voting list.

Pavlov et al. presented a decentralized privacy preserv-
ing scheme [4] for the malicious case as well. The protocol
is based on Pedersen’s [18] verifiable secret sharing
scheme to support validity checking of the feedback values
provided by voters. In other words, they provide a mecha-
nism to ensure that reputation ratings lie within a prede-
fined range. The main disadvantage of the protocol is the
fact that it requires O(n3) messages primarily due to a
costly witness selection scheme. In addition to that, there
is an insufficient description of the protocol. For example,
there is no explanation regarding the zero-knowledge
proofs that the protocol requires. Also, it is not clear if a
vote can belong to any interval [a,b] or should be bounded
to a smaller one (e.g. [0,1]) which would change the re-
quired computations for the verifier of a vote.

In [19], Hasan et al. presented the Malicious-k-shares
protocol, a distributed privacy preserving reputation pro-
tocol for the malicious adversarial model. The protocol is
more efficient in comparison with Pavlov’s and is based
on set-membership and plain-text equality non-interactive
zero knowledge proofs and an additive homomorphic
cryptosystem. The main drawback though is the fact that
one cannot sustain that the protocol has a decentralized
behavior since the query agent Aq acts like a central
authority since all messages are transferred to her and
then she forwards them to the actual receivers. In addition

56 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
to that, at the second step of the protocol, each Ui selects k
other agents in such a way that the probability that all of
the selected agents will collude to breach agent Ui’s privacy
is low. However, it is not clear how does this witness selec-
tion scheme effects computation complexity of the whole
protocol.
3. Problem statement and definitions

We start by providing a definition of decentralized
additive reputation systems as described in [4].

Definition 1. A Reputation System R is said to be a
Decentralized Additive Reputation System if it satisfies
the following two requirements:

1. Feedback collection, combination and propagation are
implemented in a decentralized way.

2. Combination of feedbacks provided by nodes is calcu-
lated in an additive manner.

In this paper, we focus on the following problem:
Problem Statement: A querying node Aq, receives a ser-

vice request from a target node At. Since Aq has incomplete
information about At, she asks other nodes in the network
to give their votes about At. Let U = {U1, . . . , Un} be the set
of all nodes that will provide an opinion to Aq. The problem
is to find a way that each vote (vi) remains private while at
the same time Aq would be in position of understanding
what voters, as a whole, believe about At, by evaluating
the sum of all votes

Pn
i¼1v i

� �
.

Similar to existing work in the area, the protocols that
are presented in Sections 5 and 6 assume that the adver-
sary is semi-honest. In the semi-honest adversarial model,
malicious nodes correctly follow the protocol specification.
However, nodes overhear all messages and may attempt to
use them in order to learn information that otherwise
should remain private. Semi-honest adversaries are also
called honest-but-curious. In Section 8, we build upon the
previous protocols to devise a scheme that can withstand
more malicious behavior; the adversaries not only may at-
tempt to disrupt protocol execution but can even bias the
results in order to lead to wrong outcomes.

Protocol Setup: We assume that the reader is familiar
with the concept of public key cryptography. For the needs
of our protocols, each node (Aq, Ui, i 2 [1,n]) has generated
a public/private key pair (kAq=KAq , kUi

=KUi
). The private key

is kept secret, while the public key is shared with the rest
of the nodes. These keys will be used to secure message ex-
changes between the nodes, hence the communication
lines between parties are assumed to be secure. It is also
assumed that nodes are familiar with the public keys of
nodes they interact with. Our first protocol also relies on
the use of homomorphic encryption for the collection of
votes by the querying agent Aq. The vote of Ui concerning
At is denoted by vi.

Definition 2 (Homomorphic Encryption). Let E(�) be an
encryption function. We say that E(�) is additive homo-
morphic iff for two messages m1, m2 the following holds:
Eðm1Þ � Eðm2Þ ¼ Eðm1 þm2Þ:
The notation E(�) will refer to the results of the applica-

tion of an homomorphic encryption function (as per Defi-
nition 2) that Aq can decrypt with her private key.
Pailler’s Cryptosystem [11] is an example of cryptosystem
where the trapdoor mechanism is based on such a homo-
morphic function. The semantic security of Pailler’s crypto-
system is proved under the decisional composite
residuosity assumption: Given N = pq, it is hard to decide
whether an element in ZN2 is an Nth power of an element
in Z�N2 .
4. Toy protocols

In this section we present two protocols, the second
protocol being a more ‘‘secure’’ version of the first one. This
exposition has mostly pedagogical character. We describe
these protocols in order to expose their vulnerabilities
and thus create a starting point that will help us design
our main protocol. In the course of this process we will
be able to characterize the different types of attacks that
can be applied to decentralized reputation systems thus
helping researchers avoid common pitfalls while designing
secure reputation systems. Our final protocol will provide
resistance against these attacks, thus successfully preserv-
ing the privacy of submitted trust ratings.

4.1. Toy protocol 1

During the initialization step, Aq creates the set U with
all voters, orders them in a circle Aq ? U1 ? � � �? Un and
sends to each Ui the identity of its successor in the circle.
Each Ui adds its vote to the sum of previous votes by using
the homomorphic property of Paillier’s cryptosystem [11].
At the end, the last node Un sends to Aq the sum of all n
votes encrypted with the public key of Aq. Upon reception,
Aq decrypts Eð

Pn
i¼1v iÞ, finds the sum of all votes and di-

vides by the number of voters n to find the average value.
Analysis. This toy protocol (which is reminiscent of the

AP protocol of [10]) is rather simple and achieves privacy
of the submitted votes only if Aq is not considered mali-
cious. External attackers have no chance recovering the
votes since they are encrypted with Aq’s public key. How-
ever, because Aq can overhear all messages, she can decrypt
them one by one and find all the individual votes. More
precisely, Aq decrypts the first message E(v1) and finds
the vote v1 of U1, then decrypts the second message
E(v1 + v2) subtracts v1 and finds v2. By doing this n times,
she can find all vi,i 2 [1,n] and thus break the privacy of
the protocol. We call this type of attack the Querying Node
Attack (see also Fig. 1 for a graphical representation). No-
tice that even in the case where Aq cannot overhear all
messages, this protocol still falls prey to other attacks by
malicious voters, however we delay the description of
these attacks for the next section.

4.2. Toy protocol 2

This is an extension of the protocol of the previous sec-
tion. In this protocol (shown in Fig. 2), we propose a

Fig. 1. Querying Node Attack.

Fig. 2. Toy Protocol 2.

T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66 57
solution that can be used to overcome the Querying Node
Attack. However, this protocol is still not secure as we will
describe in while.

During the initialization stage, Aq sends to each node a
list which contains only the previous and the next node
in U. U1 who is the first node in the list, generates a random
number r1. Then she adds her vote v1 for At to r1 and en-
crypts the result b1(=v1 + r1) with kAq to obtain Eq(b1). At
this point, U1 sends to the next node U2 the message
hEq(b1), E2(r1)i.

U2 calculates b2(=v2 + r2) adds it to Eq(b1) and finds r1 by
decrypting E2(r1) with KU2 . Once she finds r1, she calculates
r1 + r2, encrypts it with kU3 and sends the following mes-
sage to U3: hEq(b1 + b2), E3(r1 + r2)i. By extrapolation, the
last node will receive the following message

Eq

Xn�1

i¼1

bi

 !
; En

Xn�1

i¼1

ri

 !* +
:

Un decrypts En
Pn�1

i¼1 ri

� �
with KUn and sends back to Aq the

message Eq
Pn�1

i¼1 bi �
Pn�1

i¼1 ri þ vn

� �
¼ Eq

Pn
i¼1v i

� �
. Upon

reception, Aq decrypts Eq
Pn

i¼1v i
� �

, divides it by n and finds
the average of submitted votes.

Analysis. This protocol is more secure than the first one.
Every node Ui instead of adding vi to E(�), generates a ran-
dom number ri and use it to mask its vote vi. This means
that even if Aq is malicious and overhears all messages,
she cannot find the individual votes, since she does not
know the random numbers that have been used to hide
these votes. However, this protocol is still vulnerable to
numerous attacks by malicious insiders, as we describe
below.

� First Node Attack (Fig. 3): In this scenario, Aq and the
second voter U2 are considered malicious. So, Aq and
U2 can collaborate in order to find the vote v1 of U1.
When U2 receives hEq(b1), E2(r1)i, she decrypts E2(r1)
with her private key (KU2) and sends to Aq the random
number r1 that U1 generated in the previous step.
Now, Aq can easily find v1 = b1 � r1 since she knows both
r1 and b1 (by decrypting Eq(b1)).
� Last Node Attack: By symmetry, Aq and the penulti-

mate voter Un�1 are considered malicious. This means
that Aq and Un�1 can cooperate in order to find the vote

vn of Un. When Un�1 sends Eq
Pn�1

i¼1 bi

� �
; En

Pn�1
i¼1 ri

� �D E
to

Un, she informs Aq about the value of
Pn�1

i¼1 ri. Thus, Aq

can find
Pn�1

i¼1 v i, since
Pn�1

i¼1 v i ¼
Pn�1

i¼1 bi �
Pn�1

i¼1 ri. As
we mentioned before, Aq receives from Un the value
Eqð
Pn

i¼1v iÞ which decrypts and finds
Pn

i¼1v i. Now, Aq

can find vn by calculating vn ¼
Pn

i¼1v i �
Pn�1

i¼1 v i.
If Aq is malicious and has only two compromised nodes
in U, then she will place them in such a way that can
achieve both last node and first node attacks. That
way, Aq will manage to find the maximum number (v1

and vn) of individual votes that she can. Another alter-
native is for Aq to use these two malicious nodes to find
the vote of any user Ui by ‘‘sandwiching’’ Ui between
two malicious ones as explained below.
Fig. 3. First Node Attack.

58 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
� Sandwich Attack (Fig. 4): A generalization of the previ-
ous attacks is when a (malicious) Aq arranges the voters
in such a way that a legitimate node Ui will always be
between two malicious ones Ui�1 and Ui+1. This way, Aq

can use values from adjacent malicious nodes to calcu-
late the random number ri that was used to blind the
vote vi of Ui. Aq can thus find all the votes of legitimate
nodes in the set. The first and last node attacks
described previously are simple variants of the sand-
wich attack in which Aq acts as one of the two malicious
nodes.

5. Splitting the random values (StR)

In this section, we present our main protocol (StR) in
which we use both homomorphic encryption and random
numbers to secure the privacy of votes for each node.

During the initialization step, Aq creates the set U with
all voters, orders them in a circle Aq ? U1 ? � � �? Un and
sends to each Ui the identity of its successor in the circle.
Each Ui splits its random number ri into n pieces and shares
one with the rest of the nodes. Then, it creates a blinded
vote and adds it to the sum of previous votes by using
the homomorphic property of Paillier’s cryptosystem
[11]. At the end, the last node Un forwards to Aq the sum
of all n votes encrypted with the public key of Aq. Upon
reception, Aq decrypts the result and finds the sum of all
votes. A detailed description of StR follows below. Fig. 5
illustrates the two rounds of StR.

First round During the initialization step, Aq sends to all
nodes the list of all voters U. Each node Ui generates a ran-
dom number ri and splits it into n integers in such a way
that the ith share will be encrypted with the public key of
Ui. So, if U1 has generated a random number r1, the shares
will be

r1 ¼ r1;1; E2ðr1;2Þ; . . . ; En�1ðr1;n�1Þ; Enðr1;nÞ:
Fig. 4. Sandwich Attack.
The next step for each Ui is to distribute the shares to the
remaining n � 1 nodes in U. This means that each Ui will
receive the following n � 1 messages

Eiðr1;iÞ; . . . ; Eiðri�1;iÞ; . . . ; Eiðrn�1;iÞ; Eiðrn;iÞ:

Since all n � 1 numbers that Ui received are encrypted with
her public key, she decrypts them and calculates the
blinded vote bi which is equal to

bi ¼ v i þ ri �
Xn

j¼1

rj;i

 !
: ð1Þ

When all nodes (in parallel) compute their blinded votes,
the second round begins.

Second round U1 calculates Eq(b1) and sends it to U2. U2

adds b2 to Eq(b1) by using the additive homomorphic prop-
erty (Eq(b1) � Eq(b2) = Eq(b1 + b2)) of Paillier’s cryptosystem
and sends Eq(b1 + b2) to U3. At the end of this round Aq will
receive from Un the following: Eqð

Pn
i¼1biÞ ¼ Eq

Pn
i¼1v i

� �
.

Upon reception, Aq decrypts the message, finds the sum
of all votes and divides by n in order to find the average
of votes. A concise description of StR is shown in Algorithm
1.

Algorithm 1. StR protocol

Aq generates and distributes U = {U1, . . . , Un}
Round 1 – All nodes in parallel
for all Ui 2 U do

Ui generates ri.
Ui calculates the n-shares: ri = ri,1+ � � � +ri,n

for all Uj 2 Un{Ui} do
Ui sends Ej(ri,j) to Uj

end for
Ui receives all shares destined to it and calculates

the blinded vote bi ¼ v i þ ri �
Pn

j¼1rj;i

� �
.

end for
Round 2 – All nodes sequentially
for i = 1 to n do

Ui obtains
Qi�1

j¼1EqðbjÞ from Ui�1 (or Eq(0) from Aq, if
i = 1).

Ui encrypts bi with kAq to obtain Eq(bi).
Ui calculates the homomorphic productQi�1
j¼1EqðbjÞ � bi

Ui sends
Qi

j¼1EqðbjÞ ¼ Eq
Pi

j¼1bj

� �
to Ui+1 (or

Eq
Pn

i¼1v i
� �

to Aq, if i = n).
end for
5.1. Security analysis

In this section we analyze the behavior of StR in the
presence of corrupted agents. First, we will consider the
case of a well-behaving query agent Aq. Such an agent re-
spects the privacy of participating users and does not form
malicious coalitions with corrupted agents in the set U
(however, among the agents in U there can be corrupted
ones). Then, in Section 6, we will proceed to discuss the

T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66 59
case where Aq is malicious as well. This will also lead to the
development of an even more efficient but equally secure
version of StR.

Theorem 1 (Uncompromised Aq). Assume an honest-but-
curious adversary ADV corrupts at most k < n users out of
those in the set U. Then ADV cannot infer any information
about the votes of the legitimate users.
Proof. We will prove the robustness of the protocol by
reducing its security to the semantic security property of
the encryption function E(�). A cryptosystem is called
semantically secure, if it is infeasible for a computation-
ally-bounded adversary to derive significant information
about a message (plaintext) when given only its ciphertext
and the corresponding public encryption key. An equiva-
lent definition for semantic security is that of ciphertext
indistinguishability [20]. Indistinguishability under Chosen
Plaintext Attacks is defined by a game in which an attacker
generates two messages m0 and m1 and has to determine
which of the two messages was chosen by an encryption
oracle with probability significantly greater than 1/2 (i.e.
better than random guessing).

We will prove the privacy of the StR protocol using a
standard simulation argument. In particular, we will show
that for any adversary that corrupts (or controls) a subset
of the participating users, there exists a simulator that,
given the corrupted parties data and the final result, can
generate a view that, to the adversary, it is indistinguishable
from a real execution of the protocol. This guarantees that
whatever information the adversary can obtain after
attacking the protocol can be actually generated by herself,
using the simulator. As a result, no useful information
about legitimate users’ data is leaked (see also Chapter 7 of
[21]).

Let C ¼ fUi1
;Ui2

; . . . ;Uikg denote the set of compromised
users, where k < n. Consider the information available to
protocol users in C: this includes their votes
fv i1 ;v i2 ; . . . ;v ikg, their random numbers fri1

; ri2 ; . . . ; rikg
and the sequence of messages E

Pi1
j¼1bj

� �
; . . . ; E

Pik
j¼1bj

� �
received by each one of them during the second round of
the protocol, where by definition

bi ¼ v i þ ri �
Xn

j¼1

rj;i

 !
:

A simulator has access to the shares of the random num-
bers ri,j, i – j that ended up in corrupted users during the
first round but cannot possibly generate the exact se-
quence of encrypted sums since it does not know the pri-
vate data of legitimate users. So, the simulator will have
to replace the private data with random quantities ai as
indicated below

b0i ¼
bi; if Ui is corrupted=compromised
ai; otherwise

�

and compute Eðb0iÞ for all i = 1, . . . , n. The simulator can

now replace E
Pil

j¼1bj

� �
with E

Pil
j¼1b0j

� �
.

To complete the analysis we need to argue that if there
exists an adversary A that distinguishes between the

encryption of the observed values E
Pil

j¼1bj

� �
and the

random ones E
Pil

j¼1b0j
� �

produced by the simulator, then

there is an adversary B that can attack the semantic
security of E(�).

Such an attacker Bwould operate as follows: Its input is
a sequence of values E(xi), i = 1, . . . , n and its goal is to
determine whether the values xi correspond to the values
provided by the users, or is simply a sequence of random
values ai. Adversary B, using the homomorphic property of

E(), computes E
Pil

j¼1xj

� �
and provides the encryption of

the partial sums E
Pi1

j¼1xj

� �
; . . . ; E

Pik
j¼1xj

� �
as input to A. It

then returns whatever answer A returns.

Obviously B would be able to break the semantic
security of E() with the same probability that A could
distinguish between the real views and the random values
produced by the simulator. Since E() is assumed to be
semantically secure, such A cannot exist. Hence the
security of the StR protocol is guaranteed provided at
most k < n users are compromised, but Aq is not. h
6. A more efficient StR

In this section we will consider the case where node Aq

is compromised as well. Since Aq knows the private key
and Aq has been compromised by ADV (or is member of
the colluding group), Aq can simply decrypt any communi-
cated message. Hence we cannot rely on the semantic
security property of the underlying cryptosystem. The
semantic security of the cryptosystem protects the nodes
from seeing intermediate results but it is the added ran-
domness which keeps ADV from obtaining those interme-
diate values. In this scenario the security is therefore solely
based on the randomness which is used to blind the indi-
vidual votes.

To see this, observe that in the second round of StR,
homomorphic encryption is used to compute the sum of
the blinded votes,

P
ibi, around the ring. However, a com-

promised Aq can learn these values by collaborating with a
set of malicious agents. Hence homomorphic encryption
does not offer any real benefit and can be dropped en-
tirely! This also suggests that during the second round
the nodes can send the blinded votes directly to Aq without
having to go around the ring, thus increasing the efficiency
of the algorithm, as we will see in the experimental sec-
tion. The new protocol is shown in Algorithm 2. Round 2
is a degenerate one and can clearly be combined with
Round 1.

The more efficient StR also provides an improvement
over previous protocols in the field of secure multi-party
sum computation [14]. In particular, in [14], a distributed
protocol is presented that requires O(n2) message ex-
changes that must be sequentially executed, one after the
other, by a set of nodes ordered in a ring. Our protocol is
completely parallelized and does not even require placing
the nodes around such a ring.

Fig. 5. The two rounds of StR.

60 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
Algorithm 2. Improved StR

Aq generates and distributes U = {U1, . . . , Un}
Round 1 – All nodes in parallel
for all Ui 2 U do

Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + � � � + ri,n

for all Uj 2 Un{Ui} do
Ui sends ri,j to Uj

end for
Ui waits until it receives all shares destined to it

and calculates the blinded vote

bi ¼ v i þ ri �
Pn

j¼1rj;i

� �
.

end for
Round 2 – All nodes in parallel for i = 1 to n do

Ui sends bi to Aq

end for
Upon reception of all votes, Aq computesPn

i¼1bi ¼
Pn

i¼1v i.

In what follows we prove the security of the more effi-
cient version of StR.
Theorem 2 (Compromised Aq). Assume an honest-but-curi-
ous adversaryADVcorrupts Aqand at most k < n � 1 users out
of those in the set U. ThenADVcannot infer any information
about the votes of the legitimate users.
Proof. Here, we consider the extreme case where all nodes
collaborate with a corrupted Aqexcept for two nodes Uk, Ul

which are considered legitimate (Fig. 6).
To prove that StR protects the privacy of legitimate

users, even if Aq is compromised, we need to look at the
data exchanged in StR. Recall that during the first round,
each node will receive n � 1 shares from the remaining
nodes of U. Since n � 2 nodes are compromised, at the
end of round one, the adversary will know all the
n � (n � 2) shares of the n � 2 compromised nodes plus
the n � 4 shares that Uk and Ul have sent to the
compromised ones.

From the four remaining shares, rk,k and rl,l will be
known only to Uk and Ul, since these are part of the shares
they keep for the calculation of their blinded votes bk, bl.
Additionally, the last two remaining shares (rl,k, rk,l) will be
known only to Uk, Ul since they are encrypted with their
corresponding public keys and then exchanged between
them. Since we have assumed that these two nodes are
legitimate, they will not reveal the value of these shares to
any other node (compromised information is shown next
to the two nodes in Fig. 6).

To ease the analysis, in the following expressions we
have circled the variables that the adversary has not been
able to compromise:

:

ð2Þ

and

: ð3Þ

However, considering the fact that rk, rj are equal to the
sum of the corresponding shares, i.e. rk ¼

Pn
j¼1rk;j and

rl ¼
Pn

j¼1rl;j, we obtain that

rk � rk;k ¼
X
j–k

rk;j and rl � rl;l ¼
X
j–l

rl;j:

Plugging these last two expressions to Eqs. (2) and (3), we
obtain

Fig. 6. Robustness up to n � 1 malicious nodes.

T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66 61
:

ð4Þ

and

:

ð5Þ

Treating the last term (rk,l � rl,k) as a single unknown quan-
tity, we see that it is impossible to correctly calculate the
exact values vk, vl since the adversary, even with the help
of Aq, ends up with a system of two equations and three
unknown variables (the case is analogous when there are
more than 2 legitimate users). We conclude that the proto-
col remains secure as long as there exist at least two nodes
that are legitimate. h

Finally, observe that in both cases (Theorems 1 and 2)
StR offers an equivalent level of security as long as there
are at least two nodes which are not corrupted. In the first
case, this is Aq plus another agent from the set U. In the sec-
ond case, these are two nodes from U. Thus, a legitimate
node can be sure of its private vote if and only if there is
at least one more legitimate node in the set U [{Aq}. This
observation serves as a nice introduction to the following
attack.
1 The term ‘friendly’ refers to two nodes that have a previously-
established connection and both trust each other to some extent.
6.1. Alone in the list attack

We conclude this section by considering one more at-
tack that can be thought as equivalent to the case where
n � 1 nodes are compromised. Hence there can be no real
defense against this scenario.
If Aq is malicious she can ask each node from U to give
their vote separately (i.e. the cardinality of U will be one).
By doing so, she will be able to find the value of all individ-
ual votes and thus easily break their privacy. This attack is
a special case of having n � 1 nodes compromised, in
which only one user is legitimate. In such a scenario, a cor-
rupted Aq will create a list with only one voter (U1) which
means that she will be able to break the privacy of U1. We
believe that for this kind of attack there cannot be a com-
plete solution and thus we propose two simple ‘‘counter-
measures’’ that could just give more possibilities to U1 to
protect her privacy. In those situations where a node U1

is the only one in the list, she can ask a ‘‘friendly’’1 node
U01 to give her vote about At. U01 encrypts her vote v 01 with
kU1 and sends it to U1. U1 decrypts it, adds v1 to v 01 and sends
to Aq the sum of the two votes v1 þ v 01. This way, it is impos-
sible for Aq to find the individual votes, unless of course U01 is
also malicious.

The above-mentioned solution can be also used in cases
where jUj > 1 and n � 1 nodes are compromised. Assume
that Ul is the only legitimate node in U. At the initialization
step where Ul receives the list U, she checks to see if U con-
tains any node that Ul trusts. In the case where Ul does not
find any ‘‘trustworthy’’ node or she suspects that the rest of
the nodes are compromised, she invites a node that does
not belong to U to give her vote about At. As before, Aq can-
not infer the vote of Ul unless of course the helper node is
also malicious. In some sense, we decrease the number of
malicious nodes from n � 1 to n � 2 where StR provides
protection.

62 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
7. Experimental results

This section presents the implementation of StR, as well
as a comparison with Dolev’s Multiple Private Keys Proto-
col (MPKP) [10]. In order to prove the effectiveness of StR,
we implemented both protocols in Java and we used JADE
4.0.1 [22] for the communication of the agents. Since we
wanted our experiments to be as close to reality as possi-
ble, we setup different JADE agents in different computers.
All agents (nodes of the protocols) were connected to the
Internet through a NetFasteR IAD 2 router over a 24Mbps
ADSL line.

Our experiments aimed at analyzing two main perfor-
mance metrics; processing time and communication
overhead.
7.1. Processing time

The first phase of our experiments involved measuring
the processing time of StR. To this end, we measured the
completion time for the following procedures:

� Secure Random Number Generation
� Encryption/Decryption

For the encryption and decryption, we used the RSA
cryptosystem for encrypting the random shares with a
key length equal to 1024 bits. Fig. 7 displays the results fol-
lowing 1000 test runs in a computer with a 1.6 GHz CPU
and 1 GB DDR RAM, where each node has to (i) encrypt
the n � 1 shares to be transmitted, and (ii) decrypt the
n � 1 shares received, where n ranges from n = 5 to
n = 100. As is evident from the graph, the required process-
ing time is negligible and does not constitute any real bur-
den to nodes of the StR protocol.

Notice that this is not the case for Dolev et al.’s protocol.
Decryption of the homomorphic values is inefficient be-
cause it requires a trial-end-error decryption in order to
compute the encrypted trust ratings. This is due to the
use of the Benaloh cryptosystem which does not allow
for efficient decryption. Thus, processing time depends
not only on n but also on the allowable range of trust val-
ues. Despite this inefficiency, we treat both times as com-
parable and we focus only on the communications
aspects of both protocols.
Fig. 7. Processing time required by StR.
7.2. Communication delay

7.2.1. First round
By default, JADE uses the Message Transport Protocol

(MTP) for the communication between nodes. During the
first phase of our experiments, we wanted to measure
the communication delay for the first round of StR. For that
purpose, we created nodes in different computers that gen-
erated n encrypted shares (1024 bits long each); these
were sent in parallel as single messages to each of the
n � 1 remaining nodes, where n was incremented from
n = 5–100 in steps of 5. As expected, the delay did not in-
crease in a strictly linear manner, since the overhead pro-
cessing of collecting the shares and computing the
masked vote bi ¼ v i þ ri �

Pn
j¼1rj;i

� �
increased with the

number of nodes. Fig. 8 illustrates the delay in seconds as
a function of the number of nodes n.

7.2.2. Second round
While in StR only one message (the blinded vote) is

transmitted from each node to Aq, this is not the case for
Dolev’s protocol as each node must send to the next one
in the ring the result of the homomorphic encryption.
Thus, in this case, we wanted to calculate the communica-
tion delay of transmitting a message of size 1024 bits long
(the result of the homomorphic encryption) between suc-
cessive nodes in the list U. We have run 1000 experiments
in our JADE platform and we have found that, on average,
the time to sent a single message between two successive
nodes is approximately equal to 0.115 s.

We have summarized these findings in Fig. 9. This fig-
ure shows a comparison for the communication delay of
both rounds of StR and Dolev’s protocol. While both proto-
cols show a quadratic behavior – Dolev’s protocol sequen-
tially propagates, for a total of n times, a large message of
length O(n), while in StR each node sends, in parallel,
(n � 1) messages of size O(1) – StR outperforms Dolev’s
protocol. This is something to be expected since during
the first round of StR time is saved by sending the shares
in parallel and not sequentially. Additionally, during the
second round time is saved by eliminating the need to visit
the nodes in the ring. Thus, without sacrificing security, the
communication delay of StR for a list of up to one hundred
voters, is almost an order of magnitude smaller than that of
Fig. 8. Communication Delay of first round of StR.

Fig. 9. Communication Delay for StR and Dolev et al. protocols.

T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66 63
Dolev’s protocol (13.7 s vs. 124 s) and is expected to be
magnified even further for larger values of n.

8. StRM: Beyond honest-but-curious behavior

The main drawback of the protocol described in the Sec-
tion 6 is the fact that it is effective only under the semi-
honest model. However, if we wish to prevent real mali-
cious behavior, we have to build protocols that will assume
that every adversary acts under the malicious model. It is
obvious that in comparison to the semi-honest model, se-
cure protocols within the malicious model enhance secu-
rity. However, it is important to note that a malicious
model may provide tighter security, at the expense of a
greater computational costs. In this section, we present
an extension of StR that effectively manages malicious
adversaries, adversaries that may provide dishonest input
to bias the protocol or try to disrupt protocol execution.

The new protocol, StRM, is based on the improved StR
shown in Algorithm 2. However, to make this protocol
resistant to malicious attacks, we need to augment it with
certain cryptographic operations that will allow us to ar-
gue about its correctness in the malicious case. The two
sub-protocols that will be used by StRM are zero-knowl-
edge proofs of plaintext equality and set membership.

8.1. Sub-protocols

In a zero-knowledge proof of plaintext equality (ZK-PEQ),
a prover convinces a verifier that two messages which are
encrypted under different public keys correspond to the
same plaintext message. In our case, we will be encrypting
messages using the Pailier cryptosystem. So, if Ei(m) and
Ej(m) are the encryptions of the message m using the public
keys of users i and j, respectively, then a prover can convince
a verifier that these ciphertexts correspond to the same
plaintext m. This operation is very critical to the correctness
of StRM as it will allow node Ui to convince the remaining
nodes that the shares it sends to the other parties are the
same like the ones used in the construction of its random
number and its blinded vote.

Such a protocol for plaintext equality is described in
[23]. This protocol can be made non-interactive by making
the challenge of the verifier equal to the hash of the proto-
col messages. A description of the protocol can be found in
the Appendix. In what follows we will denote by ZK-
PEQ(Ei(m), Ej(m)) an execution of the protocol on cipher-
texts Ei(m) and Ej(m) encrypted with the public keys of
nodes i and j, respectively.

Another useful building block is a protocol that can be
used to prove in zero knowledge that a ciphertext encrypts
a message that lies in a predefined range R of values. This is
required in order to ensure that each voter cannot bias the
sum of the secret votes by sending votes that are not with-
in some allowable set of values. Such a protocol for plain-
text equality is described in [23]. A non-interactive version
of the protocol can be found in the Appendix. In what fol-
lows we will denote by ZK-RANGE(R,E(v)) an execution of
the protocol where a prover convinces a verifier that E(v)
is the encryption of a message v from the range R.

Algorithm 3. StRM Protocol
Aq generates and distributes U = {U1, . . . , Un}
Round 1 – All nodes in parallel
for all Ui 2 U do

Ui generates ri and calculates the n-shares
ri,1, . . . , ri,n

Ui computes Ei(vi), Ei(ri,j) & Ej(ri,j))
for all Uj 2 Un{Ui} do

Ui sends Ei(ri,j) and Ej(ri,j) to Uj

Ui proves that vi is valid using protocol ZK-
RANGE (R, Ei(vi))

Ui proves that Di(Ei(ri,j)) = Dj(Ej(ri,j)) by using
protocol ZK-PEQ(Ei(ri,j), Ej(ri,j))

end for
Ui waits until it receives all encrypted shares Ei(rj,i)

destined to it and calculates the encrypted blinded
vote

EiðbiÞ ¼ Eiðv iÞ
Q

j–i
Eiðri;jÞQ

j–i
Eiðrj;iÞ

¼ Eiðv i þ
P

j–iri;j �
P

j–irj;iÞ

end for
Round 2 – All nodes in parallel
for i = 1 to n do

Ui Computes Eq(bi) and sends to Aq the values
Eq(bi), Ei(bi) & ZK-PEQ(Eq(bi), Ei(bi)) to prove that
Dq((Eq(bi)) = Di(Ei(bi))

end for
Aq computes Ei(bi) itself from the shares published

in the first round and verifies that all shares were
incorporated correctly

Aq decrypts Eq(bi) & and computes
Pn

i¼1bi ¼
Pn

i¼1v i
8.2. Description of StRM

We are now ready to proceed with the description of
StRM. Our goal would be to make the protocol resistant to
adversaries that will not conform to protocol specifica-
tions. Such malicious adversaries may attempt to deviate
from the protocol in order to violate the privacy of other
participants. In particular, they may (i) refuse to partici-
pate in certain protocol steps or drop messages that are

64 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
supposed to forward, (ii) provide incorrect values in order
to bias the final result, and (iii) modify protocol messages
or tamper with communication channels in order to gain
an advantage over well behaving users. In what follows
we describe in detail how the protocol manages to address
these issues. As a result misbehaving users can be detected
and can be penalized (say by adding them to a blacklist or
even removing them from future consideration), which
will also affect their reputation in the community.

Let Aq be the querying agent and let U = {U1,U2, . . . , Un}
be the set of users providing feedback to Aq. During the ini-
tialization phase of the protocol, each user i picks n random
numbers ri,1, ri,2, . . . , ri,n. These will be used to blind its vote
vi later on. Next, user i encrypts its vote vi and the ri,j’s to
produce Ei(vi) and Ei(ri,j), respectively. It also encrypts each
share ri,j with the public key of user j to produce the
encryptions Ej(ri,j). User i then proceeds to send these val-
ues to all participants of the protocol (without loss of gen-
erality we will assume that this step can be implemented
by a bulletin board where participants may post messages
that can be seen by everybody). It then goes onto prove in
zero knowledge that (i) its vote vi lies in the specified range
using protocol ZK-RANGE(R,Ei(vi)), and (ii) the plaintext
equality of the ciphertexts Ei(ri,j) and Ej(ri,j) using protocol
ZK-PEQ(Ei(ri,j),Ej(ri,j)). This last part is necessary in order
to ensure any third party that these ciphertexts correspond
to the encryption of the share ri,j using the public keys of
nodes i and j, respectively. It then sends the encrypted
share Ej(ri,j) to Uj as in the simplified StR (Algorithm 2).

Ui then waits until it receives all encrypted shares Ei(rj,i),
destined to it. Using the homomorphic property of the Pail-
lier cryptosystem it combines these shares with its en-
crypted vote and the shares Ei(ri,j) it sent to the other
users in the previous step to compute the product

pi ¼ Eiðv iÞ
Q

j–iEiðri;jÞQ
j–iEiðrj;iÞ

¼ Ei v i þ
X
j–i

ri;j �
X
j–i

rj;i

 !
¼ EiðbiÞ;

ð6Þ

where bi ¼ v i þ
P

j–iri;j �
P

j–irj;i is the blinded vote.
It then encrypts bi with the public key of Aq to produce

the ciphertext Eq(bi) and sends Aq both pi and Eq(bi) along
with a plaintext equality proof ZK-PEQ(pi, Eq(bi)), thus dem-
onstrating that these correspond to the same plaintext bi.
As Aqitself (or any other agent for that matter) can compute
the product pi from the encrypted values published in the
first round, it concludes that all shares were incorporated
correctly by user i in producing bi. After verifying this for
every i, Aq decrypts the received blinded votes Eq(bi) and
computes the sum

Pn
i¼1bi ¼

Pn
i¼1v i. A concise description

of StRM is shown in Algorithm 3.

8.3. Security analysis of StRM

In Sections 5 and 6 we proved the resistance of our pro-
tocol against numerous attacks regarding the privacy of
individual votes. More precisely, we showed that even if
Aq and up to n � 2 voters are compromised, our protocol
protects the privacy of the remaining legitimate ones
through secret splitting. In the case of StRM, we entirely re-
lied on the algorithm of the improved StR (Algorithm 2)
with the addition of some cryptographic mechanisms that
offer protection in the case of malicious adversaries. The
use of these cryptographic mechanisms does not affect
the main operation of the algorithm, hence the privacy of
individual voters is also successfully protected in the case
of StRM even if Aq and n � 2 nodes are corrupted.

The main drawback of StR is its inability to ensure that
(i) ratings are provided correctly, and (ii) that are within a
predefined range. StRM circumvents this vulnerability with
the use of zero knowledge proofs. The zero knowledge
proofs are characterized by the existence of public algo-
rithms that can distinguish between valid and invalid en-
crypted texts. The main advantage of public verifiable
schemes is the fact that the validity of the shares distrib-
uted by an agent can be verified by anyone, not just the
owner; thus anyone can verify that the protocol run cor-
rectly and that each voter acted according to the specifica-
tions of the protocol. Furthermore, during the verification
process, the original data are never revealed to anyone,
even those that take part in the process. As a result, Aq or
any other agent can verify that submitted values from
the participating nodes are valid. This is done with the
use of plaintext equality proofs for the distributed shares
and the set membership proofs for the submitted votes.
Hence not only malicious behavior is detected but also
the correct computation of the results is guaranteed.
8.4. Comparison of improved StR with StRM

StRM is based on the improved StR with the addition of
some cryptographic mechanisms that make the protocol
resistant to malicious behavior. However, while these
mechanisms improve the robustness of the scheme, they in-
crease the number of messages that each agent needs to cre-
ate and exchange. More precisely, during the first round of
the improved StR each node sends n � 1 shares to the rest
of the participants, and just one message (bi) to the query
agent during the second round. Thus every node sends a to-
tal of n messages overall, for a total of n2 messages.

During the first round of StRM, each node sends 2n � 2 en-
crypted messages. Additionally, one range proof is used to
prove that a vote lies within a certain range and n � 1 plain-
text equality proofs to prove that the ciphertexts Ei(ri,j) and
Ej(ri,j) are equal. For the plaintext equality proof, each agent
has to send a message that contains five random numbers.
For a range proof that a vote v belongs to an interval [a,b], a
prover must send a message consisting of 3ja � bj random
numbers. During the second round, each node sends to the
query agent two encrypted messages as well as a plaintext
equality proof. In total, each agent sends 3ja � bj + 7n mes-
sages which is equal to (7 + o(1))n if we make the reasonable
assumption that the range ja � bj is o(n), say from 0 to 100.
This makes the protocol about 7 times slower than the im-
proved StR but still faster than Dolev’s et al. algorithm for
the semi-honest case, as Fig. 9 clearly demonstrates.
9. StR’s application domain

After the Napster era, all successful P2P file sharing net-
works have developed a common element – they have

T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66 65
become decentralized. The most successful networks such
as Kazaa, LimeWire and Morpheus, although they provide
some form of legal protection to their users by giving them
the opportunity to distribute software, songs, movies, etc.,
they cannot, effectively, protect them from downloading
malicious software. For example, many users distribute
jpeg files that are infected with malicious code. The result
is that when a user opens the file, she sees an image, but at
the same time the computer is infected with the malicious
code. The utilization of feedback/voting can provide a solu-
tion to these kinds of attacks, as a user will be notified that
the other user or the requested file are considered as inse-
cure. Furthermore, by also providing this feedback anony-
mously, the retaliation between nodes/users can be
minimized. There are additional reasons for using anonym-
ity in P2P networks:

� Material is legal but socially deplored, embarrassing or
problematic in the individual’s social world (for exam-
ple, anonymity is seen as a key requirement for organi-
zations like alcoholics, drug addicted, etc.).
� Fear of retribution (against whistleblowers, unofficial

leaks, and activists who do not believe in restrictions
on information or knowledge).
� Censorship at the local, organizational, or national level.
� Personal privacy preferences such as preventing track-

ing or data mining activities.

Apart from that, anonymous feedback can also have a
role in the education field, as students (especially in the
eLearning field) will benefit from the ability to evaluate
the services offered by the school/university. Students will
greatly benefit from this form of transparent and reliable
anonymous feedback. Furthermore, numerous web appli-
cations such as betterme.com and rypple.com offer mem-
bers of different communities the opportunity to send
anonymous feedback regarding their coworkers, class-
mates, friends, landlord, boss, etc. This feedback can be
processed by StR in order to improve the operation of the
corresponding community.
10. Conclusions

In this work we presented StR, a decentralized privacy-
respecting scheme for securely casting trust ratings in
additive reputation systems. Our protocol relied on the
use of public key cryptography and homomorphic encryp-
tion and has been formally proved to be resistant to collu-
sion even against as many as n � 1 malicious insiders. In
the course of this work, we have also presented a lighter,
but equally secure protocol, that can be thought as an inde-
pendent contribution to the field of secure multiparty sum
computation. The effectiveness of StR was demonstrated
by conducting extensive experiments measuring its com-
munication delay and processing overhead in a real P2P
network, showing its superior performance over the previ-
ous best protocol to date. Finally, while the previous proto-
cols worked well in the semi-honest model, we were also
able to extend these protocols to handle the case of mali-
cious adversaries, i.e. adversaries that can deviate from
the protocol steps by dropping messages, refusing to par-
ticipate, tampering with communications or providing
out-of-range values in order to break the secrecy of votes
of the remaining participants.

Appendix A. Zero-knowledge proofs

Zero-knowledge proofs were introduced by Goldwasser
et al. [24] and are interactive protocols that allows a party
(the prover) to convince another party (the verifier) that a
statement is true without revealing any information except
the fact that the statement is true. In this section we will
present the non-interactive versions of the proofs that
we used in the description of StRM (Section 8). The proofs
can be considered as an extension of the interactive proto-
cols that were presented in [23].

A.1. Non-interactive proof of plaintext equality

In a zero-knowledge proof of equality we assume that
Ei(m) and Ej(m) are encryptions of a message m with the
public key of Ui and Uj respectively. In such a proof, a pro-
ver P can convince a verifier V that Di(Ei(m)) = m = Dj(Ej(m)).

Let (Ni,g) be the public key of Ui where Ni is an RSA
modulus Ni = pq such that p and q primes. Let g be an inte-
ger of order multiple of Ni modulo N2

i and H a secure cryp-
tographic hash function. The non-interactive version of the
interactive protocol presented in [23] follows:

Algorithm 4. Non-interactive proof of plaintext equality
Prover (P)
Picks a random q 2 [0,2l)
Randomly picks si 2 Z�Ni

and sj 2 Z�Nj

Computes ui ¼ gq
i sNi

i mod N2
i and uj ¼ gq

j sNj

j mod N2
j

Computes e ¼ Hðui;ujÞ
Computes z = q + me
Computes v i ¼ sire

i mod Ni and v j ¼ sjre
j mod Nj

Sends to V the following: z, ui, uj, vi, vj

Verifier (V)
Computes e ¼ Hðui;ujÞ
Validates that z 2 [0,2l)

Validates that gz
i v

Ni
i ¼ uiEiðmÞe mod N2

i and

gz
j v

Nj

j ¼ ujEjðmÞe mod N2
j

A.2. Non-interactive range proof

In a zero-knowledge range proof a prover P can con-
vince a verifier V that an encrypted message is an element
of a certain set S. More precisely, if we assume that
S = {m1, . . . , mp} is a public set of p messages and Ei(m) is
an encryption of a message m with the public key of Ui

then P can convince V that Ei(m) encrypts a message in S.
The non-interactive version of the protocol presented in

[23] follows:

66 T. Dimitriou, A. Michalas / Ad Hoc Networks 15 (2014) 53–66
Algorithm 5. Non-interactive range proof

Prover (P)
Picks a random q 2 Z�N
Randomly picks p � 1 values fejgj–i 2 ZN & p � 1

values fv jgj–i 2 ZN

Computes ui = qN modN2 &

uj ¼ vN
j ðgmj=EPðmÞÞej mod N2

j

n o
Computes e ¼ Hðfujgj2f1;...;pgÞ
Computes ei ¼ e�

P
j–iej mod N and

v i ¼ qrei gei=N mod N
Sends to V the following: {uj, vj, ej}j2{1,. . .,p}

Verifier (V)
Calculates e ¼ Hðfujgj2f1;...;pgÞ
Checks that e ¼

P
jej mod N

Checks that

vN
j ¼ ujðEPðmÞ=gmj Þej mod N2; j 2 f1; . . . ; pg
References

[1] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and reputation systems
for online service provision, Decis. Support Syst. 43 (2007) 618–644.

[2] P. Resnick, R. Zeckhauser, Trust among strangers in internet
transactions: Empirical analysis of ebay’s reputation system, in:
The Economics of the Internet and E-Commerce, Advances in Applied
Microeconomics, SFCS ’85, vol. 11, IEEE Computer Society,
Washington, DC, USA, 1985, pp. 383–395.

[3] eBay, Buyer accountability. <http://pages.ebay.com/services/forum/
sellerprotection.html>.

[4] E. Pavlov, J.S. Rosenschein, Z. Topol, Supporting privacy in
decentralized additive reputation, in: Second International
Conference on Trust Management (iTrust 2004), 2004, pp. 108–119.

[5] R. Dingledine, N. Mathewson, P. Syverson, Reputation in P2P
Anonymity Systems, in: In Workshop on Economics of Peer-to-Peer
Systems, 2003.

[6] L. Lilien, B. Bhargava, Privacy and Trust in Online Interactions, IGI
Global, 2009. pp. 85–122.

[7] T. Dimitriou, G. Karame, I. Christou, Supertrust – a secure and
efficient framework for handling trust in super peer networks, in:
9th International Conference on Distributed Computing and
Networking (ICDCN 2008), 2008, pp. 350–362.

[8] B. Yu, M.P. Singh, Detecting deception in reputation management, in:
Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’03, ACM,
New York, NY, USA, 2003, pp. 73–80.

[9] O. Hasan, L. Brunie, E. Bertino, k-shares: a privacy preserving
reputation protocol for decentralized environments, in: K.
Rannenberg, V. Varadharajan, C. Weber (Eds.), SEC, IFIP Advances
in Information and Communication Technology, vol. 330, Springer,
2010, pp. 253–264.

[10] S. Dolev, N. Gilboa, M. Kopeetsky, Computing multi-party trust
privately: in o(n) time units sending one (possibly large) message at
a time, in: Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, ACM, New York, NY, USA, 2010, pp. 1460–1465.

[11] P. Paillier, Public-key cryptosystems based on composite degree
residuosity classes, in: J. Stern (Ed.), EUROCRYPT, Lecture Notes in
Computer Science, vol. 1592, Springer, 1999, pp. 223–238.

[12] J. Benaloh, Dense probabilistic encryption, in: Proceedings of the
Workshop on Selected Areas of Cryptography, 1994, pp. 120–128.

[13] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M.Y. Zhu, Tools for
privacy preserving distributed data mining, SIGKDD Explor. Newsl. 4
(2002) 28–34.

[14] R. Sheikh, B. Kumar, D.K. Mishra, A distributed k-secure sum
protocol for secure multi-party computations, CoRR abs/1003.4071
(2010).
[15] S. Dolev, N. Gilboa, M. Kopeetsky, Computing trust anonymously in
the presence of curious users, in: Proceedings of the International
Symposium on Stochastic Models in Reliability Engineering, Life
Science and Operations Management, (Beer Sheva, Israel), February
2010.

[16] S. Pohlig, M. Hellman, An improved algorithm for computing
logarithms over gf(p) and its cryptographic significance (corresp.),
IEEE Trans. Inf. Theory 24 (2006) 106–110.

[17] S.A. Weis, New Foundations for Efficient Authentication,
Commutative Cryptography, and Private Disjointness Testing. Ph.D.
Thesis, Cambridge, MA, USA, 2006. AAI0810110.

[18] T.P. Pedersen, Non-interactive and information-theoretic secure
verifiable secret sharing, in: Proceedings of the 11th Annual
International Cryptology Conference on Advances in Cryptology,
CRYPTO ’91, Springer-Verlag, London, UK, 1992, pp. 129–140.

[19] O. Hasan, L. Brunie, E. Bertino, N. Shang, A Decentralized Privacy
Preserving Reputation Protocol for the Malicious Adversarial Model,
Tech. Rep. RR-LIRIS-2012-008, LIRIS UMR 5205 CNRS/INSA de Lyon/
Universitn++ Claude Bernard Lyon 1/Universitn++ Lumin++re Lyon
2/n++cole Centrale de Lyon, June 2012.

[20] S. Goldwasser, S. Micali, Probabilistic encryption, J. Comput. Syst. Sci.
28 (2) (1984) 270–299.

[21] O. Goldreich, Foundations of Cryptography, vol. 2, Cambridge
University Press, 2004.

[22] F. Bellifemine, A. Poggi, G. Rimassa, T. Italia, Jade, 1999.
[23] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, G. Poupard,

Practical multi-candidate election system, in: Proceedings of the
20th Annual ACM Symposium on Principles of Distributed
Computing, PODC ’01, ACM, New York, NY, USA, 2001, pp. 274–283.

[24] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of
interactive proof-systems, in: Proceedings of the 17th Annual ACM
symposium on Theory of Computing, STOC ’85, ACM, New York, NY,
USA, 1985, pp. 291–304.

Tassos Dimitriou is a Principal Researcher at
Computer Technology Institute, Greece and an
Associate Professor at the Computer Engi-
neering Department of Kuwait University,
Kuwait. Prior to that he was an Associate Pro-
fessor at Athens Information Technology (AIT),
Greece and Adjunct Professor in Carnegie
Mellon University, USA. At AIT he was leading
the Algorithms and Security group whose pri-
mary objective was to bring together expertise
in education, research and practice in the field
of information security and algorithms.

He contacts research in areas spanning from the theoretical foundations of
cryptography to the design and implementation of leading edge efficient
and secure communication protocols. Emphasis is given in authentication

and key establishment protocols for various types of networks (ad hoc,
smart dust, RFID, etc.), security architectures for wireless and telecom-
munication networks and the development of secure applications for
networking and electronic commerce. His research in the above fields has
resulted in numerous publications, some of which received distinction, and
numerous invitations for talks in prestigious conferences.
He is a senior member of IEEE and ACM and a Fulbright fellow. More infor-
mation can be found in the web page http://www.tassosdimitriou.com/.

Antonis Michalas received his PhD on Net-
work Security from Aalborg University, Den-
mark. His research interests include private
and secure e-voting systems, reputation sys-
tems, privacy in decentralized environments,
cloud computing and privacy preserving pro-
tocols in participatory sensing applications.
He has published a significant number of
papers in field-related journals and confer-
ences and has participated as a speaker in
various conferences and workshops. Infor-
mation on all of the above may be found at the

following web page http://www.amichalas.com.

http://refhub.elsevier.com/S1570-8705(13)00098-X/h0005
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0005
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0010
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0010
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0010
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0010
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0010
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0010
http://pages.ebay.com/services/forum/sellerprotection.html
http://pages.ebay.com/services/forum/sellerprotection.html
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0015
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0015
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0015
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0020
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0020
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0020
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0020
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0020
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0025
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0030
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0030
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0030
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0030
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0030
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0035
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0035
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0035
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0035
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0035
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0040
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0040
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0040
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0045
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0045
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0045
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0050
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0050
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0050
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0055
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0055
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0055
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0055
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0055
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0060
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0060
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0065
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0065
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0065
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0070
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0070
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0070
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0070
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0070
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0075
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0075
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0075
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0075
http://refhub.elsevier.com/S1570-8705(13)00098-X/h0075
http://www.tassosdimitriou.com/
http://www.amichalas.com

	Multi-party trust computation in decentralized environments in the presence of malicious adversaries
	1 Introduction
	2 Related work
	2.1 Protocols under the semi-honest model
	2.2 Protocols under the malicious model

	3 Problem statement and definitions
	4 Toy protocols
	4.1 Toy protocol 1
	4.2 Toy protocol 2

	5 Splitting the random values (StR)
	5.1 Security analysis

	6 A more efficient StR
	6.1 Alone in the list attack

	7 Experimental results
	7.1 Processing time
	7.2 Communication delay
	7.2.1 First round
	7.2.2 Second round

	8 StRM: Beyond honest-but-curious behavior
	8.1 Sub-protocols
	8.2 Description of StRM
	8.3 Security analysis of StRM
	8.4 Comparison of improved StR with StRM

	9 StR’s application domain
	10 Conclusions
	Appendix A Zero-knowledge proofs
	A.1 Non-interactive proof of plaintext equality
	A.2 Non-interactive range proof

	References

