
Multi-Party Trust Computation in Decentralized
Environments

Tassos Dimitriou
Athens Information Technology

19.5 km Markopoulo Ave., 19002, Peania
Athens, Greece

Email: tdim@ait.edu.gr

Antonis Mihalas
Athens Information Technology, Greece

and
Aalborg University, Denmark

Email: amic@ait.edu.gr

Abstract—In this paper, we describe a decentralized privacy-
preserving protocol for securely casting trust ratings in dis-
tributed reputation systems. Our protocol allows n participants to
cast their votes in a way that preserves the privacy of individual
values against both internal and external attacks. The protocol
is coupled with an extensive theoretical analysis in which we
formally prove that our protocol is resistant to collusion against
as many as n− 1 corrupted nodes in the semi-honest model.

The behavior of our protocol is tested in a real P2P network
by measuring its communication delay and processing overhead.
The experimental results uncover the advantages of our protocol
over previous works in the area; without sacrificing security,
our decentralized protocol is shown to be almost one order of
magnitude faster than the previous best protocol for providing
anonymous feedback.

Index Terms—Decentralized Reputation Systems, Security,
Voter Privacy, Anonymous feedback

I. INTRODUCTION

During the last decade, the field of online communities has met
great development. The main reasons of this evolution are not
only the ease of comprehension and use, but also the large degree
of accessible information and services. These aspects facilitate the
exchange of information among unknown users while giving them
the option to keep their identity hidden.

Nevertheless, the difficulty of gathering (reliable) evidence
about unidentified transaction partners makes it hard to decide
if a user is legitimate or corrupted, or to differentiate between
a high and a low quality service provider. As a result, the topic
of trust in computer networks is receiving significant attention
in both the academic community and the e-commerce industry
[11]. Trust management has been proposed by many researchers
as a solution for providing a minimum level of security between
two or more entities that belong to the same network and want
to make reliable transactions or interactions with each other.

A well known technique that intends to help users avoid
interacting with malicious or unreliable ones is the use of
reputation systems. A reputation system rates the behavior of
each user, based on the quality of the provided service(s), and
gives appropriate information to the whole community in order to
decide whether to trust or not a particular entity in the network.

However, one concern about reputation systems, which has
received relatively little attention in the literature, is that of
feedback providers’ privacy. Although there are many reputation
and trust establishment schemes, only some of them deal with the
problem of securing the ratings (or votes) of participating nodes.
This lack of privacy can lead to several problems, including the
proper operation of the network. Additionally, the absence of
schemes that provide privacy in decentralized environments, such
as ad hoc networks, is even greater. For example, it has been

observed in [14] that users of a reputation system may avoid
providing honest feedback in fear of retaliation, if reputation
scores cannot be computed in a privacy-preserving manner. In
response to that, eBay has decided to change the feedback policy
so that sellers can no longer leave negative/neutral feedback
for buyers, claiming that “it will help buyers leave an honest
feedback” [6].

Hence the development of reputation protocols that can be
used to provide anonymous feedback is essential to the surviv-
ability of online communities and electronic marketplaces. In
some sense, provision of anonymous feedback to a reputation
system is analogous to that of anonymous voting in electronic
elections. It potentially encourages truthfulness by guaranteeing
secrecy and freedom from explicit or implicit influence.

Until now, many reputation and trust establishment schemes
that preserve privacy have been proposed mostly for traditional
(centralized) environments where there is a standard topology
and the connectivity between nodes is not an issue. In contrast,
there is a lack of research that targets decentralized environments
such as ad hoc networks. These kinds of networks offer new
challenges and opportunities for research for two main reasons:
First, because collection of evidence is difficult due to the mobility
or the resource constraints of the nodes that further restrain the
trust evaluation process. Second, not only because submission of
“votes” must be kept hidden from all nodes but also because it
has to be distributed to the whole network due to lack of trusted
authorities.

Contribution: In this work we present a protocol that
preserves the privacy of votes in decentralized environments. The
protocol allows n participants to securely cast their ratings in a
way that preserves the privacy of individual votes against both
internal and external attacks. More precisely, we analyze the
protocol and prove that it is resistant to collusion even against
up to n − 1 corrupted insiders. The insights we obtain from
this analysis allow us to refine the protocol and come up with
a lighter version that is equally secure and uses only standard
cryptographic mechanisms. This lighter protocol compares favor-
ably with protocols for secure multi-party sum computation and
we consider it as another important contribution of this work.
Finally, the whole analysis is coupled with extensive experimental
results that demonstrate the protocol’s validity and efficiency over
previous works in the area.

Organization of the paper: In Section II, we review some
of the most important schemes that provide private trust ratings
in decentralized environments. In Section III, we describe the
problem of secure trust aggregation and we define the basic
terms that we use in the rest of the paper. In Section IV, we
present StR, our main protocol, while in Section V we provide
a security discussion in which we show the resistance of our
protocol against numerous attacks. Section VI describes the more



efficient version of StR. In Section VII, we present experimental
evidence that shows the effectiveness of our protocol, while in
Section VIII, we elaborate on the applications that can benefit
from the use of our scheme. Finally, Section IX concludes this
paper.

II. RELATED WORK

Although there are many reputation and trust establishment
schemes, only some of them deal with the problem of securing
the vote(s) of each individual node. The difficulties of building
reputation systems that can also preserve privacy can be found in
[4]. Furthermore, the absence of schemes that provide (partial)
privacy in decentralized environments, such as ad hoc networks,
is even bigger.

In [16], the authors considered the problem of distributed
reputation management in large systems of autonomous and het-
erogeneous agents. In such systems, it is generally inadvisable to
assume that there exists trustworthy entities who can declare the
trustworthiness of different users. Instead, both the reputation
of users and the ratings they provide are stored locally and
known only to the corresponding entity. The challenge therefore
is to compute the reputation while maintaining private data.
Three works that deal with the problem of computing ratings in
decentralized reputation systems can be found in [13], [9], [5].

Pavlov et al. [13] showed that when n − 1 malicious nodes
collude with the querying node to reveal the vote of the remaining
node then perfect privacy is not feasible. Furthermore, they
proposed three protocols that allow voting to be privately
provided in decentralized additive reputation systems. The first
protocol is not resilient against collusion of nodes and can be used
when dishonest peers are not an issue. The other two protocols are
based on a probabilistic peers’ selection scheme and are resistant
to collusion of up to n − 1 peers only with a certain degree of
probability.

Hasan et al. [9] proposed a privacy preserving protocol under
the semi-honest adversarial model. It’s main difference from
Pavlov’s protocols is that each Ui sends her shares to at most
k < n−1 nodes that are considered “trustworthy” by Ui. During
initialization, the querying agent Aq sends to each Ui the whole
list of participating users U . Each Ui selects up to k nodes from
U in such a way that the probability that all the selected nodes
will collude to break Ui’s privacy, is low. Then it splits the vote
into k shares and distributes it among the k trustworthy agents.
The role of Aq is simply to accumulate the shares into a collective
vote.

Dolev et al. [5] proposed two main decentralized schemes
where the number of messages exchanged is proportional to the
number n of participants (however, the length of each message
is O(n)). The first protocol AP (and its weighted variant WAP)
assumes that the querying agent Aq is not compromised while
the next protocol, namely MPKP (and its weighted variant
MPWP) assumes that any node can act maliciously. Apart from
that, all the proposed schemes rely on the use of homomorphic
encryption. More precisely, the AP and WAP protocols are based
on the Paillier cryptosystem [12], while the more secure MPKP
and MPWP are based on the Benaloh cryptosystem [2]. It is
exactly this dependency that makes decryption cumbersome. The
weakness of Dolev’s protocols is the fact that unnecessary and
inefficient computations are taking place.

One cannot help but notice the relevance of this problem to
secure multi-party computation, where a number of distributed
entities collaborate to compute a common function of their
inputs while preserving the privacy of these inputs. One such
well known example is the secure sum protocol [3], which uses
randomization to securely compute the sum of the individual
inputs. This protocol is a natural fit for the problem at hand but

it suffers from a number of attacks and falls prey to honest-but-
curious insiders which can easily infer the private input of any
entity.

The protocols in [13], [9], [5] can be thought as attempts to
recover from the security inefficiencies of secure sum, properly
applied to the context of reputation management. Our final proto-
col, shown in Section VI, not only improves upon these schemes
but can also be applied directly for secure sum computation,
refining earlier results in this area [15].

III. PROBLEM STATEMENT & DEFINITIONS

We start by providing a definition of decentralized additive
reputation systems as described in [13].

Definition 1: A Reputation System R is said to be a Decen-
tralized Additive Reputation System if it satisfies the following
two requirements:

1) Feedback collection, combination and propagation are im-
plemented in a decentralized way.

2) Combination of feedbacks provided by nodes is calculated
in an additive manner.

In this paper, we focus on the following problem:

Problem Statement: A querying node Aq , receives a service
request from a target node At. Since Aq has incomplete information
about At, she asks other nodes in the network to give their votes
about At. Let U = {U1, · · · , Un} be the set of all nodes that will
provide an opinion to Aq . The problem is to find a way that each
vote (vi) remains private while at the same time Aq would be in
position of understanding what voters, as a whole, believe about
At, by evaluating the sum of all votes (

∑n
i=1 vi).

Similar to existing work in the area, all the protocols that are
presented in this paper assume that the adversary is semi-honest.
In the semi-honest adversarial model, malicious nodes correctly
follow the protocol specification. However, nodes overhear all
messages and may attempt to use them in order to learn
information that otherwise should remain private. Semi-honest
adversaries are also called honest-but-curious.

For the needs of our protocol, we assume that the reader
is familiar with the concept of public key cryptography. Each
node (Aq , Ui, i ∈ [1, n]) has generated a public/private key
pair (kAq/KAq , kUi/KUi ). The private key is kept secret, while
the public key is shared with the rest of the nodes. These keys
will be used to secure message exchanges between the nodes,
hence the communication lines between parties are assumed to be
secure. Our first protocol also relies on the use of homomorphic
encryption for the collection of votes by the querying agent Aq .
The vote of Ui concerning At is denoted by vi.

Definition 2 (Homomorphic Encryption): Let E(.) be an en-
cryption function. We say that E(.) is additive homomorphic iff
for two messages m1,m2 the following holds:

E(m1) · E(m2) = E(m1 +m2).

The notation E(.) will refer to the results of the application of
an homomorphic encryption function (as per Definition 2) that
Aq can decrypt with her private key. Pailler’s Cryptosystem [12]
is an example of cryptosystem where the trapdoor mechanism is
based on such a homomorphic function.

IV. SPLITTING THE RANDOM VALUES (STR)
In this section, we present our main protocol (StR) in which

we use both homomorphic encryption and random numbers to
secure the privacy of votes for each node.



During the initialization step, Aq creates the set U with all
voters, orders them in a circle Aq → U1 → · · · → Un and sends
to each Ui the identity of its successor in the circle. Each Ui splits
its random number ri into n pieces and shares one with the rest
of the nodes. Then, it creates a blinded vote and adds it to the sum
of previous votes by using the homomorphic property of Paillier’s
cryptosystem [12]. At the end, the last node Un forwards to Aq

the sum of all n votes encrypted with the public key of Aq . Upon
reception, Aq decrypts the result and finds the sum of all votes.
A detailed description of StR follows below. Figure 1 illustrates
the two rounds of StR.

First round
During the initialization step, Aq sends to all nodes the list of

all voters U . Each node Ui generates a random number ri and
splits it into n integers in such a way that the ith share will be
encrypted with the public key of Ui. So, if U1 has generated a
random number r1, the shares will be

r1 = r1,1, {r1,2}kU2
, · · · , {r1,n−1}kUn−1

, {r1,n}kUn
.

The next step for each Ui is to distribute the shares to the
remaining n−1 nodes in U . This means that each Ui will receive
the following n− 1 messages

{r1,i}kUi
, · · · , {ri−1,i}kUi

, · · · , {rn−1,i}kUi
, {rn,i}kUi

.

Since all n− 1 numbers that Ui received are encrypted with her
public key, she decrypts them and calculates the blinded vote bi
which is equal to

bi = vi + ri − (

n∑
j=1

rj,i). (1)

When all nodes (in parallel) compute their blinded votes, the
second round begins.

Second round
U1 calculates E(b1) and sends it to U2. U2 adds b2 to E(b1)

by using the additive homomorphic property (E(b1) · E(b2) =
E(b1+b2)) of Paillier’s cryptosystem and sends E(b1+b2) to U3.
At the end of this round Aq will receive from Un the following:
E(

∑n
i=1 bi) = E(

∑n
i=1 vi). Upon reception, Aq decrypts the

message, finds the sum of all votes and divides by n in order to
find the average of votes. A concise description of StR is shown
in Algorithm 1.

V. SECURITY ANALYSIS

In this section we analyze the behavior of StR in the presence
of corrupted agents. First, we will consider the case of a well-
behaving query agent Aq . Such an agent respects the privacy of
participating users and does not form malicious coalitions with
corrupted agents in the set U (however, among the agents in
U there can be corrupted ones). Then, in Section VI, we will
proceed to discuss the case where Aq is malicious as well. This
will also lead to the development of an even more efficient but
equally secure version of StR.

Theorem 1 (Uncompromised Aq): Assume an honest-but-
curious adversary ADV corrupts at most k < n users out of
those in the set U . Then ADV cannot infer any information
about the votes of the legitimate users.

Proof. We will prove the robustness of the protocol by reducing
its security to the semantic security property of the encryption
function E(·). A cryptosystem is called semantically secure, if it
is infeasible for a computationally-bounded adversary to derive
significant information about a message (plaintext) when given

Algorithm 1 StR Protocol
Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do
Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + . . .+ ri,n
for all Uj ∈ U \ {Ui} do
Ui sends {ri,j}kUj

to Uj

end for
Ui receives all shares destined to it and calculates the
blinded vote bi = vi + ri −

(∑n
j=1 rj,i

)
.

end for
Round 2 - All nodes sequentially
for i = 1 to n do

Ui obtains
∏i−1

j=1 E (bj) from Ui−1 (or E(0) from Aq , if
i = 1).
Ui encrypts bi with kAq

to obtain E(bi).
Ui calculates the homomorphic product

∏i−1
j=1 E (bj) · bi

Ui sends
∏i

j=1 E(bj) = E(
∑i

j=1 bj) to Ui+1 (or
E(
∑n

i=1 vi) to Aq , if i = n).
end for

only its ciphertext and the corresponding public encryption key.
An equivalent definition for semantic security is that of ciphertext
indistinguishability [8]. Indistinguishability under Chosen Plain-
text Attacks is defined by a game in which an attacker generates
two messages m0 and m1 and has to determine which of the two
messages was chosen by an encryption oracle with probability
significantly greater than 1/2 (i.e. better than random guessing).

We will prove the privacy of the StR protocol using a standard
simulation argument. In particular, we will show that for any
adversary that corrupts (or controls) a subset of the participating
users, there exists a simulator that, given the corrupted parties
data and the final result, can generate a view that, to the adver-
sary, it is indistinguishable from a real execution of the protocol.
This guarantees that whatever information the adversary can
obtain after attacking the protocol can be actually generated by
herself, using the simulator. As a result, no useful information
about legitimate users’ data is leaked (see also Chap. 7 of [7]).

Let C = {Ui1 , Ui2 , . . . , Uik} denote the set of compromised
users, where k < n. Let also viewC denote the views of the pro-
tocol for all users in C, including their votes {vi1 , vi2 , . . . , vik},
their random numbers {ri1 , ri2 , . . . , rik} and the sequence of
messages E(

∑i1
j=1 bj), . . . , E(

∑ik
j=1 bj) received by each one of

them during the second round of the protocol, where by definition

bi = vi + ri − (

n∑
j=1

rj,i).

A simulator has access to the shares of the random numbers
ri,j , i 6= j that ended up in corrupted users during the first round
but cannot possibly generate the exact sequence of encrypted
sums since it does not know the private data of legitimate users.
So, the simulator will have to replace the private data with
random quantities αi as indicated below

b′i =


bi, if Ui is corrupted/compromised

αi, otherwise,



Fig. 1. The two rounds of StR.

and compute E(b′i) for all i = 1, . . . , n. The simulator can now
replace E(

∑il
j=1 bj) with E(

∑il
j=1 b

′
j).

To complete the analysis we need to argue that if there exists
an adversary A that distinguishes between the encryption of the
observed values E(

∑il
j=1 bj) and the random ones E(

∑il
j=1 b

′
j)

produced by the simulator, then there is an adversary B that can
attack the semantic security of E(·).

Such an attacker B would operate as follows: Its input
is a sequence of values E(xi), i = 1, . . . , n and its goal is
to determine whether the values xi correspond to the values
provided by the users, or is simply a sequence of random
values αi. Adversary B, using the homomorphic property of E(),
computes E(

∑il
j=1 xj) and provides the encryption of the partial

sums E(
∑i1

j=1 xj), . . . , E(
∑ik

j=1 xj) as input to A. It then returns
whatever answer A returns.

Obviously B would be able to break the semantic security of
E() with the same probability that A could distinguish between
the real views and the random values produced by the simulator.
Since E() is assumed to be semantically secure, such A cannot
exist. Hence the security of the StR protocol is guaranteed
provided at most k < n users are compromised, but Aq is not.
�

VI. A MORE EFFICIENT STR
In this section we will consider the case where node Aq

is compromised as well. Since Aq knows the private key and
Aq has been compromised by ADV (or is member of the
colluding group), Aq can simply decrypt any communicated
message. Hence we cannot rely on the semantic security property
of the underlying cryptosystem. The semantic security of the
cryptosystem protects the nodes from seeing intermediate results
but it is the added randomness which keeps ADV from obtaining
those intermediate values. In this scenario the security is therefore
solely based on the randomness which is used to blind the
individual votes.

To see this, observe that in the second round of StR, homo-
morphic encryption is used to compute the sum of the blinded
votes,

∑
i bi, around the ring. However, a compromised Aq can

learn these values by collaborating with a set of malicious agents.
Hence homomorphic encryption does not offer any real benefit

and can be dropped entirely! This also suggests that during the
second round the nodes can send the blinded votes directly to
Aq without having to go around the ring, thus increasing the
efficiency of the algorithm, as we will see in the experimental
section. The new protocol is shown in Algorithm 2. Round 2 is
a degenerate one and can clearly be combined with Round 1.

The more efficient StR also provides an improvement over
previous protocols in the field of secure multi-party sum com-
putation [15]. In particular, in [15], a distributed protocol is
presented that requires O(n2) sequential computations around a
ring of nodes. Our protocol is completely parallelized and does
not even require placing the nodes around a ring.

Algorithm 2 Improved StR
Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do
Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + . . .+ ri,n
for all Uj ∈ U \ {Ui} do
Ui sends {ri,j}kUj

to Uj

end for
Ui waits until it receives all shares destined to it and
calculates the blinded vote bi = vi + ri −

(∑n
j=1 rj,i

)
.

end for
Round 2 - All nodes in parallel
for i = 1 to n do

Ui sends bi to Aq

end for
Upon reception of all votes, Aq computes

∑n
i=1 bi =∑n

i=1 vi

In what follows we prove the security of the more efficient
version of StR.

Theorem 2 (Compromised Aq): Assume an honest-but-curious
adversary ADV corrupts Aq and at most k < n − 1 users out



Fig. 2. Robustness up to n− 1 malicious nodes

of those in the set U . Then ADV cannot infer any information
about the votes of the legitimate users.

Proof. Here, we consider the extreme case where all nodes
collaborate with a corrupted Aq except for two nodes Uk, Ul

which are considered legitimate (Figure 2).
To prove that StR protects the privacy of legitimate users, even

if Aq is compromised, we need to look at the data exchanged in
StR. Recall that during the first round, each node will receive
n−1 shares from the remaining nodes of U . Since n−2 nodes are
compromised, at the end of round one, the adversary will know
all the n · (n − 2) shares of the n − 2 compromised nodes plus
the n − 4 shares that Uk and Ul have sent to the compromised
ones.

From the four remaining shares, rk,k and rl,l will be known
only to Uk and Ul, since these are part of the shares they keep for
the calculation of their blinded votes bk, bl. Additionally, the last
two remaining shares (rl,k, rk,l) will be known only to Uk, Ul

since they are encrypted with their corresponding public keys
and then exchanged between them. Since we have assumed that
these two nodes are legitimate, they will not reveal the value
of these shares to any other node (compromised information is
shown next to the two nodes in Figure 2).

To ease the analysis, in the following expressions we have
circled the variables that the adversary has not been able to
compromise:

bk = vk + rk −(r1,k+· · ·+ rk,k +· · ·+ rl,k +· · ·+rn,k)
(2)

and

bl = vl + rl −(r1,l+· · ·+ rl,l +· · ·+ rk,l +· · ·+rn,l). (3)

However, considering the fact that rk, rj are equal to the
sum of the corresponding shares, i.e. rk =

∑n
j=1 rk,j and

rl =
∑n

j=1 rl,j , we obtain that

rk − rk,k =
∑
j 6=k

rk,j and rl − rl,l =
∑
j 6=l

rl,j .

Plugging these last two expressions to Equations (2) and (3),
we obtain

bk = vk +
∑
j 6=k,l

(rk,j − rj,k) + rk,l − rl,k (4)

and

bl = vl +
∑
j 6=k,l

(rl,j − rj,l)− rk,l − rl,k . (5)

Treating the last term (rk,l−rl,k) as a single unknown quantity,
we see that it is impossible to correctly calculate the exact values
vk, vl since the adversary, even with the help of Aq , ends up with
a system of two equations and three unknown variables (the case
is analogous when there are more than 2 legitimate users). We
conclude that the protocol remains secure as long as there exist
at least two nodes that are legitimate. �

Finally, observe that in both cases (Theorems 1 and 2) StR
offers an equivalent level of security as long as there are at least
two nodes which are not corrupted. In the first case, this is Aq

plus another agent from the set U . In the second case, these are
two nodes from U . Thus, a legitimate node can be sure of its
private vote if and only if there is at least one more legitimate
node in the set U + {Aq}.

VII. EXPERIMENTAL RESULTS

This section presents the implementation of StR, as well as a
comparison with Dolev’s Multiple Private Keys Protocol (MPKP)
[5]. In order to prove the effectiveness of StR, we implemented
both protocols in Java and we used JADE 4.0.1 [1] for the
communication of the agents. Since we wanted our experiments
to be as close to reality as possible, we setup different JADE
agents in different computers. All agents (nodes of the protocols)
were connected to the Internet through a NetFasteR IAD 2 router
over a 24Mbps ADSL line.

Our experiments aimed at analyzing two main performance
metrics; processing time and communication overhead.



Fig. 3. Processing time required by StR

A. Processing Time
The first phase of our experiments involved measuring the

processing time of StR. To this end, we measured the completion
time for the following procedures:
• Secure Random Number Generation
• Encryption/Decryption
For the encryption and decryption, we used the RSA cryp-

tosystem for encrypting the random shares with a key length
equal to 1024 bits. Figure 3 displays the results following 1000
test runs in a computer with a 1.6GHz CPU and 1GB DDR
RAM, where each node has to i) encrypt the n− 1 shares to be
transmitted, and ii) decrypt the n − 1 shares received, where n
ranges from n = 5 to n = 100. As is evident from the graph,
the required processing time is negligible and does not constitute
any real burden to nodes of the StR protocol.

Notice that this is not the case for Dolev et al.’s protocol.
Decryption of the homomorphic values is inefficient because it
requires a trial-end-error decryption in order to compute the
encrypted trust ratings. This is due to the use of the Benaloh
cryptosystem which does not allow for efficient decryption. Thus,
processing time depends not only on n but also on the allowable
range of trust values (details omitted due to space restrictions).
Despite this inefficiency, we treat both times as comparable and
we focus only on the communications aspects of both protocols.

B. Communication Delay
1) First Round:: By default, JADE uses the Message Trans-

port Protocol (MTP) for the communication between nodes.
During the first phase of our experiments, we wanted to measure
the communication delay for the first round of StR. For that
purpose, we created nodes in different computers that generated
n encrypted shares (1024 bits long each); these were sent in
parallel as single messages to each of the n − 1 remaining
nodes, where n was incremented from n = 5 to 100 in steps
of 5. As expected, the delay did not increase in a strictly linear
manner, since the overhead processing of collecting the shares and
computing the masked vote bi = vi + ri − (

∑n
j=1 rj,i) increased

with the number of nodes. Figure 4 illustrates the delay in seconds
as a function of the number of nodes n.

2) Second Round:: While in StR only one message (the
blinded vote) is transmitted from each node to Aq , this is not
the case for Dolev’s protocol as each node must send to the next
one in the ring the result of the homomorphic encryption. Thus,
in this case, we wanted to calculate the communication delay of
transmitting a message of size 1024 bits long (the result of the
homomorphic encryption) between successive nodes in the list U .
We have run 1000 experiments in our JADE platform and we

Fig. 4. Communication Delay of first round of StR

Fig. 5. Communication Delay for StR and Dolev et al. protocols

have found that, on average, the time to sent a single message
between two successive nodes is approximately equal to 0.115
seconds.

We have summarized these findings in Figure 5. This figure
shows a comparison for the communication delay of both rounds
of StR and Dolev’s protocol. While both protocols show a
quadratic behavior – Dolev’s protocol sequentially propagates,
for a total of n times, a large message of length O(n), while
in StR each node sends, in parallel, (n − 1) messages of size
O(1) – StR outperforms Dolev’s protocol. This is something to
be expected since during the first round of StR time is saved by
sending the shares in parallel and not sequentially. Additionally,
during the second round time is saved by eliminating the need to
visit the nodes in the ring. Thus, without sacrificing security, the
communication delay of StR for a list of up to one hundred voters,
is almost an order of magnitude smaller than that of Dolev’s
protocol (13.7sec vs. 124sec) and is expected to be magnified
even further for larger values of n.

VIII. STR’S APPLICATION DOMAIN

After the Napster era, all successful P2P file sharing networks
have developed a common element - they have become decentral-
ized. The most successful networks such as Kazaa, LimeWire and
Morpheus, although they provide a some form of legal protection
to their users by giving them the opportunity to distribute
software, songs, movies, etc., they cannot, effectively, protect them
from downloading malicious software. For example, many users



distribute jpeg files that are infected with malicious code. The
result is that when a user opens the file, she sees an image, but
at the same time the computer is infected with malicious code.
The utilization of feedback/voting can provide a solution to these
kinds of attacks, as a user will be notified that the other user
or the requested file are considered as insecure. Furthermore, by
also providing this feedback anonymously, the retaliation between
nodes/users can be minimized. There are additional reasons for
using anonymity in P2P networks:
• Material is legal but socially deplored, embarrassing or

problematic in the individual’s social world (for example,
anonymity is seen as a key requirement for organizations
like alcoholics, drug addicted, etc.)

• Fear of retribution (against whistleblowers, unofficial leaks,
and activists who do not believe in restrictions on informa-
tion or knowledge)

• Censorship at the local, organizational, or national level
• Personal privacy preferences such as preventing tracking or

data mining activities.
Apart from that, anonymous feedback can also have a role in
the education field, as students (especially in the eLearning field)
will benefit from the ability to evaluate the services offered by
the school/university. Students will greatly benefit from this form
of transparent and reliable anonymous feedback. Furthermore,
numerous web applications such as betterme.com and rypple.com
offer members of different communities the opportunity to
send anonymous feedback regarding their coworkers, classmates,
friends, landlord, boss etc. This feedback can be processed by
StR in order to improve the operation of the corresponding
community.

IX. CONCLUSIONS

In this work we presented StR, a decentralized privacy-
respecting scheme for securely casting trust ratings in additive
reputation systems. Our protocol relied on the use of public
key cryptography and homomorphic encryption and has been
formally proved to be resistant to collusion even against as many
as n − 1 malicious insiders. In the course of this work, we
have also presented a lighter, but equally secure protocol, that
can be thought as an independent contribution to the field of
secure multiparty sum computation. The effectiveness of StR was
demonstrated by conducting extensive experiments measuring
its communication delay and processing overhead in a real P2P
network, showing its superior performance over the previous best
protocol to date.

As part of our future research, we intend to enhance our
protocol and consider defense mechanisms that will effectively
manage malicious adversaries, adversaries that may provide
dishonest input to bias the protocol or exhibit byzantine behavior
based on Hoffman’s et al. [10] attacker model, thus deviating
from the designated honest-but-curious behavior examined here.

X. ACKNOWLEDGEMENTS

This work has been funded by the European Community’s
FP7 project SafeCity (Grant Agreement no: 285556).

REFERENCES

[1] F. Bellifemine, A. Poggi, G. Rimassa, and T. Italia. Jade. Internal
Tecnhical Report. http://jade.tilab.com/

[2] J. Benaloh. Dense probabilistic encryption. Workshop on Selected
Areas of Cryptography, 1994.

[3] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin and M. Y. Zhu. Tools
for Privacy Preserving Distributed Data Mining. In ACM SIGKDD
Explorations, 2003.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Reputation in p2p
anonymity systems. Workshop on Economics of Peer-to-Peer Systems,
2003.

[5] S. Dolev, N. Gilboa, and M. Kopeetsky. Computing multi-party trust
privately: in o(n) time units sending one (possibly large) message
at a time. ACM Symposium on Applied Computing (SAC ’10), 2010.

[6] eBay. Buyer accountability. http://pages.ebay.com/services/forum/
sellerprotection.html.

[7] O. Goldreich. Foundations of Cryptography. Volume 2. Cambridge
University Press, 2004.

[8] S. Goldwasser and S. Micali. Probabilistic encryption. Computer
and System Sciences, 28:270–299, 1984.

[9] O. Hasan, L. Brunie, and E. Bertino. k-shares: A privacy preserv-
ing reputation protocol for decentralized environments. 25th IFIP
International Information Security Conference (SEC 2010), 2010.

[10] D. Z. K. Hoffman and C. Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Comput. Surv.,
42:1:1:1–31, 2009.

[11] A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems,
43:618–644, Oct 2007.

[12] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology, EUROCRYPT ’99,
pp.223–238, 1999.

[13] E. Pavlov, J. S. Rosenschein, and Z. Topol. Supporting privacy in
decentralized additive reputation. Second International Conference
on Trust Management (iTrust 2004), pages 108–119, 2004.

[14] P. Resnick and R. Zeckhauser. Trust among strangers in internet
transactions: Empirical analysis of ebay’s reputation system. The
Economics of the Internet and E-Commerce, 11(3):129–158, 2002.

[15] Rashid Sheikh, Beerendra Kumar, Durgesh Kumar Mishra. A
Distributed k-Secure Sum Protocol for Secure Multi-Party Com-
putations. In Journal of Computing, Volume 2, Issue 3, March 2010.

[16] B. Yu and M. Singh. Detecting deception in reputation management.
In Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’ 03), 2003.


