
SecGOD
Google Docs: Now I Feel Safer!
Antonis Michalas

Athens Information Technology, Athens, Greece
and

Aalborg University, Denmark
Email: amic@ait.edu.gr

Menelaos Bakopoulos
Athens Information Technology, Athens, Greece

and
Aalborg University, Denmark

Email: mbak@ait.edu.gr

Abstract—This paper presents SecGOD. A tool that protects
the privacy of documents created with online office suites.
SecGOD is implemented as a Greasemonkey java-script making
it deployable on all popular greesemonkey compatible browsers
and utilizes symmetric key encryption. All operations run on the
client side, with SecGOD operating invisibly as concerned by the
cloud, with no changes needed to the code that is provided to
the cloud server provider. Finally, the effectiveness of SecGOD
is demonstrated by conducting extensive experiments measuring
the processing time for the three versions of AES (128, 192, 256
bits).

Index Terms—Privacy, Security, Software as a Service, Cloud
Services, Cloud Computing

I. INTRODUCTION

In the last years, cloud computing has received a great
deal of attention, not only through the research community
but among individual users and companies as well. Generally
speaking, cloud computing is a subscription-based service
where users can obtain networked storage space and computer
resources. Related to the networked storage space, cloud com-
puting is similar to an e-mail IMAP client with the difference
that you can store and access any kind of information you
want. Essentially this means that files on the cloud can be
accessed from any location, any time and from almost any
device which does not have to belong to you.

The main advantage of cloud computing, is the fact that
companies can greatly reduce IT costs since infrastructure
as well as storage and processing is outsourced and can be
quickly extended by the cloud without needing investments
in local costly hardware and installation. Despite the fact
that companies can offload data and computations to cloud
services, most of them hesitate to trust such services due to
outstanding security concerns.

It is a fact that in November 2011 dropbox a well known
cloud storage provider had a security flaw allowing unau-
thorized users to view any user’s cloud based documents
without entering a correct password [1]. Additionally, further
security failures such as 6 million linkedin stolen passwords
in 2012 and security issues from products by facebook and
other corporations prove that security in many large web2.0
services is not as infallible as it may seem [2].

Nevertheless, major players in the technology industry have
been predicting that cloud computing is here to stay, and

will only be growing in the future. With cloud technology
improving upon performance and security, it is clear that other
industries are seeing this change and will most likely follow
suit in heading to the cloud.

According to IBM, the demand for cloud computing is
on the rise as organizations look to expand the impact of
IT to deliver innovative services while realizing significant
economies of scale. According to market research firm IDC,
$17 billion were spent on cloud-related technologies, hardware
and software in 2009. IDC analysts expect that will grow to
$45 billion by 2013. Furthermore, in December 2011 Gartner
and IDC released their latest cloud computing statistics and
predictions for 2012 through 2016 [3]. At a glance, their results
can be summarized in the following:

• In 2012, 80% of new commercial enterprise apps will be
deployed on cloud platforms

• By 2016, 40% of enterprises will make proof of indepen-
dent security testing a precondition for using any type of
cloud service

• At year-end 2016, more than 50% of Global 1000 compa-
nies will have stored customer-sensitive data in the public
cloud

• Mobile software as a service (SaaS) Market will reach
$1.2 billion in 2011 and grow to $3.7 billion by 2016

As cloud computing grows, many IT enterprises are looking
for ways to reduce expenses related to maintaining in house
IT infrastructure (servers, etc) by relocating applications and
data storage to the cloud. Moreover, enterprise information
technology paradigms such as cloud computing, metadata
search, SaaS and online office suites have gained credence
as Web-based business models and operational practices have
been adopted by many businesses. This has given rise to
services like Google Apps and Office 365, which offer e-mail,
calendaring, and other Web-based services that completely
replace not just software running on company’s servers, but
also software running on employer’s desktops.

While these applications are not as complex or compre-
hensive as the leading desktop counterparts, they have other
advantages over traditional software. The most obvious of
these advantages is that the applications are not tied to a
specific computer and there is no need to download and install

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 589

software on a particular machine. Any computer that has
access to the Internet can take advantage of the functionality
that these applications provide. As each user saves information
to the cloud system, (s)he can access the same file(s) from
anywhere. In addition to that, cloud applications let multiple
users to edit the same file(s) at the same time. This is called
online or multi-user collaboration, and it could streamline
teamwork over the Web.

One of the most popular online office suites is offered by
Google under the name Google Docs. In September 2011, for
example, they had over 4.4 million unique users. This number
is growing even as competitors such as Zoho and Microsoft
ramp up their products. Despite the great convenience of the
service, many users are skeptical on using it, since they worry
that their private data can be exposed to people who should
not have access.

A. Our Contribution

In this work we present a tool that protects the sensitive
data of users that make use of online office suites. The main
goal of our approach is to protect the documents that each
user creates. The main objective of our approach is to build
a system that successfully protects the contents of documents
created by users of these applications. To this end, we use
existing techniques from the field of cryptography to encrypt
the content of each document before it is transferred from the
client to the server. Moreover, we manage to avoid storing
the plaintext of the documents in the cloud, which protects
the contents even from a possibly malicious cloud service.
In addition to that, we add a functionality that is missing
from the previous works in the area, we propose a technique
that sharing of a document can be done in a more secure
manner. Finally, the whole analysis is coupled with extensive
experimental results that demonstrate the protocol’s validity
and efficiency over previous works in the area.

B. Organization

In Section II, we review some of the most important secure
storage systems for online office suites. In Section III, we
formally describe the problem, we define the basic terms
that we use in the rest of the paper and we describe the
threat model that this paper deals with. In Section IV we
present our protocol and in Section V we provide a security
discussion in which we show the resistance of our protocol
in the presence of malicious adversaries. In Section VI we
present experimental evidence that shows the effectiveness of
our protocol while in Secction VII we conclude the paper.

II. RELATED WORK

Although online office suites meet a significant growth and
the number of users is increasing rapidly, little work has been
done towards the direction of protecting legitimate users from
exposing private data to unauthorized users. In this section we
present the most important works regarding the security of
cloud services in the particular field of online office suites.

To the best of our knowledge, M. Christodorescu in [4]
is the first who introduced the problem of securing the data
that users upload to remote services, such as cloud services,
which may be under control from potentially malicious parties.
More precisely, authors argue that the assurance of online
data privacy must go beyond legal or social contracts, which
provide only post-facto redress, to employ technical solutions.
Furthermore, they sketch an architecture that enhances the
privacy of data sent to remote web servers, in spite of any
actions by the parties controlling the web servers. Towards
this end, they proposed the use of client-side opportunistic
encryption and decryption to allow the user to control the
future use of any data they upload to a web server. More
precisely, in order to preserve secrecy of the data after it is
entered by the user, a cryptographic layer encrypts the data
as the client-side web application sends to the provider and
decrypts when the data travels the reverse route. Apart from
that, they propose to generate a unique key, different from
the password that authenticates the user. To do this, they
rely on the PwdHash project [5] where a Pseudo Random
function [6] is used to compute it from the password of the
user. The main problem with the presented protocol, is the
fact that the description is in a high level and without any
kind of implementation. This makes it difficult to find any
vulnerabilities while at the same time there are parts that
are not clear at all. For example, authors mention that the
implementation of their architecture have no impact on the
programming model used be the web-application provider, but
this is not clear from the provided description.

In [7] authors conceived a new transparent user layer for
Google Docs, and implemented it as a Firefox add-on, which
encrypts the information before storing it on Google servers;
making virtually impossible to get access to the information
without the right password. The main drawback, is the fact
that the add-on uses two hidden documents created using the
Google Docs API, which contain all the information needed to
encrypt and decrypt user’s information. One of the documents
contains the data about the user’s ciphered documents (algo-
rithm used, password and encryption options if it is necessary).
The other one maintains the same information, but only about
the documents that are currently being shared.

Another approach by D’Angelo et al. [8] utilizes an ex-
tension for Firefox based on the gDocsBar add-on [9] called
SeGoDoc. The original gDocsBar which deals with drag and
drop uploading to google docs has been extended to include
intermediate encryption and decryption in order to protect on-
line document privacy and integrity against service providers.
The plugin is not directly integrated with the Google Docs
interface and depends on third-party developers, meaning that
it is unstable and not completely transparent for Google Docs
users. Moreover, the password used to encrypt the documents
is saved locally, at the client side, and it currently does not
support encrypted document sharing.

The most concrete work is presented by Y. Huang and
D. Evans in [10]. Authors presented a protocol that enables
users to use a cloud application to manage their documents

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 590

without sacrificing confidentiality or integrity. In addition to
that, they used an incremental encryption scheme and extend it
to support variable-length blocks. Furthermore, they provided
a security analysis coupled with extensive experimental results
that showed that their protocol preserves most of the cloud
applications functionality with less than 10% overhead for
typical use.

All of the above mentioned works, have two common
elements. First, they do not propose a way with which users
that share a document can securely retrieve the decryption
ley. Second, for the saving procedure they absolutely rely on
Google’s functionality, which can be very tricky in the sense
of computation since Google is using an algorithm to autosave
only the changes that have been made to a document after a
time interval t. This seems to be well treated only from the
protocol proposed in [10] where the content of the document
is divided into blocks. But still this technique is computational
heavier than the one we propose in this paper.

III. PROBLEM STATEMENT & ADVERSARIAL MODEL

We start by providing a definition of online office suites as
described in [11].

Definition 1: An online office suite or online productivity
suite is a type of office suite offered by websites in the form of
SaaS. They can be accessed online from any Internet-enabled
device running any operating system. This allows people to
work together worldwide and at any time, thereby leading to
international web-based collaboration and virtual teamwork.
The packages usually includes: word processing, spreadsheets,
presentation, email, and database. Usually, the basic versions
are offered for free and for more advanced versions one is
required to pay a nominal subscription fee.

Problem Statement: Let U = {u1, . . . , un} be the set of
all users that uses an online office suite. User ui wants to
create a document di and ensure the secrecy of its content
by making it impossible for any user without privileges to
access the enclosed information. Furthermore, since online
office suites offer the option of sharing di with other users, it
is likely that ui will want to share di with users from a set
Udi ⊂ U, ui /∈ Udi . In this case, ui must share a secret with
all users in Udi in order for each one to be able to access
the content of di. So, the problem is to find a way to encrypt
di and save (send to server) the encrypted content instead
of the plaintext. Additionally, each user that belongs to Udi

(including also the creator ui) must know how to effectively
decrypt it in order to access its content.

For the needs of our protocol, we assume that the reader is
familiar with the basic concepts of cryptography.

A. Adversarial Model

Similar to the work presented in [10], the protocol in this
paper assumes that the adversary has computational power
equivalent to a probabilistic polynomial time Turing machine
that fully controls all the data users store at the server as
well as all the messages between the server and the client.
The adversary can launch both passive and active attacks on

the application’s users. Furthermore, we also assume that the
cloud service itself can act maliciously. In addition to that,
we assume that our browser extension along with the client’s
browser and host is not compromised.

IV. SECURING GOOGLE DOCS (SECGOD)

In this section, we present our protocol/tool (SecGOD) in
which we make use of well known cryptographic techniques in
order to preserve the privacy of the content of documents that
have been created through online office suites such as google
docs. Our tool is implemented as a Greasemonkey script [12]
which means that can successfully run in the four most popular
browsers: Firefox, Chrome, Internet Explorer and Safari. At
the time that this paper is written, SecGOD is tested only with
google docs, which as far as we concerned, is the most popular
online office suite. Furthermore, SecGOD does not require any
change to the code that is running on the server and it is
implemented in such a way that all the provided functionality
runs in the client side. In addition to that, SecGOD does not
make any use of the API that is provided by google thus makes
it an ideal solution also for applications that do not offer any
API for the developers. Figure 1 illustrates a general overview
of the presented protocol.

The rest of the section is divided into the following three
parts:

• Installation
• Encryption/Decryption of the contents of a document
• Sharing a document with other users of the community

(e.g users that they use google docs)

A. Installation

A user that wants to use SecGOD needs to first install
Greasemonkey, which is a free add-on, on its browser. Once
Greasemonkey is installed, managing the extension is quite
user friendly.. The user can install secGod online, or can
run the secGod javascript file and a Greasemonkey alert box
will automatically appear asking for a permission to install
SecGOD or not. After user finishes the installation procedure,
every time that Greasemonkey is active and user visits google
docs, SecGOD will automatically run. As you may realized,
during SecGOD installation, we did not create any secret
key for the user. This is because we want to ensure that no
sensitive information will be saved in user’s computer, even if
this information can be in an encrypted form (e.g encrypted
cookie). With this way, not only we protect user from local
vulnerabilities such as back-doors and trojan horses but we
also make SecGOD easy to be used from any computer that
the user has access to.

B. Encryption/Decryption

Lets suppose that user ui visits google docs and creates a
new document di. Google directly sends ui to a screen that
by default contains a word-processor and an empty document.
Since, ui has already installed SecGOD, this screen will be
different. More precisely, a new toolbar will be available at
the very top of the page, which is inserted dynamically to the

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 591

document object model by the SecGOD javascript code. This
toolbar contains the following:

• A new editor where ui will be able to edit di
• A field where ui is prompted to enter a password (secret

key) with which the encrypted text E(di) of di will be
calculated

• The key size of the algorithm (128 bits, 192 bits, 256
bits)

• An encrypt button that will calculate E(di)

Fig. 1. General Overview of SecGOD

For the encryption/decryption process we use the symmetric
key algorithm1 Advanced Encryption Standard (AES) [13] and
the procedure is as follows. When ui presses the encrypt
button the contents that exists in the SecGOD editor are
encrypted with AES. As a key, we use H(pass) where H
is a cryptographic hash function and pass is the secret key
that ui added to the password field. After E(di) is calculated,
the encrypted content is sent via dispatched Javascript keypress
events, that our script generates, to the default editor of google
docs2. This means that, SecGOD does not implement the save
procedure but google, which is responsible for saving the
encrypted content to its cloud servers. From now on, ui can
see at the same time the original content of di as well as the
encrypted one E(di). At this point, we have to mention that
the encrypted text which is transfered to google docs editor is
not editable. With this way, we can avoid possible mistakes
(e.g accidentally insert text into the encrypted one) from user,
which could lead to “destroy” the ciphertext and therefore the
decryption of E(di) will result to a nonsense text.

Now that ui has created an encrypted document will have
to be able to decrypt it every time that needs to edit it. So,
when ui opens di, first she sees the encrypted text in the
editor provided by google. Then she must press the decrypt

1In a symmetric key algorithm, the same key is used for both encrypting
and decrypting the data.

2We send text as key presses to google docs through the code: docu-
ment.getElementsByTagName(“iframe”)[0].
contentDocument.dispatchEvent(keyEvent);

button and give the password to an alert box that opens. On
submission, H(pass) is calculated and automatically is being
used as the key to decrypt E(ui). Then, the decrypted text is
loaded in SecGOD editor and ui can edit it.

C. Secure Sharing

One of the most important functionality that google docs
and online office suites in general offers, is the ability to share
documents between users. Multi-user collaboration though
adds some complications since a secret key must be securely
and efficiently shared between the users. As before, lets
assume that ui creates a document di that she also wants to
share with k users from U . At this time, the only user who
knows how to decrypt di is the creator of the document (ui)
and is the one who has to share this secret information with
the users from Udi

3. This problem could be easily solved with
the use of asymmetric-key cryptography. For example, each
user (uj) would have a public/private key pair (kuj/Kuj). The
public key would be known to each member of the community,
while the secret key would be kept secret. If ui wanted to share
the password in a secure way with all uj in Udi

she would
simple encrypt the password with the public key of each user
in Udi and would send to each one the following {pass}kuj

.
Upon reception, uj would decrypt the message with Kuj

and
would find the password needed to decrypt the document. Even
though this solution would solve the problem, it would either
require to change the core functionality of the code that is
running on the server or it would need to implement a whole
web application that would make use of google docs API while
at the same time we would have to build a community based
on SecGOD’s users. Both ways are considered as inefficient so
we propose a technique which we admit it is not the best way
to share a secret, but in comparison with the existing solutions
[7], [8], [10] it is an improvement towards this direction.

Fig. 2. Securely sharing the secret between participants

Our solution for sharing the password (pass) with which di
is encrypted, is based on the fact that ui will know at least
some basic information about each uj ∈ Udi

. This information

3Udi is a subset of U and contains all the k users with which ui needs to
share the document di. Udi has already been defined in Section III.

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 592

can be anything, like name and surname, cell phone number,
birth date, name of the company that uj works for etc. So,
when ui requests to share di, she will first have to enter the
addresses of the people that she wants to share the document
with. Next, she has to select the option “Notify people via
email” and automatically a SecGOD button will appear. When
ui presses this button SecGOD first asks her to give the
password for di which is temporarily stored into the client.
Second, SecGOD finds the number of recipients (based on the
e-mail addresses that ui have added) and for each recipient
(uj) asks ui, via a pop-up window, to write an information
suj

(such as name, surname etc) about uj . Then, SecGOD
encrypts pass with suj

and adds the result (E(suj
)) to the e-

mail message as shown in figure 2. When ui presses the “Share
& save” button, the password that it is stored on the client is
immediately deleted and each uj will receive a message that
will contain the encrypted password.

Upon reception, each uj can connect to google docs and
open di. At this point, uj can only see the encrypted content
without being able to edit it. In order to decrypt di and be
able to edit it, uj presses the “Retrieve Password” button and
gives as input E(suj

) as well as the secret suj
with which

the password is encrypted. SecGOD is decrypting E(suj) and
reveals pass to uj . So, now uj owns the password with which
she can decrypt and start editing or simply reading di.

V. SECURITY ANALYSIS

In this section we analyze the behavior of SecGOD in
the presence of adversaries. First, we consider the case of a
malicious cloud service provider (CSP) and then we discuss
the case of an attacker that colludes with CSP. Attacks that
assumes that the client side code is infected with malicious
software is outside the scope of this paper.

As we described in Section IV all the operations of SecGOD
are taking place on client’s machine through the use of
Javascript. This means that when a user ui saves a new
document di, before the contents are sent to CSP, they are
encrypted with a key that the user generates. We assume that
the ui always keep this key secret. After the encryption, CSP
will only receive the ciphertext (E(di)) of the the document.
So, CSP can only break the security of SecGOD by only
implementing a ciphertext-attack on E(di).

One of the most popular block ciphers is represented by
AES. AES comes in three versions (AES-128, AES-192, and
AES-256), for which the last 3 digits of the name represent
the size of the key (e.g. AES-128 requires a 128 bit key size).
AES has been the target of a number of hacking attempts. For
example, regarding AES-128, there is no known attack which
is faster than the 2128 complexity of exhaustive search. The
time required to break the other two versions is significantly
different for AES-192, an attack with a duration of 2176 is
required, while for AES-256 a duration of 2119 is necessary.
Although the durations of these attacks are significantly lower
than the duration of an exhaustive search, from practicality
reasons they are considered to not be major threats for AES-
based systems [14].

There are though works [14], [15], [16], [17], [18], that
shows that AES can be broken with a low complexity. How-
ever these attacks are based on the unrealistic model of related-
key attacks [19] where the attacker can observe the operation
of a cipher under several different keys whose values are
initially unknown, but where some mathematical relationship
connecting the keys is known to the attacker. For example,
the attacker might know that the last 80 bits of the keys are
always the same, even though he doesn’t know, at first, what
the bits are.

Regarding the case where an attacker colludes with CSP,
the security of our protocol is again based on the fact that
breaking the encryption of AES is considered a hard problem.
However, since the attacker can collude with CSP we assume
that he will eventually gain access to all the documents that
user ui has access. Nevertheless, the attacker cannot violate
the privacy of the user, since he will not be able to break
the encryption. The only damage that he can do is to either
make changes to chiphertext, which means that the user can
no longer correctly decrypt the documents, or to completely
remove them from the cloud service.

VI. EXPERIMENTAL RESULTS

This section, presents the implementation of SecGOD. In
order to prove the effectiveness of SecGOD, we implemented
our protocol as a Greasemonkey script. For the encryption and
decryption process, we used AES 128, AES 192 and AES
256. In addition to that, we used five different texts of 799,
1437, 6945, 25980, 76526 characters long respectively and
we run the encryption and decryption algorithm 1000 times
for each text and each algorithm respectively. Then, for each
encryption and decryption process we calculated the average
time for encryption and the average time for decryption.

Figures 3, 4 and 5 displays the results following 1000
test runs in a laptop computer with a 2.50GHz CPU and
8GB RAM, running on Windows 7. As we can see from
the provided figures, AES 128 is the fastest one while AES
256 needs more time in order to complete the cryptographic
operations. More precisely, in the case where we add to
SecGOD a small text of 799 characters we have the following
results:

• AES 128:
– Average Time for Encryption: 16ms
– Average Time for Dencryption: 17ms

• AES 192:
– Average Time for Encryption: 19ms
– Average Time for Dencryption: 18ms

• AES 256:
– Average Time for Encryption: 23ms
– Average Time for Dencryption: 23ms

In the case where we add to SecGOD a big text of 76526
characters we measured the following results:

• AES 128:
– Average Time for Encryption: 143ms
– Average Time for Dencryption: 156ms

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 593

Fig. 3. 128bits Encryption/Decryption

• AES 192:
– Average Time for Encryption: 182ms
– Average Time for Dencryption: 197ms

• AES 256:
– Average Time for Encryption: 201ms
– Average Time for Dencryption: 213ms

Fig. 4. 192bits Encryption/Decryption

Fig. 5. 256bits Encryption/Decryption

VII. CONCLUSIONS

In this work we presented SecGOD, a protocol for securing
the contents of documents in online office suites. Our protocol
relied on the use of symmetric key encryption and is imple-
mented as an extension that can be successfully run through
Firefox, Chrome, Safari and Internet Explorer. In addition to

that, SecGOD is implemented in Javascript and all the opera-
tions take part at the client side. This means that no changes
need to be done at the server side code that is provided through
the cloud service provider. The effectiveness of SecGOD is
demonstrated by conducting extensive experiments measuring
the processing time for the three versions of AES (128, 192,
256 bits).

A. Future Work

As part of our future research, we intend to enhance the
functionality of SecGOD by developing a different kind of en-
cryption procedure. More precisely, we are planning to divide
the document into blocks and apply the encryption/decryption
process to each block rather than the whole document. In
addition to that, we will test the performance of SecGOD if
we automatically, with the use of Ajax, update the encrypted
text as the user edits the original text (no need for pressing
the encrypt button). Finally, as SecGOD is implemented now,
users are not able to use some core features, such as spell
checking and translation, that most of the online office suites
provides. We plan to conduct research on finding ways to in-
tegrate most of this functionality to our protocol. Furthermore,
a very challenging problem is to enhance our protocol in such
a way that importing an image and drawing a picture will be
able and secure as well. This means that when for example a
user imports an image in the document, this image must be
also encrypted and then saved to the cloud service provider
servers. Finally, what we see as a good solution for making
the document sharing and as a consequence the multi-user
collaboration more secure, is to create a web based service
that will make use of google API and each user will be able
to create groups of people. The novelty will be in the fact that
each group will share a unique public/private key pair with
which all the documents that are shared between the users of
this particular group will be encrypted.

REFERENCES

[1] CNN, “Dropbox’s password nightmare highlights cloud risks,” 2011.
[2] CNN, “More than 6 million linkedin passwords stolen,” 2012.
[3] D. C. Plummer and P. Middleton, “Predicts 2012: Four forces combine

to transform the it landscape,” tech. rep., Gartner.
[4] M. Christodorescu, “Private use of untrusted web servers via opportunis-

tic encryption,” in In Web 2.0 Security and Privacy, 2008.
[5] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell, “Stronger

password authentication using browser extensions,” in Proceedings of
the 14th conference on USENIX Security Symposium - Volume 14,
SSYM’05, (Berkeley, CA, USA), pp. 2–2, USENIX Association, 2005.

[6] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, pp. 792–807, Aug. 1986.

[7] F. G.-C. Lilian Adkinson-Orellana, Daniel A. Rodrguez-Silva and J. C.
Burguillo-Rial, “Privacy for google docs: Implementing a transparent
encryption layer,” in 2nd Cloud Computing International Conference
(CloudViews 2010), (O Porto, Portugal), May 2010.

[8] G. D’Angelo, F. Vitali, and S. Zacchiroli, “Content cloaking: Preserving
privacy with google docs and other web applications,” in PROCEED-
INGS OF 25TH ACM SYMPOSIUM ON APPLIED COMPUTING (SAC)
2010, WEB TECHNOLOGIES TECHNICAL TRACK, ACM, 2010.

[9] “gdocsbar.” www.gdocsbar.com.
[10] Y. Huang and D. Evans, “Private editing using untrusted cloud services,”

in Distributed Computing Systems Workshops (ICDCSW), 2011 31st
International Conference on, pp. 263 –272, june 2011.

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 594

[11] Wikipedia, “Online office suite — wikipedia, the free encyclopedia,”
2012. [Online; accessed 21-June-2012].

[12] Wikipedia, “Greasemonkey — wikipedia, the free encyclopedia,” 2012.
[Online; accessed 28-June-2012].

[13] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard. Berlin, Heidelberg, New York: Springer Verlag,
2002.

[14] A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir,
“Key recovery attacks of practical complexity on aes-256 variants with
up to 10 rounds,” in Proceedings of the 29th Annual international
conference on Theory and Applications of Cryptographic Techniques,
EUROCRYPT’10, (Berlin, Heidelberg), pp. 299–319, Springer-Verlag,
2010.

[15] A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the
full aes-192 and aes-256,” in Proceedings of the 15th International
Conference on the Theory and Application of Cryptology and Infor-
mation Security: Advances in Cryptology, ASIACRYPT ’09, (Berlin,
Heidelberg), pp. 1–18, Springer-Verlag, 2009.

[16] A. Biryukov, D. Khovratovich, and I. Nikolić, “Distinguisher and
related-key attack on the full aes-256,” in Proceedings of the 29th
Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’09, (Berlin, Heidelberg), pp. 231–249, Springer-Verlag, 2009.

[17] J. Kim, S. Hong, and B. Preneel, “Related-key rectangle attacks on re-
duced aes192 and aes-256,” in Proceedings of Fast Software Encryption
(FSE 07), Lecture Notes in Computer Science, pp. 225–241, Springer-
Verlag, 2007.

[18] W. Zhang, L. Zhang, W. Wu, and D. Feng, “Related-key differential-
linear attacks on reduced aes-192,” in Proceedings of the cryptology 8th
international conference on Progress in cryptology, INDOCRYPT’07,
(Berlin, Heidelberg), pp. 73–85, Springer-Verlag, 2007.

[19] E. Biham, “New types of cryptanalytic attacks using related keys,” in
Workshop on the theory and application of cryptographic techniques
on Advances in cryptology, EUROCRYPT ’93, (Secaucus, NJ, USA),
pp. 398–409, Springer-Verlag New York, Inc., 1994.

The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)

978-1-908320-08/7/$25.00©2012 IEEE 595

