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Abstract

First, we propose a novel method in the operations research of portfolio selection based on equity
screening rules determined by performance measures (PMs) under a framework of time-varying (TV)
semi-nonparametric (SNP) densities for asset returns with conditional volatility such as the popular GJR
speci�cation. The TV-SNP density, as well as providing an improved �t of the return tail dynamics due to
the �exibility driven by the TV higher-order moments, allows for tractable closed-form expressions of both
conditional reward and risk measures, speci�cally partial moments and expected shortfall. Second, as a
result, we show that some conditional PMs such as Rachev and skewness-kurtosis ratios yield portfolios
that dominate, in our out-of-sample (OOS) empirical study for stocks from the S&P 100 index, those
under the conditional Sharpe, Sortino and Omega ratios. Third, we highlight as cutting-edge the use of
conditional copula models to provide more evidence on the tail dependence of the OOS portfolio return
distributions under di¤erent PMs with respect to the benchmark Sharpe ratio portfolio. Finally, a strict
robustness analysis hinged on alternative portfolio rebalancing frequencies and weighting schemes is also
carried out.

Keywords: Investment analysis; conditional higher-order moments; copula; equity screening; expected
shortfall.
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1 Introduction

Optimal capital allocation relies critically on the modeling of asymmetry and tail-fatness of portfolio return

distributions. Recent econometric results have shown the importance of clustering as well as asymmetric

response of conditional high-order moments to positive and negative shocks; see Jondeau and Rockinger

(2003) (JR hereafter) for evidence shown under the skewed t distribution; León, Rubio and Serna (2005)

for the case of Gram-Charlier distributions; Feunou, Jahan-Parvar and Tédongap (2016) for a model with

skewed GED dynamic higher-order moments; and Theodossiou and Savva (2016) for the time-varying skewed

generalized t (SGT) distribution.1

Following this literature, we propose a probability density function (pdf) that features practicability,

�exibility and accuracy for �nancial risk management, asset allocation and asset pricing. This pdf for

modeling standardized asset returns extends the semi-nonparametric (SNP) density of León, Mencía and

Sentana (2009) through both time-varying (TV) skewness and kurtosis. Hereafter, we refer to this

distribution as TV-SNP. Our paper proceeds as follows. First, we study the parametric properties and obtain

the expression of the log-likelihood function of the TV-SNP distribution with a GARCH family speci�cation,

in particular, the Glosten, Jagannathan and Runkle (1993) model. Henceforth, this augmented model is

named as TV-SNP-GJR. Then, we analyze this model estimation results over a set of daily stock-index

and foreign-exchange returns. Furthermore, we implement the impact curve (NIC) analysis in Anatolyev

and Petukhov (2016) to the conditional skewness and kurtosis of our model to study their asymmetric

responsiveness to shocks.

Second, we use our parametric model for portfolio management. We precisely construct active portfolio

strategies through equity screening rules, as a possible alternative to the large-scale portfolio optimization

problem,2 based on time-varying performance measures (PMs) used to rank stocks and then, building

portfolios with the highest-ranking ones. These PMs extend those in previous studies which are de�ned

under an unconditional framework, and implicitly gather the dynamics of the return higher-order moments

yielding more precise reward-to-risk ratios. The conditional PMs we use are the following: (a) The Sharpe

ratio (SR) (Sharpe, 1966, 1994) as the benchmark. (b) The skewness and kurtosis ratio (SKR), see Watanabe
(2006). (c) PMs based on partial moments, such as (i) the Farinelli-Tibiletti (FT) ratio, which nests the

popular Omega and Upside potential ratios, see Farinelli and Tibiletti (2008), and (ii) the Sortino ratio, see

Sortino and Van der Meer (1991). (d) Quantile-based PMs, such as the Rachev or expected tail ratio (ETR),

and the Value-at-Risk ratio (VaRR). See Biglova, Ortobelli, Rachev and Stoyanov (2004) and Caporin and

Lisi (2011) for these two last measures, respectively.3

Third, we analyze the out-of-sample performance of portfolios composed from selecting among the stocks

that constitute the S&P 100 index. These stocks are evaluated under each PM strategy at alternative

rebalancing periods to obtain rankings used to form portfolios. We start by considering equally-weighted

portfolios and then study other portfolios driven by alternative weighting schemes, such as the shortsale-

constrained global-minimum-variance, the volatility timing and the reward-to-risk timing; see Kirby and

Ostdiek (2012). We employ conditional copula models to focus on the tail dependence between the return

distributions obtained under the SR and each alternative PM strategy; see Patton (2006, 2013). Finally, our

results under the TV-SNP-GJR are reinforced through a comparative analysis respecting the approach of

1The SGT was �rstly introduced by Theodossiou (1998).
2A feasible solution to shrinking the dimension of the large portfolio optimization problem consists on applying the principal

component analysis, which has been implemented for the case of �xed income portfolios in Ortobelli, Vitali, Cassader and Tichy

(2018).
3 In order to address the unreliability in portfolio rankings when PMs, such as SR, SKR and Sortino, yield negative values,

we use versions of these PMs modi�ed according to the methodology in Israelsen (2005).
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historical simulation.

Our empirical results show evidence on the relevance of skewness and kurtosis dynamics since the TV-

SNP-GJR models improve the goodness-of-�t of the constant skewness and kurtosis SNP (C-SNP-GJR)

model. Furthermore, not all portfolios selected according to the time-varying PM strategies yield greater

cumulative returns regarding those obtained under the benchmark SR. Namely, the portfolios based on

partial moments (Sortino, Omega and Upside potential) di¤er less to the SR than the rest of the PMs.

We �nd considerable gains in both SKR and ETR portfolio cumulative returns, indeed. As a �nal remark,

our results reconcile the con�icting evidence reported in the literature on the importance of higher-order

moments (departure of return distributions from normality) for ranking portfolios.4

The remainder of the article is organized as follows. In Section 2, we de�ne the TV-SNP-GJR model,

discuss its statistical properties and obtain closed-form expressions for the expected shortfall and partial

moments used to build conditional parametric PMs. Section 3 discusses the model estimation through an

empirical application to stock index and FX returns. Section 4 presents the conditional PMs used in our

analysis. Section 5 shows the performance of out-of-sample portfolios through equity screening based on

PMs for ranking stocks that compose the S&P 100 index. In Section 6, we summarize our conclusions. All

of the proofs are provided in the Appendix.

2 Modeling stock returns

Let the stock return rt be a process characterized by the sequence of conditional densities f (rt jIt�1; ) ;
where It�1 denotes the information set available at t�1 containing past values of rt,  =

�
�0; v0

�0
is the vector

of unknown parameters such that � is the subset characterizing both the conditional mean and variance of

rt, i.e. �t (�) = � (It�1; �) and �2t (�) = � (It�1; �), and �nally, v is the subset characterizing the shape of

the distribution of the standardized observations, zt. Thus, we assume that

rt = �t (�) + "t; "t = �t (�) zt; zt � iid g (zt; v) : (1)

So, equation (1) decomposes the return at time t into a conditional mean, �t, and a gross innovation, "t. The

term "t is de�ned as the product between the conditional volatility, �t, and the standardized innovation, zt.

It is assumed that fztg is a sequence of independent identically distributed random variables with g (�) as
pdf.

2.1 SNP density of zt

Let us de�ne zt as a linear transformation of xt with pdf given by the SNP class of distributions introduced

by Gallant and Nychka (1987), and León et al. (2009) who studied its parametric properties. Speci�cally,

zt = a (v) + b (v)xt; b = 1=�x; a = �b�x; (2)

4On the one hand, there is a stream of research, that includes the papers by Eling and Schuhmacher (2007), Eling (2008)

and Auer (2015), that advocates the choice of PM is irrelevant for portfolio evaluation. On the other hand, some studies, such

as Zakamouline (2011) and León and Moreno (2017), showed that higher-order moments of distribution do play a crucial role

for portfolio evaluation. Finally, the empirical evidence in León, Navarro and Nieto (2018), who also implement a screening

rule strategy but using sample estimations of PMs instead of a parametric approach, reinforces our results about the best

performance of portfolios under the Generalized Rachev ratio, which nests the ETR used in our study.
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where �x = E (xt) and �x =
p
V (xt) are, respectively, the mean and the standard deviation of xt with

density function

qn (xt) =
� (xt)

v0v

 
nX
k=0

vkHk (xt)

!2
; (3)

where v = (v0; v1; : : : ; vn)
0 2 Rn+1, � (�) denotes the pdf of a standard normal random variable and Hk (�)

are the normalized Hermite polynomials. These polynomials can be de�ned recursively for k � 2 as

Hk(x) =
xHk�1(x)�

p
k � 1Hk�2(x)p
k

; (4)

with initial conditions H0 (x) = 1 and H1 (x) = x. The set fHk (x)gk2N constitutes an orthonormal basis

with respect to the weighting function �(x). Thus, E�[Hk(x)Hl(x)] = 1(k=l), where 1(�) is the usual indicator

function and the operator E�[�] takes the expectation of its argument with respect to � (�) as pdf.
Since qn (�) in (3) is homogeneous of degree zero in v, we impose v0 = 1 to solve the scale indeterminacy.

If we consider n = 2 and expand the square term expression in (3), we obtain an alternative expression of

q2 (�) and, henceforth, denoted as q (�):

q (xt) = � (xt)
4X

k=0


k (v)Hk (xt) ; (5)

such that


0 (v) = 1; 
1 (v) =
2v1

�
1 +

p
2v2
�

v0v
;


2 (v) =

p
2
�
v21 + 2v

2
2 +

p
2v2
�

v0v
; (6)


3 (v) =
2
p
3v1v2
v0v

; 
4 (v) =

p
6v22
v0v

: (7)

2.1.1 Moments

The �rst four noncentral moments of xt with pdf in (5) are:

�0x (1) = 
1 (v) ;

�0x (2) =
p
2
2 (v) + 1;

�0x (3) =
6v1

�
1 + 2

p
2v2
�

v0v
;

�0x (4) =
12
�
v21 + 3v

2
2 +

p
2v2
�

v0v
+ 3: (8)

Hence, �x = �0x (1) and �
2
x = �0x (2)� �2x. Therefore, the skewness and kurtosis of zt are given by

sz � E
�
z3t
�
= a3 + 3a2b�0x (1) + 3ab

2�0x (2) + b
3�0x (3) ; (9)

kz � E
�
z4t
�
= a4 + 4a3b�0x (1) + 6a

2b2�0x (2) + 4ab
3�0x (3) + b

4�0x (4) : (10)

2.1.2 Cumulative distribution function (cdf)

Let Q (�) denote the cdf related to xt with q (�) as pdf de�ned in (5). The pdf of zt is given by

g (zt) =
1
b(v)q

�
zt�a(v)
b(v)

�
. The next result shows the expression of the cdf related to zt.
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Proposition 1. The cdf of zt in (2), denoted as G(�), is obtained as

G(zt) = Q (z�t ) =

Z z�t

�1
q (xt) dxt

= �(z�t )� � (z�t )
4X

k=1


kp
k
Hk�1 (z

�
t ) ; (11)

where z�t = (zt � a) =b, Hk(�) is given in (4) and � (�) denotes the cdf of the standard normal random
variable.

Proof. It is veri�ed that
R u
�1Hk(x)�(x)dx = � 1p

k
Hk�1(u)�(u), then (11) is directly obtained.

2.2 GJR-SNP model and moments of "t

Let �2t = E
�
"2t jIt�1

�
be the conditional variance model suggested by Glosten et al. (1993), GJR hereafter.

Then,

�2t = �0 + ��
2
t�1 + �

+
1

�
"+t�1

�2
+ ��1

�
"�t�1

�2
= �0 + ��

2
t�1 + �

+
1 �

2
t�1
�
z+t�1

�2
+ ��1 �

2
t�1
�
z�t�1

�2
; (12)

such that �0 > 0, � � 0, �+1 � 0 and ��1 � 0. We use the notation y+t = max (yt; 0), y
�
t =

min (yt; 0) where yt can be either "t or zt de�ned in (1). Another representation of (12) is given by

�2t = �0+ ��
2
t�1+ (�1 + 
Dt�1) "

2
t�1 such that Dt�1 = 1 if "t�1 < 0 and Dt�1 = 0 if "t�1 � 0. Hence, both

expressions are related through �+1 = �1 and �
�
1 = �1 + 
. Henceforth, we denote (12) as the GJR (1,1)

model (or simply GJR) which nests the GARCH (1,1) model when �+1 = ��1 . A similar speci�cation to (12)

for the conditional volatility �t, instead of �2t , is suggested by Zakoïan (1994).

If we assume (12) to be covariance stationary, then the unconditional variance of "t is obtained as

�2" � E
�
�2t
�
=

�0
1� !1

; 0 < !1 < 1; (13)

where

!1 = � + �+1 +
�
��1 � �+1

�
E
h�
z�t
�2i

: (14)

Following He and Terasvirta (1999), it can be shown that the unconditional kurtosis is given by5

k" =
E
�
"4t
�

�4"
= kz

E
�
�4t
�

�4"
= kzA (�; v) ; (15)

where kz is de�ned in (10) and

A (�; v) =
1� !21
1� !2

� 1; (16)

such that !2 is the condition for the existence of the fourth-order moment,

!2 = 2�!1 � �2 +
�
�+1
�2
kz +

h�
��1
�2 � ��+1 �2iE h�z�t �4i < 1: (17)

Respecting the unconditional skewness of "t, that is obtained as s" = E
�
"3t
�
=�3" = szE

�
�3t
�
=�3" with sz in

(9), we cannot obtain a closed-form expression. Nonetheless, if we assume �t = �, then s" and k" would be

the unconditional skewness and kurtosis of the stock returns.

5We can rewrite (12) as �2t = �0+ ct�
2
t�1 where ct = �+�

+
1

�
z+t�1

�2
+��1

�
z�t�1

�2
. Then, �4t = �

2
0+ c

2
t�

4
t�1+2�0ct�

2
t�1.

By taking expectations and assuming that E
�
�4t
�
= E

�
�4t�1

�
, then we obtain

�
1� E

�
c2t
��
E
�
�4t
�
= �20 +2�0E (ct)E

�
�2t
�
. If

we denote E (ct) and E
�
c2t
�
, respectively, as !1 and !2, we �nally obtain (15).
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Finally, the expressions E
h�
z�t
�2i

and E
h�
z�t
�4i
, de�ned in (14) and (17) respectively, can be obtained

according to the following result:

Proposition 2. Let zt = a+ bxt be the standardized variable de�ned in (2) and xt an iid sequence with

pdf given in (5), then

E
h�
z�t
�ki

=
R 0
�1z

k
t g (zt) dzt =

R �a=b
�1 (a+ bxt)

k
q (xt) dxt

=
kX
j=0

�
k

j

�
ak�jbj�j (�a=b) ; (18)

where k 2 N and �j (u) =
R u
�1 xjq (x) dx is given by (48) obtained in section ii) of the Appendix.

Note that zt � iid N (0; 1) when v1 = v2 = 0 under the SNP distribution for xt, then sz = 0 and s" = 0.

It can also be shown that E
h�
z�t
�2i

= 1=2, E
h�
z�t
�4i

= 3=2, kz = 3 and so, k" in (15) becomes the following

well-known expression:

k" = 3

0@ 1� �2 � �
�
�+1 + �

�
1

�
� 1

4

�
�+1 + �

�
1

�2
1� �2 � �

�
�+1 + �

�
1

�
� 3

2

h�
�+1
�2
+
�
��1
�2i
1A : (19)

2.3 Time-varying SNP parameters

Let "t be the gross innovation in (1) and let �2t = E
�
"2t jIt�1

�
follow the GJR model in (12). Then, the

conditional skewness and kurtosis of rt are de�ned, respectively, as

sr;t =
E
�
"3t jIt�1

�
�3t

; kr;t =
E
�
"4t jIt�1

�
�4t

: (20)

If we let the SNP distribution exhibit time-varying parameters, the pdf of xt in (5) is now de�ned as

q (xt jIt�1 ) where vi is replaced with vi;t (i = 1; 2) being measurable with respect to the information set

It�1. Hence, sr;t = sz;t and kr;t = kz;t are now time-varying such that both sz;t and kz;t are obtained by

plugging vi;t into equations (9) and (10), respectively. This way of modeling the conditional higher moments

through a rather complex non-linear mapping is the most popular one in the literature and it is known as

the indirect approach. We model vi;t according to the autoregressive framework by Anatolyev and Petukhov

(2016) (AP hereafter):

vi;t = '0i + '1ivi;t�1 +�i (zi;t�1) ; (21)

where �i (�) is a real-valued function that aims to capture the news impact curve (NIC) speci�cation of
both conditional skewness and kurtosis.6 In this paper we will mainly use the parametric "asymmetric"

speci�cation borrowed from JR:

�i (z) = '+2iz
+ + '�2iz

�; (22)

such that z+ = max (z; 0), z� = min (z; 0) and '+2i 6= '�2i. Note that (22) shows an asymmetric linear

speci�cation that can also be found, among others, in Feunou et al. (2016) and Lalancette and Simonato

(2017). Another example of NIC, �i (z), that will be used is the "transition" speci�cation which is de�ned

as

�i (z) = '2i(1 + '3i jzj)z: (23)

6According to the literature, two choices are suggested for the equations driven by the TV-SNP parameters, vit. The �rst

is as a function on lags of the standardized returns zt, and the second as a function on lags of "t . We stick to the �rst choice

since we are indeed modeling the higher-moments for the distribution of the standardized returns.
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We consider mainly two particular cases for vi;t specifying or not the autoregressive (AR) component in (21):

vi;t = '0i + '
+
2iz

+
i;t�1 + '

�
2iz

�
i;t�1; (24)

vi;t = '0i + '1ivi;t�1 + '
+
2iz

+
i;t�1 + '

�
2iz

�
i;t�1: (25)

2.4 Log-likelihood function

Note that we have previously studied the main components that de�ne the stock return equation given in

(1). If we now express the conditional density of rt in terms of the conditional density of xt, then

f (rt jIt�1; ) =
q (xt jIt�1 )
b (vt)�t

; (26)

where  is the parameter set, q (� jIt�1 ) is the conditional pdf given in (5) but with time-varying parameters
v1;t and v2;t, xt =

zt(�)�a(vt)
b(vt)

and zt (�) = (rt � �t (�)) =�t (�). The log-likelihood function corresponding to
a particular observation rt, denoted as lt, takes the following form:

lt = �1
2
ln
�
�2t (�)

�
� ln (b (vt))� ln (v0tvt)�

1

2
ln (2�)

�1
2

�
zt (�)� a (vt)

b (vt)

�2
+ ln

"
2X

k=0

vk;tHk

�
zt (�)� a (vt)

b (vt)

�#2
; (27)

such that v0;t = 1, vi;t = vi;t (#i) where #i �  is the parameter set underlying the equation of vi;t in (21).

2.5 Conditional quantile and expected shortfall

Let F (rt jIt�1 ) denote the conditional cumulative distribution function (cdf) corresponding to the TV-SNP
model of rt with pdf in (26),

F (rt jIt�1 ) =
Z rt

�1
f (rt jIt�1; ) drt =

Z r�t

�1
q (xt jIt�1 ) dxt = Q (r�t jIt�1 ) ; (28)

where Q (� jIt�1 ) is the conditional cdf, which is just the cdf Q (�) in (11) but with TV-SNP parameters, and
r�t = (rt � �t � at�t) =bt�t where at � a (vt) and bt � b (vt). The �-quantile, or VaR at the � con�dence

level, of the distribution of the stock return rt is r�;t � F�1(� jIt�1 ).7 So,

r�;t = �0t + �1tQ
�1
t (�) ; (29)

where �0t = �t + at�t, �1t = bt�t and Q
�1
t (�) � inf fx jQ(x jIt�1 ) � �g is the conditional �-quantile with

q (� jIt�1 ) as pdf. Since q (� jIt�1 ) nests the N (0; 1) distribution for v1;t = v2;t = 0, then Q
�1
t (�) = ��1 (�) =

z�. Once we have obtained r�;t in (29), the expected shortfall (ES) is easily computed.

Proposition 3. Let rt be the stock return with pdf in (26) and let r�;t be the conditional �-quantile in
(29), then

ESt (�) = Et�1 (rt jrt � r�;t )

= �0t + �1;tEt�1
�
xt
��xt � r��;t

�
= �0t +

�1t
�
�1t
�
r��;t
�

(30)

where r��;t = (r�;t � �0t) =�1t and �1t (u) =
R u
�1 xq (x jIt�1 ) dx is the conditional version of �1 (u) =R u

�1 xq (x) dx that is obtained in section ii) in the Appendix.

Proof. See section iii) in the Appendix.
7Note that r�;t � F�1(� jIt�1 ) can be obtained by using, for instance, the Matlab function named fzero (�nding roots of

nonlinear equations).
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2.6 Conditional partial moments

The lower partial moments (LPMs), see Fishburn (1977), measure risk by negative deviations of the stock

return in relation to a return threshold, �. The conditional LPM of order m where the stock return rt follows

a TV-SNP process, i.e. with pdf given by (26), is de�ned as

LPMt(�;m) =

Z �

�1
(� � rt)mf(rt jIt�1 )drt: (31)

The LPMs are asymmetric risk measures in contrast to the popular symmetric risk (standard deviation).

The conditional upper partial moment (UPM) of order m and return threshold � is de�ned as

UPMt(�;m) =

Z 1

�

(rt � �)mf(rt jIt�1 )drt: (32)

In this paper we are only interested in the LPMs of orders 1 and 2, that is, LPMt(�; 1) and LPMt(�; 2) in

(31). Respecting the UPMs, we use UPMt(�; 1) in (32). Next, we obtain the closed-form expressions of the

two LPMs and the UPM.

Proposition 4. Let rt be the stock return driven by the TV-SNP process with pdf in (26), then

LPMt(�; 1) = (� � �0t) �0t (��t )� �1t�1t (��t ) ; (33)

LPMt(�; 2) = (� � �0t)2 �0t (��t ) +
�
�21t � 2��1t

�
�1t (�

�
t ) + �

2
1t�2t (�

�
t ) ; (34)

UPMt(�; 1) = �t � � + LPMt(�; 1); (35)

where �0t = �t + at�t, �1t = bt�t, ��t = (� � �0t) =�1t, �0t (u) = Q (u jIt�1 ) and �jt (u) =R u
�1 xjq (x jIt�1 ) dx is the conditional version of �j (u) =

R u
�1 xq (x) dx obtained in section ii) of the

Appendix.

Proof. It is obtained straightforwardly.

3 Estimation

3.1 Dataset and summary statistics

We start analyzing the time-series behavior of six stock indexes and four foreign exchange (FX) rates. The

data employed were (daily) percentage log returns, which were computed as rt = 100 log (Pt=Pt�1) from

series fPtgTt=1 of daily closing prices for Nasdaq, TAIEX, Bovespa, CAC, DAX and EUROSTOXX stock

indexes; and pound sterling to euro (UK-EU), Japanese yen to U.S. dollar (JAP-US), Canadian dollar to

U.S. dollar (CAN-US) and pound sterling to U.S. dollar (UK-US) FX rates. All of the price series were

sampled from September 28, 1997 to September 27, 2017 to obtain a total of T = 5; 219 observations. The

data were obtained from Datastream.

Table 1 exhibits summary statistics of both stock-index and FX returns. The means, medians, standard

deviations and ranges (minima and maxima values) are comparable to those observed in other studies.

Clearly, all the series show high leptokurtosis with the UK-US returns presenting the largest kurtosis (14.7),

and the TAIEX the smallest (6.79). The degree of unconditional skewness is heterogeneous among the

series, with the largest negative (in absolute value) and positive skewness corresponding to the JAP-US

(-0.47) and UK-US (0.57) returns, respectively, and the smallest to the Nasdaq (-0.06). The UK-EU and

UK-US returns are positively skewed whilst the rest of the series present negative skewness. FX returns tend

to exhibit larger skewness than stock-index returns. In all cases, the Jarque-Bera (J-B) test rejects the null

of normality, motivating the use of our SNP distribution.
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3.2 Estimation results

The parameters of the SNP models we considered in this analysis were estimated using maximum likelihood

(ML) according to equation (27). To account for the small structure in the return conditional means, we

�ltered the rt series with autoregressive processes of di¤erent orders for the conditional mean, �t. Since the

estimations, under either �ltered (rt � b�t) or non-�ltered returns, yielded rather similar results, we decided
to report only the results for non-�ltered data. Therefore, we adopt a constant mean equation for rt, i.e.

�t = �. The stylized features of returns volatility were described through the GJR process in (12).

To model skewness and kurtosis, we started with a constant SNP (C-SNP) speci�cation, where vi;t;

i = 1; 2 are constant, i.e. (v1;t; v2;t) = ('01; '02). This structure is nested in equations (24) and (25) which

allow for time-varying vi;t. Note that, unlike Hansen�s (1994) skewed Student-t, there are no constraints on

the C-SNP parameters in order to ensure a well-de�ned pdf. In short, the C-SNP becomes simpler and so,

easier to estimate.

Next, we consider the TV1-SNP model, de�ned in (24) ; which speci�es vi;t directly as function of past

positive and negative standardized residuals, z+t and z�t .
8 The TV1-SNP model provides the C-SNP with

�exibility to capture dynamics in skewness and kurtosis such as clustering and asymmetric responses to

positive and negative shocks.

Finally, we implement the TV2-SNP model, de�ned in (25), which includes AR(1) structure in vi;t.

Note that (25) resembles the GJR process for the conditional variance, although its parameters do not have

the same interpretation as in the GJR. To avoid local optima, starting parameter values were obtained by

using the adaptive simulated annealing optimization algorithm applied sequentially to nested speci�cations

beginning from the Normal-GJR model.

In Tables 2-4 , we report the results of the various estimations. Table 2 presents the estimation results

of model C-SNP-GJR. The parameter estimates of both mean and variance equations are in line with those

reported in numerous studies. The unconditional mean parameter, �, is not signi�cant for any of the return

series, except for the DAX returns for which it is signi�cant at the �ve per cent level. The parameter

estimates of the variance equation show that, for all series, the model correctly captures the asset returns

stylized features of (i) clustering and high persistence in volatility, and (ii) asymmetric response of volatility

to positive and negative shocks. The condition for the existence of the unconditional second moment of "t,

given by !1 in (14), is satis�ed for all series. In all cases, the unconditional standard deviations implied by

model C-SNP-GJR are very close to the sample ones. For instance, the estimated �" in (13) equals 2:46

and the sample standard deviation is 2:47 for Bovespa. Both persistence, �, and asymmetry, ��1 6= �+1 , at

the level of volatility in (12) are not altered either through the Normal or the di¤erent SNP speci�cations.

Similar results have been reported by JR for the case of Hansen�s skewed Student-t distribution, and Harvey

and Siddique (1999) for the non-central Student-t. For all series, the parameters that capture skewness and

kurtosis, '01 and '02, are both signi�cant at least at the one per cent level. The condition for the existence

of the unconditional fourth moment of "t, given by !2 in (17), is met for all FX return series, whilst among

the stock index series only Bovespa satis�es this condition. We also inspected the condition in (17) for the

Normal-GJR and found it met for all series. These results show that when extending the Normal-GJR to the

C-SNP-GJR in order to �t high-order moments, the condition for the existence of the unconditional fourth

moment seems to become more demanding, in line with the results in Carnero, Peña and Ruiz (2004) for

8 It is worth noting that we also considered vit as function of past residuals, i.e. "
+
t and "�t , and found it also worked well,

and estimation results did not change signi�cantly. Thus, we decided to work with the standardized residuals as they are more

intuitively linked to skewness and kurtosis.
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the case of the Student-t distribution. The last row of Table 2 presents the likelihood ratio (LR) test for

the Normal-GJR and C-SNP-GJR. The LR test null is rejected for all series at any reasonable signi�cance

level, which shows that the SNP distribution signi�cantly improves the Normal in �tting the skewness and

leptokurtosis of the empirical return distributions.

Next, we analyze the goodness-of-�t of TV-SNP-GJR models with and without AR(1) component for

vi;t, equations (24) and (25) ; respectively. Table 3 gives results for estimation of the TV1-SNP-GJR model.

First, the parameter estimates of the conditional variance equation remain similar in magnitude to those

of the C-SNP-GJR, and their statistical signi�cance does not seem to be a¤ected. Second, for all series,

either '+2i or '
�
2i (or both) are signi�cant. This implies all return series clearly present skewness and kurtosis

clustering dynamics similar to that of volatility. Third, the asymmetric response of skewness and kurtosis to

positive and negative shocks seems milder than that of volatility. Note that in v1;t equation, both '
+
21 and

'�21 are statistically signi�cant only for Nasdaq, UK-EU and JAP-US returns, whilst in v2;t equation, both

'+22 and '
�
22 are signi�cant for TAIEX, Bovespa, DAX and JAP-US returns.

Table 4 presents the results of estimating the TV2-SNP-GJR model. First, the conditional variance

parameter estimate magnitudes are not a¤ected by the addition of the AR(1) term to the vi;t equations.

Second, for most series either '11 or/and '12 are signi�cant indicating persistence in skewness and kurtosis.

For UK-EU and JAP-US series, both '11 and '12 are not signi�cant. Third, including '1i do not seem to

alter much the estimates of '+2i and '
�
2i, whose magnitudes remain stable as can be clearly seen for TAIEX,

CAC, EUROSTOXX and JAP-US returns. Fourth, for all series, either '+2i or/and '
�
2i remain statistically

signi�cant in relation to the results in Table 3. Fifth, note that '+21 and '
�
21 are both statistically signi�cant

only for CAC and JAP-US series, whilst '+22 and '�22 are both statistically signi�cant only for Nasdaq,

TAIEX and JAP-US returns. Summing up, for all series, the addition of the AR(1) term seems to provide a

more parsimonious �t of the higher-order moment dynamics, as the TV2-SNP-GJR likelihood function value

is larger than that of the TV1-SNP-GJR model.

Figure 1 presents plots and histograms of skewt and Kurtt series under the TV2-SNP-GJR speci�cation

for vi;t, which are useful to corroborate that the model yields conditional skewness and kurtosis series within

expected ranges. The average conditional skewness is -0.27 and -0.38 for CAC and JAP-US, respectively.

These values should be compared with the sample skewness of the standardized residuals -0.19 and -0.23,

respectively. Concerning the average conditional kurtosis, we �nd values of 3.81 for CAC and 4.39 for JAP-

US, which compare to kurtosis of 4.40 and 5.77, respectively, from standardized residuals. In summary, our

empirical statistics show predominant daily negative skewness and leptokurtosis typical of �nancial asset

returns; see Albuquerque (2012) for a study on the negative skewness featured by index returns.

Finally, we implement both skewness and kurtosis NIC de�ned directly for skewt and Kurtt; as well

as for the parameters vi;t, unlike the original NIC analysis of AP which is de�ned only for the parameters

that determine the skewness. The NIC plots in Figure 2, speci�cally the linear asymmetric NIC in equation

(22) for CAC and JAP-US returns (see rows 1 and 2 in Figure 2), show that both skewt and Kurtt (i)

are highly non-linear functions of vi;t, and (ii) respond all asymmetrically to positive and negative shocks.

Besides, note that there is no sign asymmetry for skewness since it is negative whatever the sign of the shock.

Regarding kurtosis NICs, we observe asymmetric response to either positive or negative shocks. For instance,

the kurtosis NIC of CAC increases proportionally more after a positive rather than after a negative shock

of the same magnitude. We implement transition NIC in equation (23), as well as asymmetric NIC, for the

case of TAIEX (see rows 3 and 4) in order to study the performance under an alternative NIC speci�cation.

The transition NICs display similar but smoother patterns as the asymmetric NICs for both skewness and

kurtosis.
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Figure 1: Conditional skewness and kurtosis

CAC

JAP-US

Plots and histograms of conditional skewness (blue) and kurtosis (red) from model TV2-SNP-GJR.
Return series: CAC (upper panel), JAP-US (lower panel).
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4 Conditional performance measures

The PMs we use in this section have been selected in order to include the well-known Sharpe ratio (Sharpe,
1966, 1994) as well as measures based on higher moments, partial moments and quantiles. Some references,
among others, Caporin, Jannin, Lisi and Maillet (2014), Bacon (2008) and Eling and Schuhmacher (2007),
might be a good starting guide to the large set of PMs proposed in the �nancial economics literature. Next,
we consider PMs with closed-form expressions under the conditional TV-SNP-GJR distribution. In short,
we implement conditional parametric PMs.

4.1 Sharpe ratio

We start with the SR as our benchmark PM. A slightly di¤erent version of the SR is de�ned as (�t � �) =�t,
where � is the return threshold (e.g., risk-free rate, zero return,...), �t � E [rt jIt�1 ] and �t �

p
V [rt jIt�1 ]

denote the conditional mean and volatility of the stock return. A drawback of using the previous ratio for
ranking stocks occurs when the numerator, or excess return �t��, is negative. This pattern is very common
in bear markets (high level of recession and unemployment) like the most recent U.S. bear market occurred
in 2007-2009. Israelsen (2005) suggests a modi�ed version to overcome that problem. It consists of adding
an exponent to the denominator of SR, i.e. the exponent is the sign function of the numerator. In short,
our SR onwards is as follows:

SRt (�) =
�t � �

�
sgn(�t��)
t

; (36)

where sgn (z) = z= jzj if z 6= 0 and sgn (z) = 0 if z = 0.

4.2 Skewness-kurtosis ratio

Pézier and White (2006) suggests using an adjusted SR which explicitly adjusts for skewness and kurtosis
by incorporating a penalty factor for both negative skewness and excess kurtosis. This measure has been
welcomed by practitioners since it does take into account these higher moments. Nevertheless, a recent study
by León, Navarro and Nieto (2018) shows that when ranking stocks from the S&P 500 index there is no
barely di¤erence between this PM and the SR. An alternative PM, suggested by Watanabe (2006), aims
to explicitly adjust for skewness and kurtosis by using the simple skewness-kurtosis ratio, sr;t=kr;t, where
sr;t � skew (rt jIt�1 ) and kr;t � kur (rt jIt�1 ) denote, respectively, the conditional skewness and kurtosis
of the stock return in (20). Again, higher rather than lower ratios are preferred. Since this PM may lead
to ranking problems when the numerator becomes negative, we propose �as a possible solution�a modi�ed
version based on Israelsen�s aforementioned idea. Hereafter, our skewness-kurtosis ratio is de�ned as

SKRt =
sr;t

k
sgn(sr;t)
r;t

: (37)

4.3 PMs based on partial moments

In this section we obtain conditional parametric PMs based on the SNP distribution. Unconditional
parametric PMs based on partial moments under the Gram-Charlier and the SNP distributions can be
found in León and Moreno (2017). The Sortino ratio (Sortino and van der Meer, 1991) is the mean excess
return, �t� �, per unit of risk measured by the square root of LPM of order 2 of the stock return de�ned in
(34). Note that this PM presents the same problem as the previous measures since the numerator may be
negative. As a solution, we propose the following modi�ed Sortino ratio:

Sortinot (�) =
�t � ��p

LPMt(�; 2)
�sgn(�t��) : (38)
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Next, we use two PMs which are special cases of the Farinelli and Tibiletti (2008) ratio:

FTt (�; q;m) =
q
p
UPMt(�; q)

m
p
LPMt(�;m)

; (39)

with q > 0 and m > 0. The higher the value for q, the greater the investor�s preference for expected gain,
and the higher the value for m the greater the investor�s dislike of expected losses. If q = m = 1, we have
the Omega ratio (Keating and Shadwick, 2002) and for q = 1 and m = 2, we have the Upside potential ratio
(Sortino, van der Meer and Platinga, 1999). These PMs will be represented as FTt (�; 1; 1) and FTt (�; 1; 2),
respectively.

4.4 PMs based on quantiles

A class of PMs similar to (39) replaces UPM and LPM, respectively, with reward and risk measures based
on quantiles. First, the VaRR (Caporin and Lisi, 2011), de�ned as the ratio of the upper and lower quantiles
of the stock return distribution, is given by

V aRRt (�) =

����V aRt (1� �)V aRt (�)

���� ; (40)

where V aRt (�) � Q�1t (�) and V aRt (1� �) � Q�1t (1� �) are, respectively, the conditional lower and
upper quantiles of rt given the information set It�1 with � set equal to 1%, 5%, 10% and 20%. See equation
(29).
Second, the ETR or Rachev ratio (Biglova et al., 2004) is de�ned as

ETRt (�) =

����ESt (�rt; �)ESt (rt; �)

���� ; (41)

where ESt (rt; �) is just the conditional ES measure in (30) with rt as the random variable, while ESt (�rt; �)
is the same de�nition but replacing rt with �rt. Thus, the numerator is the reward measure corresponding
to the right-hand side (gains) of the return distribution, Et�1 (rt jrt � V aRt (1� �) ), while the denominator
is the risk measure de�ned as Et�1 (rt jrt � V aRt (�) ). We can rewrite (40), similar to (41), as a quotient of
conditional lower quantiles, i.e. V aRt (�) � V aRt (rt; �) and V aRt (1� �) � V aRt (�rt; �). An application
of (41) for portfolio selection is provided by Bruni, Cesarone, Scozzari and Tardella (2017)

5 Equity screening and portfolio selection

Once we have proposed the SNP distribution for stock returns and discussed its properties and estimation,
we now apply the TV-SNP-GJR pdf for equity screening under alternative PMs to create portfolios.

5.1 Dataset description

We study the performance of portfolios formed from choosing stocks that were constituents of the S&P 100
index in October 2017. The data series used are sampled over the period November 4, 2004 to October
18, 2017, a total of T = 3; 262 daily log-return observations. After �ltering, we restrict to 90 stocks that
continuously belonged to S&P 100 during our sample period. We split the series into two subsamples, one
for in-sample and another for the out-of-sample (OOS) period. The in-sample period goes from November
4, 2004 to December 7, 2009. We always use a constant-size rolling window of Nw = 1; 282 for the in-sample
and, also, when estimating across the OOS period. The stocks in our study are listed in Table 5, along with
their ticker symbol and three-digit Standard Industrial Classi�cation (SIC) codes.
Table 6 presents some summary statistics of data analyzed in this section. The top panel presents

sample moments only for the in-sample daily returns. The means and standard deviations are typical of
asset returns. The kurtosis coe¢ cients reveal the stock return distributions are highly leptokurtic (kurtosis
median is 10.883). In contrast with the stock indexes in Table 1, the skewness of the single stocks is
predominantly positive (skewness median is 0.0687).
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Table 6: Summary statistics of S&P 100 stocks and estimation results

Cross-sectional distribution

In-sample period: 11/4/2004-12/7/2009

Mean 5% 25% Median 75% 95% M

Daily obs. 1,282

Mean

Std. dev.

Skewness

Kurtosis

0.0096

2.3180

-0.0185

13.936

-0.0539

1.3097

-0.7673

7.1903

-0.0142

1.6967

-0.2129

8.6502

0.0129

2.0569

0.0687

10.883

0.0290

2.6879

0.2832

14.893

0.0983

4.1054

0.8368

24.162

Conditional mean


0 0.0316 -0.0264 0.0011 0.0242 0.0511 0.1258 0.03


1 0.0104 -0.0938 -0.0240 0.0125 0.0519 0.0963 0.07


m -0.1138 -0.2404 -0.1521 -0.1256 -0.0667 0.0180 0.31

Conditional variance

�0 0.1580 0.0162 0.0439 0.0739 0.1259 0.5767 0.42

� 0.8750 0.7238 0.8556 0.8884 0.9156 0.9529 0.76

�+1 0.0232 0.0000 0.0000 0.0131 0.0374 0.0713 0.11

��1 0.0683 0.0000 0.0256 0.0622 0.0942 0.1816 0.37

�+m 0.0354 0.0000 0.0000 0.0000 0.0240 0.1763 0.09

��m 0.1765 0.0202 0.0697 0.1277 0.2027 0.5329 0.42

C-SNP

'01 0.7477 0.4056 0.6475 0.7242 0.8068 1.2177 1

'02 0.3468 0.1704 0.2705 0.3345 0.3982 0.6182 0.98

TV1-SNP

'01 0.7325 0.2018 0.6139 0.7108 0.8404 1.2597 0.96

'+21 0.0034 -0.5236 -0.1848 0.0291 0.1897 0.4588 0.66

'�21 -0.0194 -0.6294 -0.1953 0.0258 0.1822 0.4608 0.57

'02 0.3549 0.0124 0.2460 0.3446 0.4812 0.6285 0.88

'+22 -0.0540 -0.4200 -0.1731 -0.0522 0.0428 0.3021 0.53

'�22 -0.0379 -0.4220 -0.1458 0.0062 0.0826 0.2001 0.37

Model (TV1-SNP-GJRA):
rj;t = 
0j + 
1jrj;t�1 + 
mjrm;t�1 + "j;t; "j;t = �j;t (�) zj;t; j = 1; : : : ; 90; zj;t � iid g (zj;t; vj;it) ;
�2j;t = �0j + �j�

2
j;t�1 + �

+
1j

�
"+j;t�1

�2
+ ��1j

�
"�j;t�1

�2
+ �+mj

�
"+m;t�1

�2
+ ��mj

�
"�m;t�1

�2
;

vj;it = '0ij + '
+
2ij

�
z+j;t�1

�2
+ '�2ij

�
z�j;t�1

�2
; i = 1; 2:

This table presents some summary statistics of the in-sample daily log returns of stocks that constitute the S&P 100
index data used in this analysis. The columns present the mean, median and percentiles from the cross-sectional
distribution of the measures listed in the rows. The second panel presents summaries of the estimated C-SNP-GJRA
('+2ij= '

�
2ij= 0) and TV1-SNP-GJRA models for the �rst in-sample window returns, j denotes an individual stock

from S&P 100, and M denotes the number of stocks out of 90 (in %) with signi�cant parameter estimates at 5%
level.
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5.2 Model and estimation of individual stock returns

The procedure to estimate all the parameters for each stock return series, rj;t, is based now on the Gaussian
quasi-ML (QML) method. Thus, at a �rst stage, we estimate the conditional mean and variance by using the
speci�cation from Oh and Patton (2017). Speci�cally, the AR(1)-GJR(1,1) model augmented with lagged
market (S&P 100) return information for the stock return series is given by:

rj;t = 
0j + 
1jrj;t�1 + 
mjrm;t�1 + "j;t; "j;t = �j;tzj;t; j = 1; :::; 90 (42)

�2j;t = �0j + �j�
2
j;t�1 + �

+
1j

�
"+j;t�1

�2
+ ��1j

�
"�j;t�1

�2
+ �+mj

�
"+m;t�1

�2
+ ��mj

�
"�m;t�1

�2
; (43)

where "m;t is the demeaned market return. Onwards, we refer to model in (42)-(43) as GJRA. In the lower
panel of Table 6 we present information on the parameter estimates of the model above for the in-sample
period. The estimation is carried out in two stages. Thus, given the �rst-stage (Gaussian) QML estimation
in which we obtain the standardized returns, i.e. zj;t = "j;t=�j;t, the second stage consists of estimating the
parameters of alternative speci�cations of the SNP distribution by ML. Our estimates of the mean equation
show a small positive AR(1) coe¢ cient, 
1j , that is signi�cant only for 7% of the stocks, and an estimate
for the lagged market return parameter, 
mj , that is predominantly negative, larger in magnitude than

1j and signi�cant for 31% of the stocks. The conditional variance parameter estimates in (43) show most
stock returns exhibit typical volatility clustering and high persistence in volatility, as well as asymmetric
response of volatility to positive and negative news. Furthermore, stock volatility asymmetric response is
in average greater to market shocks than to individual ones. We �nd evidence of leverage e¤ect since the
average estimate of ��1j is higher than that of �

+
1j , namely 0:06873 > 0:0232. The second-stage estimates

for the C-SNP model show that virtually all stock returns present asymmetric and leptokurtic distributions.
Besides, the estimated TV1-SNP parameters show evidence of larger response of v2t to positive rather than
to negative shocks, whilst the response of v1t to shocks is more symmetric (see median values).

5.3 Time-varying portfolio selection

Through our constant-size rolling window, we obtain the estimations of a battery of PMs across the OOS
period for each individual stock and setting a zero mean return as the threshold, � = 0. We compute a total
of thirteen PMs, namely: SR in (36), SKR in (37), Sortino (38), Omega and Upside potential ratios nested
within the FT family in (39), as well as VaRR in (40) and ETR in (41) for the levels of �: 1%, 5%, 10% and
20%.
Next, we explain the steps to construct the di¤erent portfolios. First, the last day of each window, we

compute all PMs based on the one-day-ahead forecast of the conditional mean, variance and vi;t for each
stock assuming the TV1-SNP speci�cation for zj;t in (42). Second, the stocks are ranked on the basis of each
PM and then, we select the ten best-ranked stocks to build initially an equally-weighted (EW) portfolio,
i.e. wj;t = 1=10 where j = 1; :::; 10. We keep this portfolio for the next 5 days to then, compute the daily
portfolio returns for these �ve days. Third, by rolling the window each �ve days, we repeat the previous two
steps a total of 396 times and change each time the portfolio composition according to the equity screening
from the di¤erent PMs. Fourth, we obtain thirteen OOS portfolio return series of 1; 980 daily observations.
We denote each of these return series according to the selected PM.
We also repeat the above procedure but changing now the rebalancing frequency. So, we estimate

each stock return model under the OOS period every 22 days (monthly frequency) and 10 days (biweekly
frequency). Thus, these two rebalancing horizons account for 90 and 198 estimations, respectively. We
estimate both the C-SNP-GJRA and TV1-SNP-GJRA models for all S&P 100 stocks.9 Hereafter, we only
use the latter model to build the alternative PMs.

9For the second estimation stage, if we estimate the TV-SNP with the AR component, we can �nd identi�cation problems
when '+2i = '

�
2i = 0 since there exists a parameter subset ('0i; '1i) verifying (1� '1i) v�i = '0i, where v�i denotes the stationary

level. More details can be seen in the Monte-Carlo simulation in Appendix C in JR. Note the high number of estimations involved
in our application, e.g. 35; 640 for weekly rebalancing, makes rather impracticable to check for identi�cation problems. This is

21



Figure 3 represents the spreads between the cumulative returns on each portfolio and the SR under the
TV1-SNP-GJRA during the OOS period for the three di¤erent rebalancing periods. It is exhibited that the
size of spreads �notice the scale in the vertical axis�become much higher under both SKR and ETRs, except
for the ETR (95,5). Negative spreads, displayed the majority of days, are obtained under monthly frequencies
in many portfolios. We also �nd that VaRR portfolios show positive spreads in most cases under biweekly
frequency except for the VaRR (80,20) where, surprisingly, the monthly frequency cumulative returns are
consistently higher. Finally, unlike the Omega portfolio, we obtain positive spreads under both Sortino and
Upside potential portfolios for weekly frequency.
A similar analysis is carried out in Figure 4 but the spread is now respecting the S&P 100 index returns.

Again, the portfolios with the best performance correspond to both ETR and SKR strategies. The monthly
rebalancing yields lower performance although rather better than in the case displayed in Figure 3.10

We also compute the portfolio turnover, not presented here to save space, as the median of the number of
stocks changing in each 10-stock portfolio over a sample of di¤erent OOS rebalancing dates. A low turnover
for a PM strategy means that the portfolio composition does not di¤er much over time. Speci�cally, for
weekly rebalancing we �nd that the turnover median over 396 OOS rebalancing weeks is not higher than
three (out of ten) for both SKR and ETR, whilst for the other PMs is around seven. A similar result does
hold under the other two rebalancing frequencies.11

5.4 Alternative weighting schemes

We have previously applied the naive EW portfolio rule. Here, we are interested in the relative portfolio
performances, under the PMs used in the previous section, but now adopting di¤erent rules to set up portfolio
weights. Thus, we consider the following schemes. First, the shortsale-constrained global-minimum-variance
(GMV) portfolio, i.e. bwt = argminw0

t
b
twt s.t. w0

tl = 1 and wt � 0, where b
t is the estimated conditional
covariance matrix of order 10 and l is a vector of ones.12 Second, the volatility timing (VT) portfolio, i.e.bwj;t = �

1=b�2j;t� =P10
j=1

�
1=b�2j;t� where b�2j;t is the estimated conditional variance. Third, the reward-to-

risk timing (RRT) portfolio, i.e. bwj;t = �b�+j;t=b�2j;t� =P10
j=1

�b�+j;t=b�2j;t� where b�+j;t = max(b�j;t; 0) with b�j;t
denoting the estimated conditional mean. For more details about these weighting schemes, see Kirby and
Ostdiek (2012).13

To proceed with the weighting scheme�s comparison, we compute the cumulative portfolio daily return
spreads for each PM strategy under the GMV, VT and RRT schemes with respect to the EW one. These
spread series only for weekly rebalancing frequency are exhibited in Figure 5.14 Our results show that (i)
the RRT scheme overall dominates the rest of the weighting schemes for all PMs consistently across the
OOS period; (ii) the GMV tends to signi�cantly underperform the other schemes for all PMs except for the
ETR (80,20); (iii) the VT scheme yields portfolio returns between those obtained under the previous two
weighting methods; and (iv) GMV performs less well (negative spread) than the EW portfolio for most PMs.
As a result, we show that portfolio performance is signi�cantly sensitive to alternative schemes to the naive
diversi�cation. Besides, we �nd similar results for the SR portfolios which are not displayed in Figure 5.

the reason why we have left out the AR component in this section.
10The SR portfolio, which is not included in Figure 4, shows a positive spread before the middle of the OOS period under

the monthly frequency.
11Other works consider portfolios composed by the same set of stocks albeit with time-varying weights. However, the turnover

here allows for di¤erent stocks to enter the portfolios, so displacing others, each rebalancing date.
12 It is worth mentioning Carroll, Conlon, Cotter and Salvador (2017) for shortsale-constrained GMV portfolios under

alternative dynamic conditional correlation (DCC) settings. They show that allocation strategies based on DCC provide
performance bene�ts relative to EW portfolios. This interesting analysis is beyond the scope of our paper.
13These schemes contribute somehow to managing portfolio diversi�cation since the classical mean variance theory (MVT)

may yield portfolios that are highly concentrated. An interesting avenue for further research is obtaining diversi�ed MVT
portfolios by using the classical objective function of the portfolio variance augmented with a term called the diversi�cation
ratio, which is a function of weights. For more details, see Schmidt (2018).
14To save space, the results for biweekly and monthly rebalancing are not presented but available from the authors.
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Next, we analyze the behaviour of the four weighting schemes under the weekly rebalancing by comparing

each PM strategy to the SR one. To do so, we obtain the daily conditional correlations between the portfolio

return according to the selected PM and the SR portfolio return for each scheme. We apply the conditional

Gaussian copula, see Patton (2006), where the marginal distributions follow the C-SNP-GJR model. In

short, the copula dependency parameter (or conditional correlation in this particular case), �t, is driven by

an ARMA(1,q)-type process:

�t = �

�

0 + 
1�t�1 + 
2

1

q

Pq
j=1 �

�1 (u1;t�j) �
�1 (u2;t�j)

�
; (44)

where � (x) = (1� e�x) (1 + e�x)�1 is the logistic transformation that keeps �t within (�1; 1), and
ui;t = Fi;t (ri;t jIt�1 ) i = 1; 2 where Fi;t (� jIt�1 ) denotes the conditional marginal distribution. In our

study, we set q = 8 which is a common value adopted in previous studies, see e.g. Reboredo (2011).

As an example, Figure 6 exhibits the time series of (44) for the di¤erent PMs just under the RRT scheme.

Note that the daily conditional correlations are very high for Sortino, Omega, Upside Potential and most

PMs based on VaRR. Finally, those portfolios based on ETR and SKR exhibit remarkably low correlations

respecting the SR portfolio, which enhance the di¤erence between the latter and the former PMs.15 Notably,

this pattern is also observed for the other weighting schemes considered. Because of these �ndings, in the

following section we explore the behavior of the upper/lower tail of the bivariate distribution of SR and

every other PM portfolio so as to highlight possible di¤erences in simultaneous occurrence of large/small

PM portfolio returns.

5.5 Tail dependence analysis

Next, we focus on the tail dependence measuring the probability that two variables are either in the lower

or in the upper joint tails. Speci�cally, we study the propensity of two portfolio returns, from a given PM

and SR strategies, to upward or downward comovements. This behavior is explained through the upper

and lower tail dependence parameters denoted by �U 2 [0; 1] and �L 2 [0; 1], respectively. Larger values
of �U (�L) indicate greater trend of the portfolio returns to cluster in the upper (lower) tail of a bivariate

distribution. In such a case, the returns are said to be upper (lower) tail dependent. More precisely, �U (�L)

measures the probability that a random variable �de�ned as a PM portfolio return�is above (below) a high

(low) quantile, given that a second random variable �de�ned as the SR portfolio return�is above (below) a

high (low) quantile. This dependence structure is modelled through copula functions.

Note that the Gaussian copula does neither capture upper nor lower dependence where the extreme tails

of the distribution of the variables are independent, i.e. �U = �L = 0. Thus, we implement alternative

copula models allowing for both/either upper or lower tail dependence. Namely, among the wide range of

copula functions, we use the symmetrized Joe-Clayton (SJC), Gumbel and Clayton copulas. The SJC has

both upper and lower tail dependence parameters, whilst Gumbel (Clayton) gathers only upper (lower) tail

dependence. The SJC is de�ned directly in terms of the above probabilities. Nonetheless, both Gumbel

and Clayton copulas are de�ned in terms of the parameters 
G > 0 and 
C > 1, respectively. Hence, the

corresponding probabilities are given by �U = 2 � 2(1=
G), �L = 0 for the Gumbel copula and, �U = 0,

�L = 2
�(1=
C) for the Clayton copula, see Patton (2006, 2013).

15These results are also in line with those by León et al. (2018).
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Table 7 reports the probability estimates of the previous time-invariant copula models under the RRT
scheme with weekly rebalancing.16 We obtain the following conclusions. Firstly, for the SJC copula it is
found a statistically signi�cant and higher asymmetry value on the lower than on the upper tail, mainly for
both SKR and ETR. Note that the estimates of �L double those of �U for the latter two strategies. Secondly,
for Sortino, Omega, Upside potential and most VaRR cases both SJC probability coe¢ cients are similar in
magnitude as well as higher than the SKR and ETR counterparts. This means that the former PMs exhibit
higher upper tail dependence respecting the SR than the latter. Thirdly, according to both Clayton and
Gumbel copulas, it can be shown that both SKR and ETR exhibit statistically signi�cant and lower values
for both �L and �U than the other PMs. This evidence is in accordance with the previous results under SJC.
Summing up, these �ndings support the superior performance (i.e., positive spread for cumulative returns)
of both SKR and ETR displayed in Table 3 under the weekly rebalancing.

Table 7: Estimates for copula models (PM-SR)

PM �U (SJC) �L (SJC) �L (Clayton) �U (Gumbel)

SKR 0.38� 0.65� 0.69� 0.59�

Sortino 0.72 0.72 0.98� 0.97�

Omega 0.71 0.78 0.98� 0.93�

Upside P 0.73� 0.74� 0.95� 0.93�

VaRR (99,1) 0.58� 0.76� 0.81� 0.74�

VaRR (95,5) 0.74 0.78 0.92� 0.88�

VaRR (90,10) 0.74� 0.77 0.95� 0.93�

VaRR (80,20) 0.73� 0.78� 0.96� 0.94�

ETR (99,1) 0.37� 0.65� 0.69� 0.59�

ETR (95,5) 0.39� 0.65� 0.68� 0.59�

ETR (90,10) 0.38� 0.67� 0.70� 0.59�

ETR (80,20) 0.34� 0.61� 0.64� 0.55�

This table presents probability estimates of the parameters �U and �L (upper and lower tail dependence, respectively)
for the time-invariant SJC, Gumbel and Clayton copula models (PM-SR under RRT scheme and weekly rebalancing).
An asterisk (�) indicates signi�cance at the 5% level for the implied parameters (
G for Gumbel, 
C for Clayton and
both �U and �L for SJC).

In order to reinforce the previous results, we estimate the time-varying SJC copula for the di¤erent PMs
with respect the SR portfolio under weekly rebalancing with the RRT scheme. Following Patton (2006), the
dynamics of both �L and �U under the conditional SJC copula are speci�ed as

�L;t = �

�
!L + �L�L;t�1 + �L

1

q

Pq
j=1 ju1;t�j � u2;t�j j

�
; (45)

�U;t = �

�
!U + �U�U;t�1 + �U

1

q

Pq
j=1 ju1;t�j � u2;t�j j

�
; (46)

where �(x) = (1 + e�x)�1 is the logistic transformation that keeps �L;t and �U;t within (0; 1). According to
the Akaike information criterion (AIC) �not exhibited here�, the time-varying SJC estimations (see Figures
7 and 8) provide better �t than their corresponding time-invariant versions (see Table 7), except for Omega,
VaRR (95,5) and VaRR (80,20) portfolios. Note that the averages of plot series in Figures 7 and 8 (red and
blue horizontal lines, respectively) are rather close to the unconditional SJC estimates of �L and �U in Table
7. This new evidence corroborates the results previously found under time-invariant SJC modeling.
16Regarding the other weighting schemes considered (i.e., GMV, VT and EW), similar �ndings are obtained. Besides, we

have estimated the Student t copula. All these results are not exhibited to save space.
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5.6 Comparative analysis

In this section we provide a comparative analysis of our TV-SNP model with reference to the historical
simulation (HS) approach. To do so, we repeat the exercise presented in Section 5.3 now using HS to
obtain PM portfolio return spreads as to the SR. In Figure 9 we present the results for weekly rebalancing
and the EW scheme considering both constant-size rolling as well as expanding window methods. We �nd
that the TV-SNP weekly portfolio return series in Figure 3 �represented by red lines� tend to dominate
the corresponding HS ones displayed in Figure 9 consistently over the OOS period. This �nding provides
evidence on the relative performance of our parametric model in regard to the HS method. This is in line with
some related results by Kuester, Mittnik and Paolella (2006) for VaR forecasting. Note that the expanding
window HS spread outperforms the constant window one and this spread tends to be mostly positive for
some PMs such as SKR, Sortino and ETRs.

6 Conclusions

This article proposes time-varying PMs obtained under an extension of the SNP pdf in León et al. (2009).
Our TV-SNP-GJR model allows to account for clustering and asymmetric responses in volatility, skewness
and kurtosis. We analyze its statistical properties and provide closed-form expressions of conditional partial
moments, quantiles and expected shortfall. Through an application to stock-index and foreign-exchange
returns, we show that higher-order moments�clustering and asymmetric response to positive and negative
shocks are signi�cant features. We corroborate these results through an original skewness and kurtosis NIC
analysis.
The performance of our model is tested through an out-of-sample application to portfolios formed from

ranking stocks from the S&P 100 index. Our results reveal that the asset allocation critically depends on
the PM considered as well as on the portfolio rebalancing period. We show that not all PMs yield greater
portfolio cumulative returns. These PMs tend to improve less the portfolios based on the SR strategy the
lower the rebalancing frequency. Importantly, for monthly frequency SKR and ETR do not improve SR
strategies, whilst for weekly rebalancing they yield portfolio selections that signi�cantly beat SR portfolios.
We also show that portfolio performance is signi�cantly sensitive to alternative weighting schemes. Finally,
a comparative analysis respecting the approach of historical simulation highlights the relative performance
of our parametric model.
There are at least three interesting avenues for further research. The �rst involves a SNP analysis

of transaction costs and estimation error on portfolio screening according to the approaches proposed by
DeMiguel, Garlappi and Uppal (2009) and Olivares-Nadal and DeMiguel (2018). The second is about the
portfolio diversi�cation following the methodologies proposed by Kolm, Tütüncü and Fabozzi (2014) and
Schmidt (2018). The third is the portfolio evaluation under alternative PMs and weighting schemes based
on the tail risk exposure �CoVaR by Adrian and Brunnermeier (2016) and the marginal ES measure by
Acharya, Pedersen, Philippon and Richardson (2017) �as in Hwang, Xu and In (2018).
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Appendix

i) Obtain the expression of mk (�):
Let x � N (0; 1) with � (�) and � (�) as pdf and cdf, respectively. We are interested in the moments of

the truncated Normal random variable de�ned as x jx � u where u 2 R. Thus, mk (u) � E�
�
xk jx � u

�
where k 2 N. A recursive formula for the truncated normal moments can be obtained as

mk (u) = (k � 1)mk�2 (u)�
uk�1� (u)

� (u)
; k = 1; 2; 3; ::: (47)

where m�1 (u) = 0 and m0 (u) = 1. For more details, see Liquet and Nazarathy (2015).

ii) Obtain the expression of �j (�):
Let �j (u) =

R u
�1 xjq (x) dx where j 2 N and q (�) is the pdf in (5), then

�j (u) =

Z u

�1
xjq (x) dx

=
4X

k=0


k

Z u

�1
xjHk (x)� (x) dx

= �(u)
5X
i=1

�imj+i�1 (u) ; (48)

such that mk (u) is de�ned in (47) and

�1 = 1� 
2p
2
+
3
4p
4!
;

�2 = 
1 �
3
3p
3!
;

�3 =

2p
2
� 6
4p

4!
;

�4 =

3p
3!
; �5 =


4p
4!
; (49)

where 
k can be seen in (7). Note that �0 (u) = � (u)
P5

i=1 �imi�1 (u) is just the SNP cdf given in (11).

iii) Proof of Proposition 3: The expected shortfall, ESt (�), is obtained as

Et�1 (rt jrt � r�;t ) =
1

�

Z r�;t

�1
rtf (rt jIt�1; ) drt

=
1

�

Z r��;t

�1
(�t + at�t + bt�txt) q (xt jIt�1 ) dxt

= �0t +
�1t
�

Z r��;t

�1
xtq (xt jIt�1 ) dxt

= �0t +
�1t
�
�1t
�
r��;t
�

(50)

= �0t +
�1t
�
�
�
r��;t
� 5X
i=1

�itm1+i�1
�
r��;t
�

(51)

where r��;t = (r�;t � �0t) =�1t, �0t = �t+ at�t, �1t = bt�t and �1t (u) in (50) is computed according to �1 (u)

in (48) such that �it in (51) is given by the expression of �i in (49) but replacing vi with vi;t, and �nally,

mj (�) in (51) is de�ned in (47).
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