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Abstract

First, we propose a novel method in the operations research of portfolio selection based on equity
screening rules determined by performance measures (PMs) under a framework of time-varying (TV)
semi-nonparametric (SNP) densities for asset returns with conditional volatility such as the popular GJR
specification. The TV-SNP density, as well as providing an improved fit of the return tail dynamics due to
the flexibility driven by the TV higher-order moments, allows for tractable closed-form expressions of both
conditional reward and risk measures, specifically partial moments and expected shortfall. Second, as a
result, we show that some conditional PMs such as Rachev and skewness-kurtosis ratios yield portfolios
that dominate, in our out-of-sample (OOS) empirical study for stocks from the S&P 100 index, those
under the conditional Sharpe, Sortino and Omega ratios. Third, we highlight as cutting-edge the use of
conditional copula models to provide more evidence on the tail dependence of the OOS portfolio return
distributions under different PMs with respect to the benchmark Sharpe ratio portfolio. Finally, a strict
robustness analysis hinged on alternative portfolio rebalancing frequencies and weighting schemes is also
carried out.

Keywords: Investment analysis; conditional higher-order moments; copula; equity screening; expected
shortfall.
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1 Introduction

Optimal capital allocation relies critically on the modeling of asymmetry and tail-fatness of portfolio return
distributions. Recent econometric results have shown the importance of clustering as well as asymmetric
response of conditional high-order moments to positive and negative shocks; see Jondeau and Rockinger
(2003) (JR hereafter) for evidence shown under the skewed ¢ distribution; Leén, Rubio and Serna (2005)
for the case of Gram-Charlier distributions; Feunou, Jahan-Parvar and Tédongap (2016) for a model with
skewed GED dynamic higher-order moments; and Theodossiou and Savva (2016) for the time-varying skewed
generalized ¢ (SGT) distribution.!

Following this literature, we propose a probability density function (pdf) that features practicability,
flexibility and accuracy for financial risk management, asset allocation and asset pricing. This pdf for
modeling standardized asset returns extends the semi-nonparametric (SNP) density of Leén, Mencia and
Sentana (2009) through both time-varying (TV) skewness and kurtosis. Hereafter, we refer to this
distribution as TV-SNP. Our paper proceeds as follows. First, we study the parametric properties and obtain
the expression of the log-likelihood function of the TV-SNP distribution with a GARCH family specification,
in particular, the Glosten, Jagannathan and Runkle (1993) model. Henceforth, this augmented model is
named as TV-SNP-GJR. Then, we analyze this model estimation results over a set of daily stock-index
and foreign-exchange returns. Furthermore, we implement the impact curve (NIC) analysis in Anatolyev
and Petukhov (2016) to the conditional skewness and kurtosis of our model to study their asymmetric
responsiveness to shocks.

Second, we use our parametric model for portfolio management. We precisely construct active portfolio
strategies through equity screening rules, as a possible alternative to the large-scale portfolio optimization
problem,? based on time-varying performance measures (PMs) used to rank stocks and then, building
portfolios with the highest-ranking ones. These PMs extend those in previous studies which are defined
under an unconditional framework, and implicitly gather the dynamics of the return higher-order moments
yielding more precise reward-to-risk ratios. The conditional PMs we use are the following: (a) The Sharpe
ratio (SR) (Sharpe, 1966, 1994) as the benchmark. (b) The skewness and kurtosis ratio (SKR), see Watanabe
(2006). (c) PMs based on partial moments, such as (i) the Farinelli-Tibiletti (FT) ratio, which nests the
popular Omega and Upside potential ratios, see Farinelli and Tibiletti (2008), and (ii) the Sortino ratio, see
Sortino and Van der Meer (1991). (d) Quantile-based PMs, such as the Rachev or expected tail ratio (ETR),
and the Value-at-Risk ratio (VaRR). See Biglova, Ortobelli, Rachev and Stoyanov (2004) and Caporin and
Lisi (2011) for these two last measures, respectively.®

Third, we analyze the out-of-sample performance of portfolios composed from selecting among the stocks
that constitute the S&P 100 index. These stocks are evaluated under each PM strategy at alternative
rebalancing periods to obtain rankings used to form portfolios. We start by considering equally-weighted
portfolios and then study other portfolios driven by alternative weighting schemes, such as the shortsale-
constrained global-minimum-variance, the volatility timing and the reward-to-risk timing; see Kirby and
Ostdiek (2012). We employ conditional copula models to focus on the tail dependence between the return
distributions obtained under the SR and each alternative PM strategy; see Patton (2006, 2013). Finally, our
results under the TV-SNP-GJR are reinforced through a comparative analysis respecting the approach of

!The SGT was firstly introduced by Theodossiou (1998).

2 A feasible solution to shrinking the dimension of the large portfolio optimization problem consists on applying the principal
component analysis, which has been implemented for the case of fixed income portfolios in Ortobelli, Vitali, Cassader and Tichy
(2018).

3In order to address the unreliability in portfolio rankings when PMs, such as SR, SKR and Sortino, yield negative values,

we use versions of these PMs modified according to the methodology in Israelsen (2005).



historical simulation.

Our empirical results show evidence on the relevance of skewness and kurtosis dynamics since the TV-
SNP-GJR models improve the goodness-of-fit of the constant skewness and kurtosis SNP (C-SNP-GJR)
model. Furthermore, not all portfolios selected according to the time-varying PM strategies yield greater
cumulative returns regarding those obtained under the benchmark SR. Namely, the portfolios based on
partial moments (Sortino, Omega and Upside potential) differ less to the SR than the rest of the PMs.
We find considerable gains in both SKR and ETR, portfolio cumulative returns, indeed. As a final remark,
our results reconcile the conflicting evidence reported in the literature on the importance of higher-order
moments (departure of return distributions from normality) for ranking portfolios.*

The remainder of the article is organized as follows. In Section 2, we define the TV-SNP-GJR model,
discuss its statistical properties and obtain closed-form expressions for the expected shortfall and partial
moments used to build conditional parametric PMs. Section 3 discusses the model estimation through an
empirical application to stock index and FX returns. Section 4 presents the conditional PMs used in our
analysis. Section 5 shows the performance of out-of-sample portfolios through equity screening based on
PMs for ranking stocks that compose the S&P 100 index. In Section 6, we summarize our conclusions. All

of the proofs are provided in the Appendix.

2 Modeling stock returns

Let the stock return 7, be a process characterized by the sequence of conditional densities f (ry |[I;—1;%¢),
where I;_; denotes the information set available at t—1 containing past values of 7, ¢ = (6', v’ )/ is the vector
of unknown parameters such that 6 is the subset characterizing both the conditional mean and variance of
e, e py (0) = p(I;_1;0) and o2 (0) = o (I;_1;0), and finally, v is the subset characterizing the shape of

the distribution of the standardized observations, z;. Thus, we assume that
e = piy (0) + €, er = 0 (0) 2, 2z ~ tid g (245 v) . (1)

So, equation (1) decomposes the return at time ¢ into a conditional mean, y,, and a gross innovation, ;. The
term ¢, is defined as the product between the conditional volatility, o, and the standardized innovation, z;.
It is assumed that {z:} is a sequence of independent identically distributed random variables with g (-) as
pdf.

2.1 SNP density of z;

Let us define z; as a linear transformation of z; with pdf given by the SNP class of distributions introduced
by Gallant and Nychka (1987), and Leén et al. (2009) who studied its parametric properties. Specifically,

2z =a((v) +b(v)zy, b=1/0,, a=—bu,, (2)

40n the one hand, there is a stream of research, that includes the papers by Eling and Schuhmacher (2007), Eling (2008)
and Auer (2015), that advocates the choice of PM is irrelevant for portfolio evaluation. On the other hand, some studies, such
as Zakamouline (2011) and Leén and Moreno (2017), showed that higher-order moments of distribution do play a crucial role
for portfolio evaluation. Finally, the empirical evidence in Leén, Navarro and Nieto (2018), who also implement a screening
rule strategy but using sample estimations of PMs instead of a parametric approach, reinforces our results about the best

performance of portfolios under the Generalized Rachev ratio, which nests the ETR used in our study.



where p, = E (xz¢) and o, = /V (2:) are, respectively, the mean and the standard deviation of z; with
density function

n 2
dn (zt) = ¢(xt) (Z v Hy (xt)> ’ (3)

v'v
k=0

where v = (vg,v1,...,v,) € R*, ¢(.) denotes the pdf of a standard normal random variable and Hy, (-)

are the normalized Hermite polynomials. These polynomials can be defined recursively for k > 2 as

xHi_1(x) — Vk — 1Hp_o(x) (@)
\/E ’
with initial conditions Ho () = 1 and H; (z) = 2. The set {Hy (2)},. 5 constitutes an orthonormal basis

with respect to the weighting function ¢(z). Thus, Ey[Hy(z)H;(x)] = 1 (=), where 1.y is the usual indicator

Hy(x) =

function and the operator Ey[-] takes the expectation of its argument with respect to ¢ (-) as pdf.

Since ¢y, (+) in (3) is homogeneous of degree zero in v, we impose vg = 1 to solve the scale indeterminacy.
If we consider n = 2 and expand the square term expression in (3), we obtain an alternative expression of
@2 (+) and, henceforth, denoted as ¢ (-):

4
q (1) = ¢ (x) > _ vy (v) Hi (), (5)
k=0
such that
2v1 (1 + \/51}2
Yow) = 1, 7 (v)= 201 (15 V2va) o ),
V2 (v% + 203 + \/§’U2)
Y2 (v) = ; ; (6)
v'v
2\/31)11)2 \/67}%
73 (v) = oo 74 (v) = oo (7)
2.1.1 Moments
The first four noncentral moments of z; with pdf in (5) are:
/L/m (1) = N (”U) )
1 (2) = V2y,(v) +1,
/ 6'Ul (1 + 2\/§U2)
Mo (3) = / ’
v'v
12 (vZ 4 302 + V20vs
i = 2RV, ®)

2
-

Hence, p, = p!, (1) and 02 = p!, (2) — p2. Therefore, the skewness and kurtosis of z; are given by

5. = E(2}) = a® + 3a®bl, (1) + 3ab’pl, (2) + b°pl, (3), (9)
k. = E (2}) = a* + 4a®byl, (1) + 6a°6% 1), (2) + dab®pl, (3) + byl (4) . (10)

2.1.2 Cumulative distribution function (cdf)

Let Q(-) denote the cdf related to z; with ¢(-) as pdf defined in (5). The pdf of z; is given by

zt—a(v)

g(z) = ﬁq ( 500) ) The next result shows the expression of the cdf related to z;.




Proposition 1. The cdf of z: in (2), denoted as G(-), is obtained as

Glz) = Q)= /thm)dxt

— 00

4
= ®(z Z Bi: Hk () (11)
k:l
where zf = (zz —a) /b, Hi(-) is given in (4) and ®(-) denotes the cdf of the standard normal random
variable.

Proof. It is verified that [*_ Hy(x)d(x)dx = —==Hj,_1(u)d(u), then (11) is directly obtained.

N

2.2 GJR-SNP model and moments of ¢,

Let 07 = E [¢7 |I;—1] be the conditional variance model suggested by Glosten et al. (1993), GJR hereafter.
Then,

0 = ap+fBoiy+af (55,) +ar (5,)°

2 _ N2
ag + Bof_y +afoi (Zt+—1) +ay0; (z1)" (12)

such that ag > 0, B > 0, af > 0 and a; > 0. We use the notation y;” = max(y;,0), y; =
min (y¢,0) where y; can be either e; or z; defined in (1). Another representation of (12) is given by
02 =ap+Bo? + (a1 +vDy_1)e? | such that D; 1 = 1if g, 1 <0and D; 1 =0 if g,_; > 0. Hence, both
expressions are related through af = a; and o] = a; + 7. Henceforth, we denote (12) as the GJR (1,1)
model (or simply GJR) which nests the GARCH (1,1) model when o = ;. A similar specification to (12)
for the conditional volatility o, instead of o7, is suggested by Zakoian (1994).

If we assume (12) to be covariance stationary, then the unconditional variance of ¢; is obtained as

Qo

ang(af)zl_wl, 0<w <1, (13)
where
_ N2
wi = B+af + (af —of) B|(:7)?]. (14)
Following He and Terasvirta (1999), it can be shown that the unconditional kurtosis is given by’
E (e} E (o}
b= ZE0D B0 g0, (15)
O—E 06
where k, is defined in (10) and
1 2
Abv)=—L>1, (16)
— W

such that ws is the condition for the existence of the fourth-order moment,
2 2 _\4
wp = 20w = B2+ (o) b + [(o7)" = ()] B |(:0)"] < 1. (17)

Respecting the unconditional skewness of ¢4, that is obtained as s. = E (5?) Jod =s,E (U?) /o2 with s, in
(9), we cannot obtain a closed-form expression. Nonetheless, if we assume p, = p, then s and k. would be

the unconditional skewness and kurtosis of the stock returns.

2 2
®We can rewrite (12) as 0? = ag +c;o2_; where ¢; = B—l—al (Z;tl) +aj (Zt_—l) . Then, o} = a2 +c2o}_| +2a0ci0?_;.

By taking expectations and assuming that E (Ut) =F (a?_l), then we obtain [1 —F (cf)} E (0’?) = ag +2a0FE (ct) E (cr?). If
we denote E (c;) and E (c2), respectively, as w1 and wg, we finally obtain (15).



Finally, the expressions F [(z{ )2} and E [(z; )4}, defined in (14) and (17) respectively, can be obtained

according to the following result:

Proposition 2. Let z; = a+ bx; be the standardized variable defined in (2) and x; an iid sequence with

pdf given in (5), then

E{(zf_)k} = ffoozfg(zt)dzt:f:;/b(aerxt)kq(:ct)dxt
k
= K a*IVe . (—a
= JZ()() V¢ (—afb), (18)

where k € N and §; (u) = ffoo 27q (x) dz is given by (48) obtained in section ii) of the Appendix.
Note that z; ~ #d N (0,1) when v; = vo = 0 under the SNP distribution for x¢, then s, = 0 and s. = 0.
It can also be shown that F [(z;)z} =1/2, E [(z{)ﬂ =3/2, k., = 3 and so, k. in (15) becomes the following

well-known expression:

1- 82 -8 (af +or) =1 (af +a7)°
1-6% =8 (of +a7) =4 [(a})’

ke =3 (19)
2.3 Time-varying SNP parameters

Let &, be the gross innovation in (1) and let 07 = E [¢7 [I;_ | follow the GJR model in (12). Then, the

conditional skewness and kurtosis of r; are defined, respectively, as

E (3|1, E (e},
Srt = (Etg|§’t 1 )’ kr,t = (gtagt 1) ) (20)

If we let the SNP distribution exhibit time-varying parameters, the pdf of z; in (5) is now defined as
q (x¢|Ii—1) where v; is replaced with v;, (¢ = 1,2) being measurable with respect to the information set
I;_1. Hence, s,; = s, and k,.; = k,,; are now time-varying such that both s,; and k., are obtained by
plugging v; ; into equations (9) and (10), respectively. This way of modeling the conditional higher moments
through a rather complex non-linear mapping is the most popular one in the literature and it is known as
the indirect approach. We model v; ; according to the autoregressive framework by Anatolyev and Petukhov
(2016) (AP hereafter):
Vit = Po; + P1Vig—1 + Li(2i-1), (21)

where T, (+) is a real-valued function that aims to capture the news impact curve (NIC) specification of
both conditional skewness and kurtosis.® In this paper we will mainly use the parametric "asymmetric"
specification borrowed from JR:

Ti(2) = 93,27 + 27, (22)
such that 2+ = max(z,0), 2~ = min(2,0) and @3, # ¢5;. Note that (22) shows an asymmetric linear
specification that can also be found, among others, in Feunou et al. (2016) and Lalancette and Simonato

(2017). Another example of NIC, T; (z), that will be used is the "transition" specification which is defined
as

Ti (2) = @ai(1 + @3 |2])2. (23)

6 According to the literature, two choices are suggested for the equations driven by the TV-SNP parameters, v;;. The first

is as a function on lags of the standardized returns z¢, and the second as a function on lags of e+ . We stick to the first choice
since we are indeed modeling the higher-moments for the distribution of the standardized returns.



We consider mainly two particular cases for v; ; specifying or not the autoregressive (AR) component in (21):

Vig = Poi+ 95z 1 T Pnizie 1, (24)
Vig = Po; T P11t @;Z;—tq + P22 1 (25)

2.4 Log-likelihood function

Note that we have previously studied the main components that define the stock return equation given in

(1). If we now express the conditional density of r; in terms of the conditional density of x;, then

q (e |li—1)
b (’Ut) ¢

where 1) is the parameter set, g (- [I;—1 ) is the conditional pdf given in (5) but with time-varying parameters

frelli—1;9) = (26)

v1,¢ and v, Ty = %ﬂ:’;w) and z; (0) = (r+ — p; (0)) /ot (0). The log-likelihood function corresponding to
a particular observation r;, denoted as [;, takes the following form:

I, = —%ln (o2 (0))—ln(b(vt))—hl(vivt)—%ln(%)
(@000} IS, (50 = ae))]
2 ( b (vy) ) ! kZ:o k’tHk( b (ve) >1 7 0

such that vo, = 1, v;; = v;,; (¥;) where ¥; C 9 is the parameter set underlying the equation of v;, in (21).

2.5 Conditional quantile and expected shortfall

Let F (¢ |It—1 ) denote the conditional cumulative distribution function (cdf) corresponding to the TV-SNP
model of r, with pdf in (26),

Pl = [ 10unesw)dno= [ ato i) do = QU7 1), (28)
where @ (- [I;—1 ) is the conditional cdf, which is just the cdf @ (-) in (11) but with TV-SNP parameters, and
ri = (ry — py — atoy) /broy where a; = a (v¢) and by = b(v;). The a-quantile, or VaR at the a confidence
level, of the distribution of the stock return r; is ro; = F~ (a|I;—1).7 So,

Tat = Kot + fﬁth;l (o), (29)

where kot = (1, + aroy, K1t = byoy and Qt_l (o) = inf {x |Q(z|I;—1) > a} is the conditional a-quantile with
q(-|T;—1) as pdf. Since q (- |I;_1 ) nests the N (0, 1) distribution for vy ; = v ; = 0, then Q; * () = @~ (a) =
Za. Once we have obtained 7, ¢ in (29), the expected shortfall (ES) is easily computed.

Proposition 3. Let r; be the stock return with pdf in (26) and let 7o be the conditional a-quantile in
(29), then

ESi(a) = Ei1(relre <rayz)
= kot + k1B (2 |:L’t < r(’;yt)
= Kot T %flt (ra.e) (30)
where 15, = (Ta — kot) /k1e and &y (u) = [ zq(x|l,—1)dz is the conditional version of & (u) =

ffoo xq (x) dz that is obtained in section ii) in the Appendiz.
Proof. See section iii) in the Appendiz.

"Note that rq,+ = F~1(a|It—1) can be obtained by using, for instance, the Matlab function named fzero (finding roots of

nonlinear equations).



2.6 Conditional partial moments

The lower partial moments (LPMs), see Fishburn (1977), measure risk by negative deviations of the stock
return in relation to a return threshold, 8. The conditional LPM of order m where the stock return r; follows
a TV-SNP process, i.e. with pdf given by (26), is defined as

%
LPM,(0,m) = / (0 = r)™ F(re | To_1 )dre. (31)

— 00
The LPMs are asymmetric risk measures in contrast to the popular symmetric risk (standard deviation).

The conditional upper partial moment (UPM) of order m and return threshold 6 is defined as
UPMt(Q,m) = / (Tt - G)mf(rt |It—1 )drt. (32)
0

In this paper we are only interested in the LPMs of orders 1 and 2, that is, LPM;(0,1) and LPM,(0,2) in
(31). Respecting the UPMs, we use UPM(0,1) in (32). Next, we obtain the closed-form expressions of the
two LPMs and the UPM.

Proposition 4. Let r; be the stock return driven by the TV-SNP process with pdf in (26), then

LPMt(ev 1) = (9 - HOt) §0t (9:) - "{ltglt (9:) ) (33)
LPM(0,2) = (0— “Ot)Q ot (9:) + (“?t - 29"6175) §1t (9:) + K%tf% (92‘) ) (34)
UPM,(0,1) = p, —0+ LPM,(0,1), (35)
where kot =y + a0r, ki = boy, 07 = (0 —kot) [k1e, o (w) = Qulli—1) and & (u) =
[ aiq(z|li—1)dx is the conditional version of §(u) = [Yxq(x)dz obtained in section ii) of the

Appendiz.
Proof. It is obtained straightforwardly.

3 Estimation

3.1 Dataset and summary statistics

We start analyzing the time-series behavior of six stock indexes and four foreign exchange (FX) rates. The
data employed were (daily) percentage log returns, which were computed as r; = 100log (P;/P;—1) from
series {Pt}thl of daily closing prices for Nasdaq, TAIEX, Bovespa, CAC, DAX and EUROSTOXX stock
indexes; and pound sterling to euro (UK-EU), Japanese yen to U.S. dollar (JAP-US), Canadian dollar to
U.S. dollar (CAN-US) and pound sterling to U.S. dollar (UK-US) FX rates. All of the price series were
sampled from September 28, 1997 to September 27, 2017 to obtain a total of T' = 5,219 observations. The
data were obtained from Datastream.

Table 1 exhibits summary statistics of both stock-index and FX returns. The means, medians, standard
deviations and ranges (minima and maxima values) are comparable to those observed in other studies.
Clearly, all the series show high leptokurtosis with the UK-US returns presenting the largest kurtosis (14.7),
and the TAIEX the smallest (6.79). The degree of unconditional skewness is heterogeneous among the
series, with the largest negative (in absolute value) and positive skewness corresponding to the JAP-US
(-0.47) and UK-US (0.57) returns, respectively, and the smallest to the Nasdaq (-0.06). The UK-EU and
UK-US returns are positively skewed whilst the rest of the series present negative skewness. FX returns tend
to exhibit larger skewness than stock-index returns. In all cases, the Jarque-Bera (J-B) test rejects the null

of normality, motivating the use of our SNP distribution.
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3.2 Estimation results

The parameters of the SNP models we considered in this analysis were estimated using maximum likelihood
(ML) according to equation (27). To account for the small structure in the return conditional means, we
filtered the r; series with autoregressive processes of different orders for the conditional mean, p,. Since the
estimations, under either filtered (r; — fi;) or non-filtered returns, yielded rather similar results, we decided
to report only the results for non-filtered data. Therefore, we adopt a constant mean equation for r;, i.e.
w; = . The stylized features of returns volatility were described through the GJR process in (12).

To model skewness and kurtosis, we started with a constant SNP (C-SNP) specification, where v; 4,
i = 1,2 are constant, i.e. (v14,v24) = (Pp1,¥p2)- This structure is nested in equations (24) and (25) which
allow for time-varying v; ;. Note that, unlike Hansen’s (1994) skewed Student-t, there are no constraints on
the C-SNP parameters in order to ensure a well-defined pdf. In short, the C-SNP becomes simpler and so,
easier to estimate.

Next, we consider the TV1-SNP model, defined in (24), which specifies v;,; directly as function of past
positive and negative standardized residuals, z;” and z; .> The TV1-SNP model provides the C-SNP with
flexibility to capture dynamics in skewness and kurtosis such as clustering and asymmetric responses to
positive and negative shocks.

Finally, we implement the TV2-SNP model, defined in (25), which includes AR(1) structure in v, .
Note that (25) resembles the GJR process for the conditional variance, although its parameters do not have
the same interpretation as in the GJR. To avoid local optima, starting parameter values were obtained by
using the adaptive simulated annealing optimization algorithm applied sequentially to nested specifications
beginning from the Normal-GJR model.

In Tables 2-4 , we report the results of the various estimations. Table 2 presents the estimation results
of model C-SNP-GJR. The parameter estimates of both mean and variance equations are in line with those
reported in numerous studies. The unconditional mean parameter, u, is not significant for any of the return
series, except for the DAX returns for which it is significant at the five per cent level. The parameter
estimates of the variance equation show that, for all series, the model correctly captures the asset returns
stylized features of (i) clustering and high persistence in volatility, and (ii) asymmetric response of volatility
to positive and negative shocks. The condition for the existence of the unconditional second moment of &,
given by wy in (14), is satisfied for all series. In all cases, the unconditional standard deviations implied by
model C-SNP-GJR are very close to the sample ones. For instance, the estimated o. in (13) equals 2.46
and the sample standard deviation is 2.47 for Bovespa. Both persistence, 3, and asymmetry, a; # o, at
the level of volatility in (12) are not altered either through the Normal or the different SNP specifications.
Similar results have been reported by JR for the case of Hansen’s skewed Student-t distribution, and Harvey
and Siddique (1999) for the non-central Student-t. For all series, the parameters that capture skewness and
kurtosis, ¢g; and ¢g,, are both significant at least at the one per cent level. The condition for the existence
of the unconditional fourth moment of e;, given by ws in (17), is met for all FX return series, whilst among
the stock index series only Bovespa satisfies this condition. We also inspected the condition in (17) for the
Normal-GJR and found it met for all series. These results show that when extending the Normal-GJR to the
C-SNP-GJR in order to fit high-order moments, the condition for the existence of the unconditional fourth

moment seems to become more demanding, in line with the results in Carnero, Penia and Ruiz (2004) for

81t is worth noting that we also considered wv;; as function of past residuals, i.e. sj’ and €, , and found it also worked well,
and estimation results did not change significantly. Thus, we decided to work with the standardized residuals as they are more

intuitively linked to skewness and kurtosis.
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the case of the Student-t distribution. The last row of Table 2 presents the likelihood ratio (LR) test for
the Normal-GJR and C-SNP-GJR. The LR test null is rejected for all series at any reasonable significance
level, which shows that the SNP distribution significantly improves the Normal in fitting the skewness and
leptokurtosis of the empirical return distributions.

Next, we analyze the goodness-of-fit of TV-SNP-GJR models with and without AR(1) component for
v;.¢, equations (24) and (25), respectively. Table 3 gives results for estimation of the TV1-SNP-GJR model.
First, the parameter estimates of the conditional variance equation remain similar in magnitude to those
of the C-SNP-GJR, and their statistical significance does not seem to be affected. Second, for all series,
either (3. or ¢y, (or both) are significant. This implies all return series clearly present skewness and kurtosis
clustering dynamics similar to that of volatility. Third, the asymmetric response of skewness and kurtosis to
positive and negative shocks seems milder than that of volatility. Note that in v;; equation, both ¢, and
5 are statistically significant only for Nasdaq, UK-EU and JAP-US returns, whilst in v+ equation, both
¢4, and 5, are significant for TATEX, Bovespa, DAX and JAP-US returns.

Table 4 presents the results of estimating the TV2-SNP-GJR model. First, the conditional variance
parameter estimate magnitudes are not affected by the addition of the AR(1) term to the v;; equations.
Second, for most series either ¢,; or/and ¢, are significant indicating persistence in skewness and kurtosis.
For UK-EU and JAP-US series, both ¢;; and ¢, are not significant. Third, including ¢;; do not seem to
alter much the estimates of go;i and ¢5;, whose magnitudes remain stable as can be clearly seen for TAIEX,
CAC, EUROSTOXX and JAP-US returns. Fourth, for all series, either o3, or/and ¢, remain statistically
significant in relation to the results in Table 3. Fifth, note that ¢3; and 5, are both statistically significant
only for CAC and JAP-US series, whilst ¢, and ¢, are both statistically significant only for Nasdaq,
TAIEX and JAP-US returns. Summing up, for all series, the addition of the AR(1) term seems to provide a
more parsimonious fit of the higher-order moment dynamics, as the TV2-SNP-GJR likelihood function value
is larger than that of the TV1-SNP-GJR model.

Figure 1 presents plots and histograms of skew; and Kurt; series under the TV2-SNP-GJR specification
for v; ;, which are useful to corroborate that the model yields conditional skewness and kurtosis series within
expected ranges. The average conditional skewness is -0.27 and -0.38 for CAC and JAP-US, respectively.
These values should be compared with the sample skewness of the standardized residuals -0.19 and -0.23,
respectively. Concerning the average conditional kurtosis, we find values of 3.81 for CAC and 4.39 for JAP-
US, which compare to kurtosis of 4.40 and 5.77, respectively, from standardized residuals. In summary, our
empirical statistics show predominant daily negative skewness and leptokurtosis typical of financial asset
returns; see Albuquerque (2012) for a study on the negative skewness featured by index returns.

Finally, we implement both skewness and kurtosis NIC defined directly for skew; and Kurt;, as well
as for the parameters v;;, unlike the original NIC analysis of AP which is defined only for the parameters
that determine the skewness. The NIC plots in Figure 2, specifically the linear asymmetric NIC in equation
(22) for CAC and JAP-US returns (see rows 1 and 2 in Figure 2), show that both skew; and Kurt; (i)
are highly non-linear functions of v;;, and (ii) respond all asymmetrically to positive and negative shocks.
Besides, note that there is no sign asymmetry for skewness since it is negative whatever the sign of the shock.
Regarding kurtosis NICs, we observe asymmetric response to either positive or negative shocks. For instance,
the kurtosis NIC of CAC increases proportionally more after a positive rather than after a negative shock
of the same magnitude. We implement transition NIC in equation (23), as well as asymmetric NIC, for the
case of TATEX (see rows 3 and 4) in order to study the performance under an alternative NIC specification.
The transition NICs display similar but smoother patterns as the asymmetric NICs for both skewness and
kurtosis.
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Figure 1: Conditional skewness and kurtosis
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4 Conditional performance measures

The PMs we use in this section have been selected in order to include the well-known Sharpe ratio (Sharpe,
1966, 1994) as well as measures based on higher moments, partial moments and quantiles. Some references,
among others, Caporin, Jannin, Lisi and Maillet (2014), Bacon (2008) and Eling and Schuhmacher (2007),
might be a good starting guide to the large set of PMs proposed in the financial economics literature. Next,
we consider PMs with closed-form expressions under the conditional TV-SNP-GJR distribution. In short,
we implement conditional parametric PMs.

4.1 Sharpe ratio

We start with the SR as our benchmark PM. A slightly different version of the SR is defined as (u, — 6) /o,
where 6 is the return threshold (e.g., risk-free rate, zero return,...), p, = E[ry [I;—1] and oy = /V [y |T—1 ]
denote the conditional mean and volatility of the stock return. A drawback of using the previous ratio for
ranking stocks occurs when the numerator, or excess return p, — 6, is negative. This pattern is very common
in bear markets (high level of recession and unemployment) like the most recent U.S. bear market occurred
in 2007-2009. Israelsen (2005) suggests a modified version to overcome that problem. It consists of adding
an exponent to the denominator of SR, i.e. the exponent is the sign function of the numerator. In short,
our SR onwards is as follows:

SR.(0)= 1 ? (36)

70 )
Jfgn(ut )

where sgn (z) = z/ |z| if 2 # 0 and sgn (z) =0 if z = 0.

4.2 Skewness-kurtosis ratio

Pézier and White (2006) suggests using an adjusted SR which explicitly adjusts for skewness and kurtosis
by incorporating a penalty factor for both negative skewness and excess kurtosis. This measure has been
welcomed by practitioners since it does take into account these higher moments. Nevertheless, a recent study
by Leén, Navarro and Nieto (2018) shows that when ranking stocks from the S&P 500 index there is no
barely difference between this PM and the SR. An alternative PM, suggested by Watanabe (2006), aims
to explicitly adjust for skewness and kurtosis by using the simple skewness-kurtosis ratio, s, ./k,;, where
spy = skew (ry |I,—1) and k., = kur (r,|[;—1) denote, respectively, the conditional skewness and kurtosis
of the stock return in (20). Again, higher rather than lower ratios are preferred. Since this PM may lead
to ranking problems when the numerator becomes negative, we propose —as a possible solution— a modified
version based on Israelsen’s aforementioned idea. Hereafter, our skewness-kurtosis ratio is defined as

Sy
SKR; = Tn(;,,)' (37)
r,t

4.3 PMs based on partial moments

In this section we obtain conditional parametric PMs based on the SNP distribution. Unconditional
parametric PMs based on partial moments under the Gram-Charlier and the SNP distributions can be
found in Leén and Moreno (2017). The Sortino ratio (Sortino and van der Meer, 1991) is the mean excess
return, p, — 0, per unit of risk measured by the square root of LPM of order 2 of the stock return defined in
(34). Note that this PM presents the same problem as the previous measures since the numerator may be
negative. As a solution, we propose the following modified Sortino ratio:

py — 0

Sortinos (0) = I
( LPMt(0,2)) t

(38)
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Next, we use two PMs which are special cases of the Farinelli and Tibiletti (2008) ratio:
{/UPM;(0,q)

/LPM,(0,m)’

with ¢ > 0 and m > 0. The higher the value for ¢, the greater the investor’s preference for expected gain,
and the higher the value for m the greater the investor’s dislike of expected losses. If ¢ = m = 1, we have
the Omega ratio (Keating and Shadwick, 2002) and for ¢ = 1 and m = 2, we have the Upside potential ratio
(Sortino, van der Meer and Platinga, 1999). These PMs will be represented as FT; (0,1,1) and FT; (6,1,2),
respectively.

FT;(0,q,m) = (39)

4.4 PMs based on quantiles

A class of PMs similar to (39) replaces UPM and LPM, respectively, with reward and risk measures based
on quantiles. First, the VaRR (Caporin and Lisi, 2011), defined as the ratio of the upper and lower quantiles
of the stock return distribution, is given by

VaRt (]. — a)

VaRy (o) |’ (40)

VaRR, (a) = ‘

where VaR, (o) = Q; ' (a) and VaR; (1 —a) = Q; ' (1 — a) are, respectively, the conditional lower and
upper quantiles of r; given the information set I;_; with «a set equal to 1%, 5%, 10% and 20%. See equation

(29).
Second, the ETR or Rachev ratio (Biglova et al., 2004) is defined as
ESt (—T‘t, Ot)
ETR =|—=F— 41
t (a) ‘ ESt (Tt, O[) ( )

where ES; (ry, ) is just the conditional ES measure in (30) with r; as the random variable, while E'S; (—r¢, @)
is the same definition but replacing r; with —r;. Thus, the numerator is the reward measure corresponding
to the right-hand side (gains) of the return distribution, E;_1 (r¢ |ry > VaR; (1 — «) ), while the denominator
is the risk measure defined as E;_; (¢ |rs < VaRy; (). We can rewrite (40), similar to (41), as a quotient of
conditional lower quantiles, i.e. VaR; (o) = VaRy (r+, &) and VaR: (1 — a) = VaR; (—r¢, ). An application
of (41) for portfolio selection is provided by Bruni, Cesarone, Scozzari and Tardella (2017)

5 Equity screening and portfolio selection

Once we have proposed the SNP distribution for stock returns and discussed its properties and estimation,
we now apply the TV-SNP-GJR pdf for equity screening under alternative PMs to create portfolios.

5.1 Dataset description

We study the performance of portfolios formed from choosing stocks that were constituents of the S&P 100
index in October 2017. The data series used are sampled over the period November 4, 2004 to October
18, 2017, a total of T' = 3,262 daily log-return observations. After filtering, we restrict to 90 stocks that
continuously belonged to S&P 100 during our sample period. We split the series into two subsamples, one
for in-sample and another for the out-of-sample (OOS) period. The in-sample period goes from November
4, 2004 to December 7, 2009. We always use a constant-size rolling window of N,, = 1,282 for the in-sample
and, also, when estimating across the OOS period. The stocks in our study are listed in Table 5, along with
their ticker symbol and three-digit Standard Industrial Classification (SIC) codes.

Table 6 presents some summary statistics of data analyzed in this section. The top panel presents
sample moments only for the in-sample daily returns. The means and standard deviations are typical of
asset returns. The kurtosis coefficients reveal the stock return distributions are highly leptokurtic (kurtosis
median is 10.883). In contrast with the stock indexes in Table 1, the skewness of the single stocks is
predominantly positive (skewness median is 0.0687).
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Table 6: Summary statistics of S&P 100 stocks and estimation results

Cross-sectional distribution

In-sample period: 11/4/2004-12/7/2009

Mean 5% 25% Median 75% 95% M

Daily obs. 1,282

Mean 0.0096 -0.0539 -0.0142 0.0129 0.0290 0.0983

Std. dev. 2.3180 1.3097 1.6967 2.0569 2.6879 4.1054

Skewness -0.0185 -0.7673 -0.2129 0.0687 0.2832 0.8368

Kurtosis 13.936 7.1903 8.6502 10.883 14.893 24.162
Conditional mean

Yo 0.0316 -0.0264 0.0011 0.0242 0.0511 0.1258 0.03

Y1 0.0104 -0.0938 -0.0240 0.0125 0.0519 0.0963 0.07

Yon -0.1138 -0.2404 -0.1521 -0.1256 -0.0667 0.0180 0.31
Conditional variance

o 0.1580 0.0162 0.0439 0.0739 0.1259 0.5767 0.42

B8 0.8750 0.7238 0.8556 0.8884 0.9156 0.9529 0.76

of 0.0232 0.0000 0.0000 0.0131 0.0374 0.0713 0.11

oy 0.0683 0.0000 0.0256 0.0622 0.0942 0.1816 0.37

st 0.0354 0.0000 0.0000 0.0000 0.0240 0.1763 0.09

Om 0.1765 0.0202 0.0697 0.1277 0.2027 0.5329 0.42
C-SNP

Po1 0.7477 0.4056 0.6475 0.7242 0.8068 1.2177 1

Poz 0.3468 0.1704 0.2705 0.3345 0.3982 0.6182 0.98
TV1-SNP

Po1 0.7325 0.2018 0.6139 0.7108 0.8404 1.2597 0.96

oh 0.0034 -0.5236 -0.1848 0.0291 0.1897 0.4588 0.66

P21 -0.0194 -0.6294 -0.1953 0.0258 0.1822 0.4608 0.57

Yoz 0.3549 0.0124 0.2460 0.3446 0.4812 0.6285 0.88

o -0.0540 -0.4200 -0.1731 -0.0522 0.0428 0.3021 0.53

P2 -0.0379 -0.4220 -0.1458 0.0062 0.0826 0.2001 0.37

Model (TV1-SNP-GJRA):

Tjt = Yo, + Y1;75,t-1 + YmjTm,t—1 + €.ty €t = 04t (9) Zj.ts j =1,...,90,
2 _ 2 2 _

) o, (g5e1) + 0 (Ehia) +05; (e
1 =1,2.
This table presents some summary statistics of the in-sample daily log returns of stocks that constitute the S&P 100
index data used in this analysis. The columns present the mean, median and percentiles from the cross-sectional
distribution of the measures listed in the rows. The second panel presents summaries of the estimated C-SNP-GJRA
(ap;'ij: ¢5;;= 0) and TVI-SNP-GJRA models for the first in-sample window returns, j denotes an individual stock
from S&P 100, and M denotes the number of stocks out of 90 (in %) with significant parameter estimates at 5%

2 2
o5 =aoj + 8051+ ai; (e
_ + (Lt —

Vjit = Poi; t Paij (Zj,t—l) + ©2;; (Z

level.

+

J,t—1

Ja-1)

20

m,t—1

zj,e ~ did g (2,65 v5,it) »
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5.2 Model and estimation of individual stock returns

The procedure to estimate all the parameters for each stock return series, 7; ¢, is based now on the Gaussian
quasi-ML (QML) method. Thus, at a first stage, we estimate the conditional mean and variance by using the
specification from Oh and Patton (2017). Specifically, the AR(1)-GJR(1,1) model augmented with lagged
market (S&P 100) return information for the stock return series is given by:

Tit = Yoj TV it—1 T YmgTmit—1 + Eje, €jt = 05 t%5 ¢, j=1,..90 (42)
2 _ 2 2 - 2
a?,t = aopj + ﬁjait_l + oafj (E;th) + ay; (53}15*1) + 5,% (6$7t_1) + 00 (5m,t_1) ; (43)

where €, ; is the demeaned market return. Onwards, we refer to model in (42)-(43) as GJRA. In the lower
panel of Table 6 we present information on the parameter estimates of the model above for the in-sample
period. The estimation is carried out in two stages. Thus, given the first-stage (Gaussian) QML estimation
in which we obtain the standardized returns, i.e. z;; = €;+/0;+, the second stage consists of estimating the
parameters of alternative specifications of the SNP distribution by ML. Our estimates of the mean equation
show a small positive AR(1) coefficient, ,;, that is significant only for 7% of the stocks, and an estimate
for the lagged market return parameter, v,,;, that is predominantly negative, larger in magnitude than
71; and significant for 31% of the stocks. The conditional variance parameter estimates in (43) show most
stock returns exhibit typical volatility clustering and high persistence in volatility, as well as asymmetric
response of volatility to positive and negative news. Furthermore, stock volatility asymmetric response is
in average greater to market shocks than to individual ones. We find evidence of leverage effect since the
average estimate of cy; is higher than that of ozf'j, namely 0.06873 > 0.0232. The second-stage estimates
for the C-SNP model show that virtually all stock returns present asymmetric and leptokurtic distributions.
Besides, the estimated TV1-SNP parameters show evidence of larger response of vg; to positive rather than
to negative shocks, whilst the response of v1; to shocks is more symmetric (see median values).

5.3 Time-varying portfolio selection

Through our constant-size rolling window, we obtain the estimations of a battery of PMs across the OOS
period for each individual stock and setting a zero mean return as the threshold, § = 0. We compute a total
of thirteen PMs, namely: SR in (36), SKR in (37), Sortino (38), Omega and Upside potential ratios nested
within the FT family in (39), as well as VaRR in (40) and ETR in (41) for the levels of a: 1%, 5%, 10% and
20%.

Next, we explain the steps to construct the different portfolios. First, the last day of each window, we
compute all PMs based on the one-day-ahead forecast of the conditional mean, variance and v;; for each
stock assuming the TV1-SNP specification for z;; in (42). Second, the stocks are ranked on the basis of each
PM and then, we select the ten best-ranked stocks to build initially an equally-weighted (EW) portfolio,
ie. wj; = 1/10 where j = 1,...,10. We keep this portfolio for the next 5 days to then, compute the daily
portfolio returns for these five days. Third, by rolling the window each five days, we repeat the previous two
steps a total of 396 times and change each time the portfolio composition according to the equity screening
from the different PMs. Fourth, we obtain thirteen OOS portfolio return series of 1,980 daily observations.
We denote each of these return series according to the selected PM.

We also repeat the above procedure but changing now the rebalancing frequency. So, we estimate
each stock return model under the OOS period every 22 days (monthly frequency) and 10 days (biweekly
frequency). Thus, these two rebalancing horizons account for 90 and 198 estimations, respectively. We
estimate both the C-SNP-GJRA and TV1-SNP-GJRA models for all S&P 100 stocks.” Hereafter, we only
use the latter model to build the alternative PMs.

9For the second estimation stage, if we estimate the TV-SNP with the AR component, we can find identification problems
when Ap;. = (,; = 0 since there exists a parameter subset (¢q;, @1;) verifying (1 — ¢q;) v] = ©q;, where v} denotes the stationary
level. More details can be seen in the Monte-Carlo simulation in Appendix C in JR. Note the high number of estimations involved
in our application, e.g. 35,640 for weekly rebalancing, makes rather impracticable to check for identification problems. This is
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Figure 3 represents the spreads between the cumulative returns on each portfolio and the SR under the
TV1-SNP-GJRA during the OOS period for the three different rebalancing periods. It is exhibited that the
size of spreads —notice the scale in the vertical axis— become much higher under both SKR and ETRs, except
for the ETR (95,5). Negative spreads, displayed the majority of days, are obtained under monthly frequencies
in many portfolios. We also find that VaRR portfolios show positive spreads in most cases under biweekly
frequency except for the VaRR (80,20) where, surprisingly, the monthly frequency cumulative returns are
consistently higher. Finally, unlike the Omega portfolio, we obtain positive spreads under both Sortino and
Upside potential portfolios for weekly frequency.

A similar analysis is carried out in Figure 4 but the spread is now respecting the S&P 100 index returns.
Again, the portfolios with the best performance correspond to both ETR and SKR strategies. The monthly
rebalancing yields lower performance although rather better than in the case displayed in Figure 3.1°

We also compute the portfolio turnover, not presented here to save space, as the median of the number of
stocks changing in each 10-stock portfolio over a sample of different OOS rebalancing dates. A low turnover
for a PM strategy means that the portfolio composition does not differ much over time. Specifically, for
weekly rebalancing we find that the turnover median over 396 OOS rebalancing weeks is not higher than
three (out of ten) for both SKR and ETR, whilst for the other PMs is around seven. A similar result does
hold under the other two rebalancing frequencies.'!

5.4 Alternative weighting schemes

We have previously applied the naive EW portfolio rule. Here, we are interested in the relative portfolio
performances, under the PMs used in the previous section, but now adopting different rules to set up portfolio
weights. Thus, we consider the following schemes. First, the shortsale-constrained global-minimum-variance
(GMV) portfolio, i.e. @w; = argmin wéﬁtwt s.t. w;l =1 and w; > 0, where (AZt is the estimated conditional
covariance matrix of order 10 and [ is a vector of ones.!? Second, the volatility timing (VT) portfolio, i.e.

Wiy = (l/ﬁi,t) / 2;0:1 (1 /Ef\?’t) where Ef\?,t is the estimated conditional variance. Third, the reward-to-

risk timing (RRT) portfolio, i.c. @, = (ﬁjft ajt) /0, (ﬁjjt/ajt) where fit, = max(fi,,,0) with fi;
denoting the estimated conditional mean. For more details about these weighting schemes, see Kirby and
Ostdiek (2012).3

To proceed with the weighting scheme’s comparison, we compute the cumulative portfolio daily return
spreads for each PM strategy under the GMV, VT and RRT schemes with respect to the EW one. These
spread series only for weekly rebalancing frequency are exhibited in Figure 5.* Our results show that (i)
the RRT scheme overall dominates the rest of the weighting schemes for all PMs consistently across the
OOS period; (ii) the GMV tends to significantly underperform the other schemes for all PMs except for the
ETR (80,20); (iii) the VT scheme yields portfolio returns between those obtained under the previous two
weighting methods; and (iv) GMV performs less well (negative spread) than the EW portfolio for most PMs.
As a result, we show that portfolio performance is significantly sensitive to alternative schemes to the naive
diversification. Besides, we find similar results for the SR portfolios which are not displayed in Figure 5.

the reason why we have left out the AR component in this section.

10The SR portfolio, which is not included in Figure 4, shows a positive spread before the middle of the OOS period under
the monthly frequency.

11 Other works consider portfolios composed by the same set of stocks albeit with time-varying weights. However, the turnover
here allows for different stocks to enter the portfolios, so displacing others, each rebalancing date.

121t is worth mentioning Carroll, Conlon, Cotter and Salvador (2017) for shortsale-constrained GMV portfolios under
alternative dynamic conditional correlation (DCC) settings. They show that allocation strategies based on DCC provide
performance benefits relative to EW portfolios. This interesting analysis is beyond the scope of our paper.

13These schemes contribute somehow to managing portfolio diversification since the classical mean variance theory (MVT)
may yield portfolios that are highly concentrated. An interesting avenue for further research is obtaining diversified MVT
portfolios by using the classical objective function of the portfolio variance augmented with a term called the diversification
ratio, which is a function of weights. For more details, see Schmidt (2018).

14To save space, the results for biweekly and monthly rebalancing are not presented but available from the authors.
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Next, we analyze the behaviour of the four weighting schemes under the weekly rebalancing by comparing
each PM strategy to the SR one. To do so, we obtain the daily conditional correlations between the portfolio
return according to the selected PM and the SR portfolio return for each scheme. We apply the conditional
Gaussian copula, see Patton (2006), where the marginal distributions follow the C-SNP-GJR model. In
short, the copula dependency parameter (or conditional correlation in this particular case), p,, is driven by

an ARMA(1,q)-type process:
1 _ _
pr=A (’Yo + Y101 T 726 3:1 ! (u1,e—5) @ ! (U27tj)) ) (44)

where A(z) = (1 fe’ﬂ”)(1+e*90)_1 is the logistic transformation that keeps p, within (—1,1), and
wip = Fig(rig|li—1) @ = 1,2 where F; 4 (-|lt—1) denotes the conditional marginal distribution. In our
study, we set ¢ = 8 which is a common value adopted in previous studies, see e.g. Reboredo (2011).

As an example, Figure 6 exhibits the time series of (44) for the different PMs just under the RRT scheme.
Note that the daily conditional correlations are very high for Sortino, Omega, Upside Potential and most
PMs based on VaRR. Finally, those portfolios based on ETR and SKR exhibit remarkably low correlations
respecting the SR portfolio, which enhance the difference between the latter and the former PMs.!® Notably,
this pattern is also observed for the other weighting schemes considered. Because of these findings, in the
following section we explore the behavior of the upper/lower tail of the bivariate distribution of SR and
every other PM portfolio so as to highlight possible differences in simultaneous occurrence of large/small

PM portfolio returns.

5.5 Tail dependence analysis

Next, we focus on the tail dependence measuring the probability that two variables are either in the lower
or in the upper joint tails. Specifically, we study the propensity of two portfolio returns, from a given PM
and SR strategies, to upward or downward comovements. This behavior is explained through the upper
and lower tail dependence parameters denoted by Ay € [0,1] and A;, € [0, 1], respectively. Larger values
of A\y (A1) indicate greater trend of the portfolio returns to cluster in the upper (lower) tail of a bivariate
distribution. In such a case, the returns are said to be upper (lower) tail dependent. More precisely, Ay (Ar)
measures the probability that a random variable —defined as a PM portfolio return— is above (below) a high
(low) quantile, given that a second random variable —defined as the SR portfolio return— is above (below) a
high (low) quantile. This dependence structure is modelled through copula functions.

Note that the Gaussian copula does neither capture upper nor lower dependence where the extreme tails
of the distribution of the variables are independent, i.e. Ay = A = 0. Thus, we implement alternative
copula models allowing for both/either upper or lower tail dependence. Namely, among the wide range of
copula functions, we use the symmetrized Joe-Clayton (SJC), Gumbel and Clayton copulas. The SJC has
both upper and lower tail dependence parameters, whilst Gumbel (Clayton) gathers only upper (lower) tail
dependence. The SJC is defined directly in terms of the above probabilities. Nonetheless, both Gumbel
and Clayton copulas are defined in terms of the parameters v5 > 0 and - > 1, respectively. Hence, the
corresponding probabilities are given by Ay = 2 — 2(/7%¢), A = 0 for the Gumbel copula and, A\y = 0,
A = 2-(/7¢) for the Clayton copula, see Patton (2006, 2013).

15 These results are also in line with those by Leén et al. (2018).
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Table 7 reports the probability estimates of the previous time-invariant copula models under the RRT
scheme with weekly rebalancing.'® We obtain the following conclusions. Firstly, for the SJC copula it is
found a statistically significant and higher asymmetry value on the lower than on the upper tail, mainly for
both SKR and ETR. Note that the estimates of A;, double those of A\yy for the latter two strategies. Secondly,
for Sortino, Omega, Upside potential and most VaRR cases both SJC probability coefficients are similar in
magnitude as well as higher than the SKR and ETR counterparts. This means that the former PMs exhibit
higher upper tail dependence respecting the SR than the latter. Thirdly, according to both Clayton and
Gumbel copulas, it can be shown that both SKR and ETR exhibit statistically significant and lower values
for both A\;, and Ay than the other PMs. This evidence is in accordance with the previous results under SJC.
Summing up, these findings support the superior performance (i.e., positive spread for cumulative returns)
of both SKR and ETR displayed in Table 3 under the weekly rebalancing.

Table 7: Estimates for copula models (PM-SR)

PM Auv (SJC)  Ar (SJC) Ar (Clayton) Ay (Gumbel)
SKR 0.38" 0.65" 0.69" 0.59*
Sortino 0.72 0.72 0.98* 0.97*
Omega 0.71 0.78 0.98* 0.93*
Upside P 0.73* 0.74* 0.95* 0.93*
VaRR (99,1) 0.58* 0.76* 0.81" 0.74*
VaRR (95,5) 0.74 0.78 0.92* 0.88
VaRR (90,10) 0.74* 0.77 0.95* 0.93*
VaRR (80,20) 0.73* 0.78* 0.96* 0.94
ETR (99,1) 0.37* 0.65" 0.69* 0.59*
ETR (95,5) 0.39" 0.65* 0.68" 0.59*
ETR (90,10) 0.38* 0.67* 0.70* 0.59*
ETR (80,20) 0.34* 0.61* 0.64" 0.55*

This table presents probability estimates of the parameters Ay and Ar, (upper and lower tail dependence, respectively)
for the time-invariant SJC, Gumbel and Clayton copula models (PM-SR under RRT scheme and weekly rebalancing).
An asterisk (*) indicates significance at the 5% level for the implied parameters (74 for Gumbel, v for Clayton and
both Ay and Ar for SJC).

In order to reinforce the previous results, we estimate the time-varying SJC copula for the different PMs
with respect the SR portfolio under weekly rebalancing with the RRT scheme. Following Patton (2006), the
dynamics of both Az, and Ay under the conditional SJC copula are specified as

1
ALt A (wL +BrAni—1 + OéLg 23:1 w14 — Uz,t—j|> ) (45)

1
Avt A (WU +Budvia+av Do lune—j — U2,t—j> ; (46)

where A (z) = (1 + 671)71 is the logistic transformation that keeps Ar ; and Ay, within (0, 1). According to
the Akaike information criterion (AIC) —not exhibited here—, the time-varying SJC estimations (see Figures
7 and 8) provide better fit than their corresponding time-invariant versions (see Table 7), except for Omega,
VaRR (95,5) and VaRR, (80,20) portfolios. Note that the averages of plot series in Figures 7 and 8 (red and
blue horizontal lines, respectively) are rather close to the unconditional SJC estimates of A, and Ay in Table
7. This new evidence corroborates the results previously found under time-invariant SJC modeling.

16Regarding the other weighting schemes considered (i.e., GMV, VT and EW), similar findings are obtained. Besides, we
have estimated the Student t copula. All these results are not exhibited to save space.
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5.6 Comparative analysis

In this section we provide a comparative analysis of our TV-SNP model with reference to the historical
simulation (HS) approach. To do so, we repeat the exercise presented in Section 5.3 now using HS to
obtain PM portfolio return spreads as to the SR. In Figure 9 we present the results for weekly rebalancing
and the EW scheme considering both constant-size rolling as well as expanding window methods. We find
that the TV-SNP weekly portfolio return series in Figure 3 —represented by red lines— tend to dominate
the corresponding HS ones displayed in Figure 9 consistently over the OOS period. This finding provides
evidence on the relative performance of our parametric model in regard to the HS method. This is in line with
some related results by Kuester, Mittnik and Paolella (2006) for VaR forecasting. Note that the expanding
window HS spread outperforms the constant window one and this spread tends to be mostly positive for
some PMs such as SKR, Sortino and ETRs.

6 Conclusions

This article proposes time-varying PMs obtained under an extension of the SNP pdf in Leén et al. (2009).
Our TV-SNP-GJR model allows to account for clustering and asymmetric responses in volatility, skewness
and kurtosis. We analyze its statistical properties and provide closed-form expressions of conditional partial
moments, quantiles and expected shortfall. Through an application to stock-index and foreign-exchange
returns, we show that higher-order moments’ clustering and asymmetric response to positive and negative
shocks are significant features. We corroborate these results through an original skewness and kurtosis NIC
analysis.

The performance of our model is tested through an out-of-sample application to portfolios formed from
ranking stocks from the S&P 100 index. Our results reveal that the asset allocation critically depends on
the PM considered as well as on the portfolio rebalancing period. We show that not all PMs yield greater
portfolio cumulative returns. These PMs tend to improve less the portfolios based on the SR strategy the
lower the rebalancing frequency. Importantly, for monthly frequency SKR and ETR do not improve SR
strategies, whilst for weekly rebalancing they yield portfolio selections that significantly beat SR portfolios.
We also show that portfolio performance is significantly sensitive to alternative weighting schemes. Finally,
a comparative analysis respecting the approach of historical simulation highlights the relative performance
of our parametric model.

There are at least three interesting avenues for further research. The first involves a SNP analysis
of transaction costs and estimation error on portfolio screening according to the approaches proposed by
DeMiguel, Garlappi and Uppal (2009) and Olivares-Nadal and DeMiguel (2018). The second is about the
portfolio diversification following the methodologies proposed by Kolm, Tiitiincii and Fabozzi (2014) and
Schmidt (2018). The third is the portfolio evaluation under alternative PMs and weighting schemes based
on the tail risk exposure -CoVaR by Adrian and Brunnermeier (2016) and the marginal ES measure by
Acharya, Pedersen, Philippon and Richardson (2017) —as in Hwang, Xu and In (2018).
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Appendix

i) Obtain the expression of my (-):
Let © ~ N (0,1) with ¢(-) and ® () as pdf and cdf, respectively. We are interested in the moments of
the truncated Normal random variable defined as x |z < u where v € R. Thus, my (u) = Ey [l’k |z < u]

where k£ € N. A recursive formula for the truncated normal moments can be obtained as

my (u) = (k—1)mg_o (u) — W, k=1,2,3,.. (47)

where m_; (u) = 0 and mg (u) = 1. For more details, see Liquet and Nazarathy (2015).

ii) Obtain the expression of ¢; (-):
Let &; (u) = [* . 27q(z) dz where j € N and ¢ (-) is the pdf in (5), then

G = [ P

oo

= ' oI Hy, (x) ¢ (z) dz
kz_o%/—oo k

such that my, (u) is defined in (47) and

! V2 VA
_ 373
772 - PYl \/ﬁ’
n, = J2_ 01
° V2 VA

_ 3 rs (49)

Ny = \/i’ s = @7
where 7, can be seen in (7). Note that &, (u) = ® (u) Z?Zl n;mi—1 (u) is just the SNP cdf given in (11).
iii) Proof of Proposition 3: The expected shortfall, ES; («), is obtained as

1 Ta,t
Ei1(rilry <ray) = a/ rof (re | Le—137)) dry

— 00

1 ra,t
= 5 / (g + aros + brorxy) q (a4 [T—1 ) day

K1 ”'Z,t
= Kot Tt *t/ x1q (x4 | Le—1 ) day
@ — 00

= Kot + %5175 (rat) (50)
5
= Kot —+ %(I) (T:,t) Z MNitM144i—1 (Tz)t) (51)

i=1

where 77, ; = (Ta,t — Kot) /K1t, Kot = iy + 104, K1p = beoy and &y, (u) in (50) is computed according to &; (u)
in (48) such that n,, in (51) is given by the expression of 1, in (49) but replacing v; with v; ;, and finally,
m; (-) in (51) is defined in (47).
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