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Abstract

We explore how censoring biases estimates of the intergenerational impact of
education. Compulsory schooling censors the length of time spent in education,
both for fathers and their children. We show that this will generally bias linear
IV estimates and we identify conditions under which they remain consistent. We
propose an IV ordered probit estimator as a flexible means of addressing censoring
in the case of a discrete outcome. Our results suggest a substantial bias from
ignoring censoring and a smaller bias from assuming normality. Viewing a binary
instrument as the dichotomisation of a latent variable, we show how IV estimates
are sensitive to the cut-point generating the dummy. This provides a potential
explanation for IV estimates varying according to choice of instrument that is
distinct from the usual attribution to impact heterogeneity.
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1 Introduction

This paper explores the biases which can arise from censoring when relationships are

estimated by means of instrumental variables. The particular example we use to illus-

trate this is the estimation of the relationship between fathers’ and children’s ages of

completing education in the United Kingdom. Very material censoring arises because

a high proportion of both fathers and their children left school when their compulsory

education was completed rather than at a time obviously of their choice. We show in

our application that commonly-used linear IV estimates lead to very serious bias, and

suggest that this bias can be avoided by use of an ordered probit approach. We demon-

strate that the biases in the linear IV estimates are close to what theory suggests on the

assumption of normality and, depending on the choice of instrument, can be large. The

bias associated with the assumption of normality is, in contrast, found to be relatively

small.

A substantial survey of work on the connection between parents’ and children’s ed-

ucation is provided by Holmlund, Lindahl & Plug (2011) following an earlier account

by Haveman & Wolfe (1995). They discuss at length the issue of identification; how to

separate the effects of parents’ education on that of their children from other familial

influences. One approach that has been used exploits increases in the legal minimum

school-leaving age (Oreopoulos, Page & Stevens 2006). Our focus, as stated above, is

on a different consequence of a legal minimum school-leaving age – the censoring it

introduces to both fathers’ and children’s ages of completing schooling.

While empirical studies will often choose an analytical approach that takes account

of the distribution of the dependent variable, the issue of regressor censoring is often left

unaddressed. Rigobon & Stoker (2009), however, do discuss the biases in ordinary least

squares (OLS) and linear instrumental variable (IV) regression when the regressor is

censored.1 Frandsen (2015) considers censored outcomes with an endogenous regressor.

In this paper we consider the case where the dependent variable and the endogenous

regressor are both censored.

We examine the bias of linear IV estimates and also identify conditions under which

they will be unbiased. For the special case of normal errors and a continuous instrument,

we provide an adjustment factor that can correct for the bias introduced by censoring. In

the common case of a binary instrument, correcting linear IV estimates is not generally

possible. Nevertheless, despite normality being a potentially restrictive assumption, the

1This follows Austin & Hoch (2004) who looked at OLS regression.
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bias predicted under normality matches quite closely that seen with the linear IV results.

We present as our preferred model a multivariate ordered probit. This specification

provides additional flexibility, avoiding the assumption of normality for the dependent

variable, the regressor and the instrument.

The estimation results suggest that the common approach of linear IV tends to

overstate the degree to which paternal education influences child education. This appears

likely to be due to differences between fathers and their children in the degree of censoring

of their respective ages of completing education.

Our instrument – grandfathers’ social class – is naturally ordered. But it also allows

us to experiment with binary instruments constructed by dichotomising the social class

variable at different points in its distribution. This is done in recognition of the fact that

binary instruments are common in empirical research. The resulting estimates vary in

a manner predicted by our theoretical analysis.

This finding has some relevance for the treatment effects literature. In particular,

that literature typically allows impacts to vary across individuals and interprets IV esti-

mates as capturing the mean impact on compliers (Imbens & Angrist 1994). Within that

conceptual framework, changing the instrument changes the complier set, so variation

in estimates is consistent with impact heterogeneity within the population. Our anal-

ysis highlights that censoring of the instrument is expected to influence estimates even

under the assumption of homogeneous impacts within the population. Hence, censoring

provides an alternative potential explanation for results being instrument-specific.

Lastly, we note that censoring arises commonly with economic variables for a variety

of reasons. In some cases, the range of values over which a variable is defined is limited.

The distribution of hours worked, for instance, is non-negative. In other cases, institu-

tional factors censor distributions (statutory minimum wages are an obvious example).

Yet another source of censoring arises from the practice of top-coding, sometimes used

as a way of reducing disclosure risk in public-use datasets but also relevant to studies of

age of completion of education using data collected before everyone has completed their

education (de Haan & Plug 2011). In view of this, our results may find application in

other settings.

The remainder of the paper has the following structure. Section 2 describes the

bias that arises with linear IV estimation, what we are able to infer about bias in the

special case where variables are censored normal and, lastly, our preferred approach

which does not impose an assumption on the distribution of observed education. The
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empirical analysis is presented in Section 3. Section 4 concludes. Detailed derivations

are provided in the Appendix.

2 Econometric issues arising with instrumental vari-

able estimation and censoring

2.1 Linear IV

We denote by Xi the explanatory variable for observation i and Yi the dependent

variable. Z∗
i defines the (continuous) instrument used in estimation. X∗

i and Y ∗
i denote

the latent variables underlying the observed data. These latent variables have means µX ,

µY and µZ respectively. In the example we discuss subsequently, Xi is the father’s age

of completing full-time education, Yi is the child’s age of completing full-time education

and Z∗
i is a latent variable representing grandparental social class.

If Yc is the censor point for Y ∗
i

Yi = Y ∗
i if Y ∗

i ≥ Yc

Yi = Yc if Y ∗
i < Yc

with a similar relationship holding for Xi and X∗
i . In our empirical example XC and YC

are compulsory minimum school leaving ages.

We assume that the underlying relationship we want to estimate is between the latent

variables

Y ∗
i = γ(X∗

i − µX) + µY + εYi ; εYi are iid

Our interest is in the IV estimator of γ; this tells us how far the influence of Z∗
i on X∗

i

is transmitted to Y ∗
i .

In the absence of censoring the IV estimate would be

γ∗IV =
Cov(Z∗Y ∗)

Cov(Z∗X∗)

while in the presence of censoring

γIV =
Cov(Z∗Y )

Cov(Z∗X)

Following Rigobon & Stoker (2009) we write

Y ∗
i = Yi + Y o

i
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where Y o
i = 0 if Y ∗

i > Yc and Y ∗
i − Yc otherwise. Similarly

X∗
i = Xi +Xo

i

with Xo
i = 0 if X∗

i > Xc and X∗
i −Xc otherwise. Then

γ∗IV =
Cov(Z∗Y ) + Cov(Z∗Y o)

Cov(Z∗X) + Cov(Z∗Xo)

and

γIV = γ∗IV
Cov(Z∗Y )

Cov(Z∗X)

Cov(Z∗X) + Cov(Z∗Xo)

Cov(Z∗Y ) + Cov(Z∗Y o)

= γ∗IV
1 + Cov(Z∗Xo)

Cov(Z∗X)

1 + Cov(Z∗Y o)
Cov(Z∗Y )

Censoring generates a bias such that γIV , unlike γ∗IV , is no longer a consistent estimate

of γ. The degree of bias varies with the degree of censoring and also, as we subsequently

show, with the threshold converting a latent instrumental variable into an (observed)

dummy instrumental variable.

Whether censoring leads to attenuation or expansion of the coefficient depends then

on the relative magnitudes of Cov(Z∗Xo)
Cov(Z∗X)

and Cov(Z∗Y o)
Cov(Z∗Y )

. To explore this further we develop

a simple structural model.

X∗
i = δ(Z∗

i − µZ) + µx + εXi (1)

Y ∗
i = γ(X∗

i − µX) + µY + εYi (2)

Z∗
i = µZ + εZi (3)

E

εXiεYi
εZi

 = 0, Cov

εXiεYi
εZi

 =

 σ2
X σXY 0

σXY σ2
Y 0

0 0 σ2
Z

 (4)

with the standard identifying assumption σY Z = 0 imposed. It is also assumed that δ

represents the whole of the interrelationship between X∗
i and Z∗

i so that σXZ = 0

If we now consider the reduced form of the model, substituting out X∗
i we can write

X∗
i = µX + δεZi + εXi (5)

Y ∗
i = µY + γ

(
δεZi + εXi

)
+ εYi (6)

Z∗
i = µZ + εZi (7)
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so that

V =Cov

 X∗
i

Y ∗
i

Z∗
i

 =

 σ2
X + δ2σ2

Z γ (σ2
X + δ2σ2

Z) + σXY δσ2
Z

γ (σ2
X + δ2σ2

Z) + σXY σ2
Y + γ2 (σ2

X + δ2σ2
Z) + 2γσXY γδσ2

Z

δσ2
Z γδσ2

Z σ2
Z


(8)

We now establish sufficient conditions for the biases to cancel out. We normalise the

variables, setting sX =
√
σ2
X + δ2σ2

Z , sY =
√
σ2
Y + γ2 (σ2

X + δ2σ2
Z) + 2γσXY and sZ =

σz so that x∗i =
X∗

i −µX
sX

, y∗i = (Yi−µY )∗

sY
and z∗i =

(Z∗
i −µZ)

sZ .
. We also define, for subsequent

use, ρxy =
γ(σ2

X+δ2σ2
Z)+σXY

sXsY
, ρxz = δ sZ

sX
and ρyz = γδsZ

sY
.

Suppose that x∗i and y∗i are drawn from the same probability distribution, f(). Thus

f(x∗i ) = f(y∗i ). (9)

Such a situation of course, arises if the vector [εXi , ε
Y
i , ε

Z
i ] is normally distributed, since

then all linear combinations of it with zero mean will also be normally distributed about

zero. If they have the same censor point after correcting for location and scale, so that

xc = (Xc − µX)/sX = yc = (Yc − µY )/sY , then it follows immediately that Cov(Z∗Xo)
Cov(Z∗X)

= Cov(Z∗Y o)
Cov(Z∗Y )

so that the estimator is unbiased. In our example such a situation might

arise if the same proportions of fathers and children stay at school until the minimum

school-leaving age, provided of course that the underlying distribution functions are also

the same. More practically, with similar cut points and similar distributions the bias is

unlikely to be large.

2.2 The case of normally distributed variables

We first assume that the specification is as above so the instrument is a continuous

variable. In appendix A we show that, if γIV is the IV estimator calculated from the

censored data and γ∗IV is the IV estimator calculated from the uncensored observations,

then

γIV = γ∗IV
Φ(−yc)
Φ(−xc)

. (10)

Of course the term Φ(−yc)/Φ(−xc) is simply the ratio of the proportions of Y and

X which are uncensored observations. Hence, in the normal case IV estimates can be

adjusted to correct for censoring bias.

We now turn to the case where the instrument is a dummy variable, generated from

an unobserved latent variable. It is common for empirical analysis to use binary instru-

ments. For instance, in randomised trials, local average treatment effects 2 are usually

2Alternatively, ‘complier average causal effects’
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estimated using linear IV, with the randomisation outcome as instrument. Suppose that

Zi = 0 if Z∗
i ≤ Zc (11)

Zi = 1 if Z∗
i > Zc (12)

The model is very similar to that of equations (1)-(4), differing only in that the rela-

tionship between the instrument and X∗
i is altered,

X∗
i = δ(Zi − E(Zi)) + µX + εXi (13)

Y ∗
i = γ(X∗

i − µX) + µY + εYi (14)

Z∗
i = µZ + εZi (15)

E

εXiεYi
εZi

 = 0, Cov

εXiεYi
εZi

 =

 σ2
X σXY 0

σXY σ2
Y 0

0 0 σ2
Z

 (16)

We show in Appendix A that, when the underlying disturbances driving the latent

variables are normal, with zc the normalised value of Zc, the correlation between the

normalised values x∗i and z∗i in the reduced form is

Cov(xz) = φ(xc)Φ

(
ρxzxc − zc√

1− ρ2xz

)
+ ρxzφ(zc)Φ

(
ρxzzc − xc√

1− ρ2xz

)
(17)

+xcΦ(xc,−zc,−ρxz)− Φ(−zc) {Φ(xc)xc + φ(xc)}

Cov(yz) is again evaluated by substitution. The IV estimator with a discrete instrument

is

γDIV =
Cov(yz)

Cov(xz)
.

The analysis of section 2.1 remains valid, but the condition for the bias to cancel out

has to reflect the change of instrument and becomes Cov(ZXo)
Cov(ZX)

= Cov(ZY o)
Cov(ZY )

.

Except in the special case when the censor/cut points are different from zero, it is

not possible to de-bias through the application of a simple adjustment term, as was

the case with a continuous instrument. The working behind this is shown Appendix A,

which also provides a framework within which to explore the practical implications of

censoring when variables are normal.

2.3 Allowing for non-normal observed distributions: the mul-
tivariate ordered probit

We present the multivariate ordered probit as our preferred specification, avoiding the

restriction that the observed variables are censored normal. The ordered probit is a
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familiar model, founded on the idea of a continuous latent variable which determines

the observed discrete values. In our application, the (observed) dependent variable,

regressor and instrument are discrete realisations of their respective latent variables,

with values reflecting the value of the latent variable relative to (empirically-estimated)

cut-points. It is important to highlight that this is a different type of latent variable

from that discussed so far which could alternatively be labelled ‘uncensored’. In previous

sections, ‘latent’ variables are identical to observed variables above the censoring point.

In the ordered probit case, latent variables are never observed.

As is well-known, the ordered probit is suited to the case of ordered discrete variables,

which need not approximate any particular continuous distribution. The cut-points are

free to vary and can therefore map the latent variable, which is assumed normal, to

an arbitrary discrete distribution. This provides the flexibility required in our applica-

tion, where the assumption that the observed variables are censored normal is certainly

incorrect (the variables are after all discrete) and potentially biasing.

The model in terms of latent variables is that of equations (1)-(3) but, in line with

the discussion above, the nature of the latent variables themselves has changed. They

are assumed to have zero mean and unit variance

X∗∗
i = δZ∗∗

i + εXi (18)

Y ∗∗
i = ζX∗∗

i + εYi (19)

Z∗∗
i = εZi (20)

with  εXi
εYi
εzi

 ∼ N

 0
0
0

 ,
 1 ρXY 0
ρXY 1 0

0 0 1

 (21)

so that the latent variables all have zero mean. The parameter relating the latent

dependent variable to the latent regressor variable is referred to as ζ to distinguish it

from the parameter γ which related the variables in the linear model. As before, we

impose the identifying restrictions, ρXZ = 0 and ρY Z = 0.

We define, with k, m, and n the discrete number of possible values of Xi,Yi and Zi

respectively, cut points XC
1 to XC

k , Y C
1 to Y C

m and ZC
1 to ZC

n

X∗∗
i ≤ XC

1 if Xi = 1; XC
j−1 < X∗∗

i ≤ XC
j if Xi = j, (1 < j < k);XC

k < X∗∗
i if Xi = k;

Y ∗∗
i ≤ Y C

1 if Yi = 1; Y C
j−1 < Y ∗∗

i ≤ Y C
j if Yi = j , (1 < j < m);Y C

m < Y ∗∗
i if Yi = m;

Z∗∗
i ≤ ZC

1 if Zi = 1; ZC
j−1 < Z∗∗

i ≤ ZC
j if Zi = j , (1 < j < n);ZC

n < Z∗∗
i if Zi = n.
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Standard multivariate techniques can then be used to estimate the parameters of the

model and, in large samples, these should not be sensitive to the cut points. With only

the latter affected by censoring, it is possible to estimate the underlying parameters.

There is, however, a question of the interpretation of ζ. That shows the extent to

which X∗∗ influences Y ∗∗. Unlike the earlier models, these latent variables do not at

any point directly represent X and Y . With the ordered probit model, the expected

marginal increase in Y associated with a marginal increase in X depends on the latter.

Furthermore we can evaluate this only where X ≥ XC ; the specification does not allow

us to draw any implications below this point.

For each observation we can, however, work out the marginal relationships between

X∗∗
i and Y ∗∗

i and use these to translate ζ into a relationship, γi, between Xi and Yi.

The non-linearity means that that will be specific to each individual so we then average

across the population to achieve an estimate of the mean marginal impact of X on Y .

We write TXi = E (X∗∗
i ) and T Yi = E (Y ∗∗

i ) and then λXi = dTXi /dX
∗∗
i and λYi =

dT Yi /dY
∗∗
i . Since dY ∗∗

i /dX∗∗
i = ζ we can also write

γi =
dT Yi
dTXi

= ζ
λYi
λXi

In appendix C we show, in the context of our empirical estimation, that with τXk =

1
(
XC
k−1 < X∗∗

i ≤ XC
k

)
and τYk = 1

(
Y C
k−1 < Y ∗∗

i ≤ Y C
k

)
λXi (Z∗∗

i ) =
dTXi
dX∗∗

i

=

−
∑N−1

k=2 (φ(XC
k − δZ∗∗

i )− φ(XC
k−1 − δZ∗∗

i ))τXk − φ(XC
1 − δZ∗∗

i )τx2 − φ(XC
N−1 − δZ∗∗

i )τxN−1{
Φ(XC

N−1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i )
}

Analogously, with σY =
√

1 + ζ2 + 2ρXY ζ being the standard deviation of Y ∗∗
i

λYi (Z∗∗
i ) =

dT Yi
dY ∗∗

i

= −
∑N−1

k=2 (φ(
Y C
k −δζZ∗∗

i

σY
)− φ(

Y C
k−1−δζZ

∗∗
i

σY
))τYk − φ(

Y C
1 −δζZ∗∗

i

σY
)τY2 − φ(

Y C
N−1−δζZ

∗∗
i

σY
)τYN−1{

Φ(
Y C
N−1−δζZ

∗∗
i

σY
)− Φ(

Y C
1 −δζZ∗∗

i

σY
)
}

Both λXi and λYi and thus ζi are functions of Z∗∗
i which is of course unobserved. We

may, however, calculate their expected values conditional on father’s social class Zi. We

evaluate the effect for someone with a father in social class Zi as

γi = ζ

∫ ZC
i

ZC
i−1
φ (Z∗∗

i ) {λYi (Z∗∗
i ) /λXi (Z∗∗

i )}dZ∗∗
i

Φ (ZC
i )− Φ(ZC

i−1)
(22)

The expression is meaningful only for uncensored observations. We denote θi = 1 if

neither the father nor the child is censored and θi=0 otherwise. We then have
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γOP =
∑
i

θiγi/
∑
i

θi. (23)

3 The effect of paternal education: estimates from

linear regression, censored normal and multivari-

ate ordered probit regressions

The data we use to explore the issues described above are taken from the British Cohort

Study, a study of 17,196 children born in one week in 1970. They present father-child

pairs giving the age at which each completed their full-time education. They also show

the occupation of the child’s paternal grandfather at the time when the child’s father

left school. This occupational status is used to provide an indicator of grandparental

social class, with six categories being identified. Professional workers are classified to

social class I and managerial and technical workers to social class II. Social class III

is split between non-manual (III NM) and manual (III M) workers with the former

regarded as having higher social status than the latter. Social class IV covers partly-

skilled occupations and social class V unskilled occupations. Following convention we

refer to a class with a lower number being higher than one with a higher number because

it reflects higher social status.

Some of the fathers completed their education before the school-leaving age was

increased to fifteen.3 We exclude those father-child pairs whose fathers were born in

1932 or earlier in Great Britain or who were born in 1942 or from Northern Ireland, as

well as those whose fathers were born abroad. This exclusion results in 6,036 observations

being dropped. On top of this there is considerable attrition, giving us a final sample of

3,868 father-child pairs. A description of how weights were generated to control for the

effects of attrition is provided in Appendix B. These weights were used throughout.

The use of grandparental social class as an instrument deserves some comment. For

this to be legitimate requires that it not be correlated with child’s education, other than

via father’s education. Doubts about this have led some researchers to explore, instead

the effects of natural experiments arising from, for example, geographic differences in

school-leaving ages or changes in the law on compulsory schooling at particular dates.

Our main purpose, however, is to illustrate the effects of censoring and the way it

can interact with the instrument. Grandparental social class is ideal in this respect.

3This was in April 1947 in Great Britain but ten years later in Northern Ireland.
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Age at which Father Grandfather’s Class
completed Education I II III NM III M IV V All
15 13.9% 41.0% 38.9% 69.9% 74.2% 83.7% 63.4%
16 10.6% 18.1% 25.4% 15.2% 13.4% 9.8% 15.6%
17 14.5% 11.2% 11.1% 4.8% 5.4% 2.0% 6.4%
18 20.9% 9.3% 8.4% 3.7% 3.4% 2.3% 5.2%
19 1.6% 1.6% 1.4% 1.1% 0.2% 0.6% 1.0%
20 4.0% 1.1% 1.0% 0.4% 0.0% 0.3% 0.6%
21 9.5% 5.0% 4.6% 2.1% 0.9% 0.6% 2.6%
22 4.8% 4.4% 3.1% 1.0% 1.1% 0.7% 1.8%
23+ 20.2% 8.3% 6.0% 1.7% 1.4% 0.0% 3.4%
Number (unweighted) 117 661 328 1818 650 294 3868

Table 1: Father’s Age of Completing Education and Grandfather’s Social Class (column
percentages)

It is polychotomous and can therefore be used to construct a range of dichotomous

instruments depending on where the cut point is placed. This allows us to show how

our empirical results change in line with expectations as the position of the cut changes.

Table 1 shows the cross tabulation of fathers’ age of completing education against

grandfathers’ social class. The table consolidates those fathers who completed their

education at the age of twenty-three or older into a single category. This is done purely

for convenience; the data on fathers’ ages of completion are not top-coded. Table 2 shows

the analogous data for the children; since these data were observed when the children

were aged twenty-six, there is an element of right-censoring, but its impact is unlikely to

be large; only 0.2% of the sample were still receiving education at the age of twenty-six.

These tables show that, for both children and their fathers, higher grandparental social

class is associated with spending longer in education.

The remainder of this section presents estimates from the different modelling ap-

proaches. We begin with the linear IV case.

Since we observe six categories of social class, we can incorporate the full information

on grandfathers’ social class by including five independent dummy variables as instru-

ments. This is different from the set-up in the previous sections, where there is a single

binary instrument. Since the dummy variables are ordered, it is possible to consolidate

them in order to carry out five different IV regressions, in each of which the instrument

is a single dichotomous dummy, constructed by splitting the social class variable at dif-

ferent points in its distribution. Exploring this is informative of the common case where

only a single dummy instrument is available and we wish to assess how the distribution

11



Age at which Child Grandfather’s Class
completed Education I II III NM III M IV V All
16 12.0% 30.3% 36.8% 51.5% 54.2% 60.9% 47.2%
17 10.0% 13.8% 12.9% 12.7% 12.9% 12.1% 12.8%
18 11.4% 15.8% 13.1% 13.3% 15.1% 15.6% 14.1%
19 9.7% 4.7% 3.9% 3.2% 3.2% 2.3% 3.6%
20 2.3% 2.7% 1.7% 1.8% 1.9% 0.0% 1.8%
21 13.5% 7.4% 6.6% 5.4% 3.6% 3.1% 5.5%
22 17.6% 11.9% 11.6% 4.6% 4.0% 1.8% 6.3%
23+ 23.5% 13.4% 13.4% 7.5% 5.1% 4.2% 8.6%
Number (unweighted) 117 661 328 1818 650 294 3868

Table 2: Child’s Age of Completing Education and Grandfather’s Social Class (column
percentages)

of that variable may influence estimates.

The linear IV results are summarised in the first row of table 3 (full results are given

in table 5). The first column shows the estimates when all five social class dummies

are used as instruments. The subsequent five columns show the estimates produced by

dummies indicating social class of at least the value indicated. The table also shows, at

the bottom, the proportion of respondents in each category.

The results show a clear tendency for the estimated coefficient to rise in line with the

point at which the social class distribution is split to provide a dummy variable. The

question we now wish to address is whether this is a natural feature of the interaction

between the cut point of the instrument and the censored nature of the data on age of

completing education. In other words, does this relationship between the IV coefficient

and the definition of the instrument reflect the bias arising from censoring?

We explore this initially under the assumption of normality, before presenting our

preferred results where this is relaxed. We use Stata’s cmp command to estimate the

model set out in equations (1)-(4), but in a way which corrects for the effects of censoring.

The continuous variable underlying social class, Z∗
i is not observed, but we assume that

observed social class, Zi is defined according a sequence of cut points, ZC
1 . . . Z

C
5 , in the

usual ordered probit formulation.

These are the assumptions of a multivariate censored normal model; the parameter

estimates, γC , are shown in the second row of table 3 (see table 6 for full results).

Once again they can be calculated with five social class dummies or with dichotomous

instruments. The parameters are much more stable than in the linear IV case.

These censored normal results are useful to the extent that they allow us to apply
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Five Social Grandfather’s Social Class
Class Dummies I >II >IIINM >IIIM >IV

γDIV 0.844 0.786 0.807 0.858 1.000 1.034
(0.058) (0.096) (0.067) (0.064) (0.106) (0.140)

γC 0.604 0.706 0.635 0.608 0.592 0.554
(0.041) (0.069) (0.048) (0.043) (0.070) (0.091)

γ̃IV 0.871A 0.731 0.800 0.822 0.950 1.035
(0.058) (0.059) (0.060) (0.060) (0.060) (0.059)

γ̃0IV if xc = yc = 0 0.604A 0.558 0.577 0.584 0.629 0.662
(0.041) (0.043) (0.041) (0.041) (0.038) (0.036)

γOP 0.556 B 0.582 0.570 0.649 0.659
(0.03) (0.032) (0.033) (0.050) (0.066)

Cumulative Proportion 2.6% 18% 26% 74% 92%
(weighted)

Table 3: Parameter Estimates from Different Models

Notes:
Standard errors are shown in parentheses.
A. These parameters are calculated on the assumption that the instrument is continuous.
B γOP could not be estimated in the case where the instrument was a dummy indicating whether the
grandfather was in social class I. This was probably because only 2.6% of the sample lay above the cut
point.
Social Class I covers professional occupations, II managerial and technical occupations, IIINM skilled
non-manual occupations, IIIM skilled manual occupations, IV partly-skilled occupations and V unskilled
occupations

the analysis of section 2.2, to calculate how linear IV results would look when both

children’s and fathers’ education are censored-normal and the instrument is continuous.

Appendix D.2 describes the evaluation of equation (10) with a continuous instrument

under normality. The bias then comes from the ratio of the proportion of children’s

observations that are uncensored to the proportion of fathers’ observations that are

uncensored (see sections A.1 and D.2), Φ
(
−yC

)
/Φ(−xC) = 0.528/0.366. Multiplying

this by the estimate of the underlying relationship from the censored normal model,

0.604, yields an estimate for the parameter value associated with a continuous instrument

of 0.871.4

This parameter, shown in first column of the third row of table 3 and labelled γ̃IV , is

not very far from the empirical estimate of 0.844 found using five social class dummies

as instruments (first column, first row of table 3 ). While we do not offer any proof,

we suggest that the two parameters are close because using five categorical dummies

4Since the parameters are not normally distributed the value depends on whether, as here, we use
the observed probabilities to calculate the adjustment or whether we calculate the normalised censor
points and then assume that the distribution of the underlying variables is normal. In the latter case
we obtain a value of 0.907.
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delivers a reasonable approximation to a single continuous instrument. Comparing this

with the uncensored estimate of 0.604 shows the extent to which censoring biases the

linear IV estimates when the instruments are linear.

We can perform an analogous exercise for the single-instrument specifications. The

cut-points, ZC , are derived from the cumulative probabilities shown at the end of table

3. In the third row of the table we also show the linear IV parameters generated by

simulation under the assumption of normality and without any adjustment for censoring.

Comparing these with the actual linear IV estimates in the first row reveals a close match,

which might be taken to suggest that, with our data, the assumption of normality is a

reasonable approximation, despite the discrete nature of the variables. We investigate

this further in the next section. For now, we note simply the connection between the

choice of instrument (i.e. Zc) and the estimated parameter value.

The table includes in its fourth row and denoted by γ̃0IV the estimates of the pa-

rameters which would be generated from an underlying parameter value of 0.604 if

xc = yc = 0, i.e. if half of the fathers and children had completed their education at the

statutory minimum age. When the instrument is a continuous variable, as is assumed

here, the two proportions are equal and so the bias disappears; in the first column of

table 3 γC = γ̃0IV . As the calculations of section A.2 make clear, that is no longer true

when the instrument is dichotomous; the bias depends on the cut point of the dichoto-

mous instrument. This effect is, however, much smaller than that arising because the

censor points of the distributions of fathers’ and children’s ages of completion are very

different from the estimated means of the underlying uncensored distributions. The

results suggest that the bias arises primarily from the difference in the proportions of

fathers and children completing their education at the minimum age, rather than from

the interaction of this with the instrument. Further simulations with other values of the

censor point confirm this, at least given the assumption of normality.

The fifth row of table 3 shows the results derived from the estimates of the mul-

tivariate ordered probit model of section 2.3. These estimates were obtained in Stata

using the multivariate ordered probit procedure available in routine cmp. As discussed

in subsection 2.3, the ordered probit parameter captures the relationship between latent

variables and so must be transformed using equations (22) and (23) in order to be di-

rectly comparable to the linear IV or censored normal results.These results are calculated

only for the population of fathers and children who continued their education beyond

the legal minimum age because the expression cannot be evaluated for people affected
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by censoring.5 We show results both with our model estimated using the full range of

social classes and also with dichotomous classifications. We find it is not possible to

estimate the model when the only distinction is made between those with a grandfather

from social class I and those with grandfathers from other social classes. We assume

that this is because only a small proportion of children fall into the first category.

Our results suggest, with a parameter estimate of 0.556, a smaller impact of pater-

nal education than that suggested when assuming normality. However, there is closer

agreement with those results than with the linear IV results, which take no account of

censoring. This suggests that, in this case, the bias arising from assuming normality

is considerably less than the bias arising from censoring. As with the censored nor-

mal model we see that, when dichotomous instruments are used, the coefficients show

much less variation than when linear IV was used. Our preferred specification provides

additional flexibility and generality and is strongly to the censored normal model on

statistical grounds. The AIC and BIC for the ordered probit model are 31,318.6 and

31,540.9 respectively, compared to 33,212.2 and 33,288.4 for the censored normal model.

4 Conclusions

Using the relationship between fathers’ and children’s ages of completion of education

as an example, we have shown, both analytically and empirically, the distortions which

can arise when parameter estimates are produced by instrumental variables using data

that are censored. In our application, the fact that more than half of the fathers and

nearly half of the children left school at the compulsory school leaving age generates a

substantial upward bias. Making the assumption that age of completing education is

censored normally distributed, we provide expressions for the expected bias caused by

censoring.

We find a close match between linear IV estimates and the values predicted under

the assumption of normality. These show an upward bias compared to the underlying

parameter estimate. While linear IV regression suggests a child’s age of completing

education rises by 0.844 years for each extra year that their father underwent full-time

education, censored normal regression points to a coefficient of only 0.604. Our preferred

model allows for censoring and non-normality and suggests a smaller impact still, of 0.556

5In applying this formula we set the upper cut point to that for age 29 because the next cut point
is at age 32. This has negligible effect because the proportion of fathers reporting completing their
education after age 29 is minimal.
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years. In this application the bias arising from the use of IV estimates with censored

data is much greater than any bias arising from the assumption of normality.

Our results highlight the need to pay adequate regard to the issue of censoring. Fur-

thermore, it not just censoring of dependent variables and regressors that is relevant,

but also the related issue of how dichotomous instruments divide the population. View-

ing such instruments as being generated by a latent variable crossing a threshold, the

similarity to censoring is clear. We have shown how the bias depends on the distribu-

tion of the binary instrument. This finding has some relevance for the treatment effects

literature. In that literature, impacts are allowed to vary across individuals and IV esti-

mates are usually interpreted as capturing the mean impact of a treatment on compliers

(Imbens & Angrist 1994). Altering the instrument changes the group of compliers such

that differences in the resulting estimates are informative of differences between groups

of compliers in their response to the treatment. Our analytical results indicate that,

even if we assume the effect of paternal education is the same for everyone, different

instruments will be expected to yield different estimates. This provides a potential ex-

planation for results being instrument-specific that differs from the impact heterogeneity

interpretation.
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A A Statistical Analysis of Censoring with Bivariate

Normality

Write

X∗
i = µX + δεZi + εXi (24)

Y ∗
i = µY + γ

(
δεZi + εXi

)
+ εYi (25)

Z∗
i = µZ + εZi (26)

where  εXi
εYi
εZi

 ∼ N

 0
0
0

 ,
 σ2

X σXY 0
σXY σ2

Y 0
0 0 σ2

Z


so that

V =Cov

 X∗
i

Y ∗
i

Z∗
i

 =

 σ2
X + δ2σ2

Z γ (σ2
X + δ2σ2

Z) + σXY δσ2
Z

γ (σ2
X + δ2σ2

Z) + σXY σ2
Y + γ2 (σ2

X + δ2σ2
Z) + 2γσXY γδσ2

Z

δσ2
Z γδσ2

Z σ2
Z


(27)

Two of the variables, X∗
i and Y ∗

i are assumed to be censored, so that the observed values

Xi and Yi are defined as

Xi = X∗
i if X∗

i ≥ XC while Xi = XC if X∗
i < XC and

Yi = Y ∗
i if Y ∗

i ≥ YC while Yi = YC if Y ∗
i < YC

The identifying conditions of section 2 are assumed to be met.

We set

sX =
√
σ2
X + δ2σ2

Z ; sY =
√
σ2
Y + γ2 (σ2

X + δ2σ2
Z) + 2γσXY ; sZ = σZ

ρxy =
γ (σ2

X + δ2σ2
Z) + σXY

sXsY
; ρxz =

δsZ
sX

; ρyz =
γδsZ
sY

so that  X∗
i

Y ∗
i

Z∗
i

 ∼ N

 µX
µY
µZ

 ,
 s2X ρxysXsY ρxzsXsZ
ρxysXsY s2Y ρyzsY sZ
ρxzsXsZ ρyzsY sZ s2Z

 .

We examine two cases. In the first Z∗
i is observed, while in the second case Z∗

i is

not observed. Instead we observe a dummy variable, Zi with Zi = 0 if Z∗
i < Zc + µZ

and Zi = 1 if Z∗
i ≥ Zc + µZ . Since the instrumental variable estimator of the regression

coefficient is the ratio of two covariances, we evaluate the effect of censoring on the
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estimate of the correlation, rxz, calculated from observations on normalised censored

data. The first step is to normalise the variables. We set

x∗i =
X∗
i − µX
sX

; xi =
Xi − µX
sX

and xc =
Xc − µX
sX

.

y∗i =
Y ∗
i − µY
sY

; yi =
Yi − µY
sY

and yc =
Yc − µY
sY

z∗i =
Z∗
i − µZ
sZ

; zi =
Zi − µZ
sZ

and zc =
ZC − µZ

sZ
;

We use φ() and Φ() to represent the density function and cumulative distribution of

the standard normal distribution respectively. One argument indicates that the function

relates to the univariate normal distribution, while three arguments (the two ordinates

and the correlation) are used to indicate the bivariate normal distribution. The subse-

quent analysis draws heavily on the results quoted by Rosenbaum (1961) and Muthen

(1990) for the moments of truncated and censored bivariate normal distributions.

A.1 The bias from censoring when the instrument is fully-
observed

We set out here the bias arising when Cov(xz∗) is used in place of the covariance of the

uncensored data, Cov(x∗z∗). The bias associated with Cov(yz∗) can then be evaluated

simply by substituting y for x in the resulting formulae, and the impact on the IV

estimator can then be calculated.

We consider separately the cases where xi > xc (equivalently, x∗i > xc) and xi=xc

(x∗i ≤ xc).

1. xi > xc with P (xi > xc) = Φ(−xc)

2. xi=xc with P (xi > xc) = Φ(xc)

The product moment needs to be evaluated in two components, one for each of the

two cases above

1. xi > xc (Rosenbaum 1961)6

m1
xz = (ρxzΦ(−xc) + ρxzxcφ(xc))/Φ(−xc)

2. xi = xc

m2
xz = −xcρxzφ(xc)/Φ(xc)

6Rosenbaum (1961) uses the function Q(x) to refer to the probability mass of the normal distribution
in the range [x, ∞] rather than the range [-∞ ,x].
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Since the first moment of z∗i = 0, rxz =Cov(xz∗) estimated from the censored data is

rxz = Φ(−xc)m1
xz + Φ(xc)m

2
xz = ρxzΦ(−xc)

Similarly, simply by substituting y for x we have

ryz = ρyzΦ(−yc)

and the IV estimator from the censored data is therefore

γIV =
ρyzΦ(−yc)σY
ρxzΦ(−xc)σX

in contrast to the estimator from the uncensored data

γ∗IV =
ρyzσY
ρxzσX

so that

γIV = γ∗IV
Φ(−yc)
Φ(−xc)

A.2 The bias from censoring when the instrument is a di-
chotomised latent variable

Once again, it is adequate to focus on the Cov(xz) with Cov(yz) evaluated by substi-

tution. When we observe zi rather than z∗i the covariance is the expected value of xi

conditional on zi = 1. The expected value of the second moment around zero is given as

Muthen (1990)

φ(xc)Φ

(
ρxzxc − zc√

1− ρ2xz

)
+ ρxzφ(zc)Φ

(
ρxzzc − xc√

1− ρ2xz

)
+ xcΦ(xc,−zc,−ρxz)

and the product of the two means is given as

Φ(−zc) {Φ(xc)xc + φ(xc)}

so the estimate of the covariance of the normalised variables is

ŝxz = φ(xc)Φ

(
ρxzxc − zc√

1− ρ2xz

)
+ ρxzφ(zc)Φ

(
ρxzzc − xc√

1− ρ2xz

)
+xcΦ(xc,−zc,−ρxz)− Φ(−zc) {Φ(xc)xc + φ(xc)}

Similarly

ŝyz = φ(yc)Φ

(
ρyzyc − zc√

1− ρ2yz

)
+ ρyzφ(zc)Φ

(
ρyzzc − yc√

1− ρ2yz

)
+ycΦ(yc,−zc,−ρyz)− Φ(−zc) {Φ(yc)yc + φ(yc)}
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so the parameter estimated from the censored data using a dummy variable as instrument

is

γDIV =
ŝyz
ŝxz

sY
sX

showing a clear bias, if one which is less straightforwardly represented than with the

continuous instrument.

It should be noted that, in the absence of censoring (xc = −∞), then

σ̂xz = ρxzφ(zc)

while if xc = zc = 0

σ̂xz =
(1 + ρxz)φ(0)− φ(0)

2
= ρxz

φ(0)

2

It follows that if xc = yc = zc = 0 then γDIV is unbiased.
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B Adjusting for non-response

Our empirical analysis uses data weighted to adjust for survey non-response. We relate

the probability of dropping out of the survey to characteristics reported in the original

1970 survey, at least for the vast majority of respondents. Table 4 shows the results

of a probit model of drop-out. The probability of a child remaining in the sample is

increasing in the social status of the father and is higher if the parents were married

than if they were not. After excluding observations of fathers who could leave school at

fourteen, these data are available for 10,494 respondents out of the total initial sample

of 17,196 children. While some covariates are available for all the children, we judge

that the benefits of using reasonably powerful covariates to account for non-response

outweighs the costs of losing those children for whom the covariates are not available.

We use the probit equation to provide weights with which we correct our sample for the

effects of attrition.

Probit Coeff. (s.e.)
Father married 0.532***

(0.110)
Social Class I 0.661***

(0.078)
Social Class II 0.661***

(0.067)
Social Class III NM 0.601***

(0.066)
Social Class III M 0.392***

(0.059)
Social Class IV 0.227***

(0.065)
Constant -1.280***

(0.119)
N 10,494
Log-likelihood -6,795.2

Table 4: Determinants of the Probability of an Initial Respondent remaining in our
Sample

C Interpretation of the Ordered Probit Model

A general model relaxes the assumption of censored normality and instead allows out-

comes to be generated by an ordered probit model. The cut-points of this model allow
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it to approximate an arbitrary discrete distribution of observed outcomes. The model is

motivated by the empirical analysis of the relationship between the years of education

of fathers and their children so we present it in this section with this in mind.

Since the ordered values for years of education are simply cut points, no assumption

is made about the distribution of years of education. We assume that educational

attainment is represented by latent variables, Y ∗∗
i and X∗∗

i for the respondent and the

respondent’s father respectively. These latent variables are explained by the following

system of equations

X∗∗
i = δZ∗∗

i + εxi

Y ∗∗
i = ζX∗∗

i + εyi

Z∗∗
i = εzi εxi

εyi
εzi

 ˜N (0,Σ) with Σ =

 1 ρxy 0
ρxy 1 0
0 0 1


Actual age of completion of education is observed as N ordinal variables, We denote a

sequence of age thresholds, X1..XN−1 with X0 = −∞ and XN = ∞ as the thresholds

for the father, with the corresponding thresholds for the child being Y0...YN . Z0...ZN are

the thresholds which locate values of Z∗∗
i to observed social classes. These are estimated

together with the parameters of the equations above, again using the Stata routine cmp.

Here considerable care is needed over the interpretation of ζ. It shows the marginal

impact of the father’s latent variable on that of the child; since neither latent variable

represents age of completion of education it is not directly interpretable in terms of the

influence of the father’s age of completion on that of the child. If the thresholds are

evenly spaced there is a simple linear relationship between the latent variable and the

age of completing education. That is, however, unlikely to be the case; the point of

estimating an ordered probit model is to allow for the possibility of non-linearity. In

turn that implies that the relationship between father’s age of completion and child’s

age of completion will be non-linear. For each observation we can, however work out

the marginal relationships between the latent variable and the age of completion of

education. These can then be used to translate ζ into a relationship between ages of

completion of the father and the child. The non-linearity means that that will be specific

to each individual. Averaging across the population, however, provides an estimate of

the average marginal impact of father’s age of completion on child’s age of completion.

We denote by TXi the expected age of completion of the father conditional on the
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latent variable for social class of Z∗∗
i , and T Yi the expected age of completion of the child

conditional on Z∗∗
i . With λXi = dTXi /dX

∗∗
i and λYi = dT Yi /dY

∗∗
i . Since dY ∗∗

i /dX∗∗
i = ζ

we can then write

γi =
dT Yi
dTXi

= ζ
λYi
λXi

We proceed using Φ() to represent the cumulative normal distribution and φ to

represent the density function of the normal distribution. Given Z∗∗
i and conditional on

the age at which father i completed his education being within the range X1..XN−1 his

expected age of completion is, with τXk the age of completion associated with threshold

Xk

TXi =

∑N−1
k=2 (Φ(XC

k − δZ∗∗
i )− Φ(XC

k−1 − δZ∗∗
i ))τXk

Φ(XC
N−1 − δZ∗∗

i )− Φ(XC
1 − δZ∗∗

i )

We are interested in the effect that a small increase, h in X∗∗
i = δZ∗∗

i has on TXi . We

can, however, only evaluate this for the population for which both X1 < δZ∗∗
i < XN−1

and X1 < δZ∗∗
i + h < XN−1 since it is only for this population that we can evaluate

the expected age of completion both before and after a disturbance, h. This means that

the derivative of TXi will not provide what we need; we have to evaluate two terms, TX
o

i

for the expected age of completion of education for someone with a latent variable of

X∗∗
i = δZ∗∗

i , and TX
oo

i for someone with a latent variable X∗∗
i = δZ∗∗

i + h. We then

evaluate
dTXi
dX∗∗

i

=
Limit
h→ 0

TX
oo

i − TXo

i

h

First,

TX
o

i =

∑N−1
k=2 (Φ(XC

k − δZ∗∗
i )− Φ(XC

k−1 − δZ∗∗
i ))τXk +

{
Φ(XC

N−1 − δZ∗∗
i − h)− Φ(XC

N−1 − δZ∗∗
i ))τXN−1

}{
Φ(XC

N−1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i )
}

+
{

Φ(XC
N−1 − δZ∗∗

i − h)− Φ(XC
N−1 − δZ∗∗

i )
}

Here the second term in the numerator is an adjustment to recognise that the upper

limit of integration has to be XN−1−h so that after the increment of h the latent variable

remains within the permitted range; a similar adjustment to the denominator is needed.

For TX
oo

i the ranges are shifted by h. The upper limit is, however, XN−1.

TX
oo

i =

∑N−1
k=2 (Φ(XC

k − δZ∗∗
i − h)− Φ(XC

k−1 − δZ∗∗
i − h))τXk −

{
Φ(XC

1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i − h))τX2

}{
Φ(XC

N−1 − δZ∗∗
i − h)− Φ(XC

1 − δZ∗∗
i − h)

}
− {Φ(XC

1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i − h)}

Applying Taylor’s theorem to each expression, we have

TX
o

i =

∑N−1
k=2 (Φ(XC

k − δZ∗∗
i )− Φ(XC

k−1 − δZ∗∗
i ))τXk − hφ(XC

N−1 − δZ∗∗
i )τXN−1{

Φ(XC
N−1 − δZ∗∗

i )− Φ(XC
1 − δZ∗∗

i )
}
− hφ(XC

N−1 − δZ∗∗
i )
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and

TX
oo

i =

∑N−1
k=2 (Φ(XC

k − δZ∗∗
i )− Φ(XC

k−1 − δZ∗∗
i ))τXk − h

∑N−1
k=2 (φ(XC

k − δZ∗∗
i )− φ(XC

k−1 − δZ∗∗
i ))τXk{

Φ(XC
N−1 − δZ∗∗

i )− Φ(XC
1 − δZ∗∗

i )
}
− hφ(XC

1 − δZ∗∗
i )

− hφ(XC
1 − δZ∗∗

i )τX2{
Φ(XC

N−1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i )
}
− hφ(XC

N−1 − δZ∗∗
i )

Using Taylor’s theorem further

TX
o

i = TXi −h
φ(XC

N−1 − δZ∗∗
i )τXN−1{

Φ(XC
N−1 − δZ∗∗

i )− Φ(XC
1 − δZ∗∗

i )
}+h

TXi φ(XC
N−1 − δZ∗∗

i ){
Φ(XC

N−1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i )
}2

and

TX
oo

i = TXi − h
∑N−1

k=2 (φ(XC
k − δZ∗∗

i )− φ(XC
k−1 − δZ∗∗

i ))τXk − φ(XC
1 − δZ∗∗

i )τX2{
Φ(XC

N−1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i )
}

−h
TXi φ(XC

N−1 − δZ∗∗
i ){

Φ(XC
N−1 − δZ∗∗

i )− Φ(XC
1 − δZ∗∗

i )
}2

Taking the difference between TX
oo

i and TX
o

i and letting h tend to zero

λXi =
dTXi
dX∗∗

i

= −
∑N−1

k=2 (φ(XC
k − δZ∗∗

i )− φ(XC
k−1 − δZ∗

i ))τXk − φ(XC
1 − δZ∗∗

i )τX2 − φ(XC
N−1 − δZ∗∗

i )τxN−1{
Φ(XC

N−1 − δZ∗∗
i )− Φ(XC

1 − δZ∗∗
i )
}

Here the first term shows the effect of shunting some of the probability range across the

thresholds. The second term corrects for the fact that the people who cross the upper

threshold, XN−1 are excluded from the analysis, and the third term adjusts for the fact

that the range is those observations lying between X1 and XN−1 both before and after

the increment.

To perform a similar calculation for children, we substitute out the fathers’ latent

variable, so that

Y ∗∗
i = δζZ∗∗

i + ζεXi + εYi

We need to take account of the fact that, while X∗∗
i is distributed with unit variance,

the variance of Y ∗∗
i conditional on Z∗∗

i is σ2
Y = 1 + ζ2 + 2ρXY ζ. This implies that

λYi =
dT Yi
dY ∗∗

i

= −
∑N−1

k=2 (φ(
Y C
k −δζZ∗∗

i

σY
)− φ(

Y C
k−1−δζZ

∗∗
i

σY
))τYk − φ(

Y C
1 −δζZ∗∗

i

σY
)τY2 − φ(

Y C
N−1−δζZ

∗∗
i

σY
)τYN−1{

Φ(
Y C
N−1−δζZ

∗∗
i

σY
)− Φ(

Y C
1 −δζZ∗∗

i

σY
)
}

allowing γi and thus γOP to be evaluated.
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Five Social Grandfather’s Social Class
Class Dummies I >II >IIINM >IIIM >IV

γDIV 0.844*** 0.786*** 0.807*** 0.858*** 1.000*** 1.034***
(0.058) (0.096) (0.067) (0.064) (0.106) (0.140)

Constant 4.323*** 5.255*** 4.918*** 4.086*** 1.811 1.261
(0.924) (1.551) (1.082) (1.031) (1.697) (2.254)

N 3868 3868 3868 3868 3868 3868
Kleinbergen-Paap 310 58.9 190 256.6 159.8 107.2
Sargan χ2

4=4.35
Percentage Dummy=1 2.6% 18% 26% 74.3% 91.7%

Table 5: IV Coefficient Estimates as Functions of the Cut Point for the Dummy Instru-
mental Variable

Both λXi and λYi and thus γi are functions of Z∗∗
i which is of course unobserved. We

may, however, calculate their expected values conditional on social class Zi of observation

i being observed. We evaluate the effect for someone with a father in social class Zi as

γi = ζ

∫ ZC
i

ZC
i−1
φ (Z∗∗

i )
{
λYi (Z∗∗

i ) /λXi (Z∗∗
i )
}
dZ∗∗

i

Φ (ZC
i )− Φ(ZC

i−1)

as the expected marginal impact conditional on a father from social class Zi.

The expression is meaningful only for uncensored observations. We denote θi = 1 if

neither the father nor the child is censored and θi=0 otherwise. We then have

γOP =
∑
i

θiγi/
∑
i

θi.

D Full estimation results

D.1 Linear IV results

The linear IV results are presented in table 5.

The Kleinbergen-Paap statistic does not point to any concerns that the instruments

are weak in any of the regressions. In the first column, the five dummies allow Sargan’s

over-identification test to be carried out, with an acceptable result.
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D.2 Censored normal results

The censored normal results are presented in table 6.

It should be noted that a closely related specification is provided by replacing equa-

tion (2) by

Y ∗
i = γXi + εYi (28)

Here it is the actual age at which the father completes his education, rather than his

latent age of completion, which influences the age of completion of the child. The two

models have the same number of parameters, so it is reasonable to discriminate between

them on the basis of the log likelihoods associated with them. The log-likelihoods of

this second group of models are shown in the final row of table 6. These log-likelihoods

suggest strongly that the latent variable model of equation (2) should be preferred to

the actual variable model of equation (28).

The estimated parameters imply the following values for the elements of the covari-

ance matrix of the uncensored data. V, defined by equation (8), and its normalised

equivalent, Σ

V =

 21.442 9.365 −1.835
9.365 17.700 −1.108
−1.835 −1.108 1

 ; Σ =

 1 0.404 −0.396
0.404 1 −0.263
−0.396 −0.263 1


Using standard notation to refer to the elements of Vand Σ,

γ∗IV =
V2,3

V1,3

=
Σ2,3

Σ1,3

√
V2,2

V1,1

= 0.604

In order to explore the biases arising from censoring we work from matrix Σ, so as to

exploit the analysis of section 2.2. We then multiply the results by
√

V2,2/V1,1 in order

to express them in terms of a relationship between ages of completion of education of

fathers and children.

We can see from tables 1 and 2 that 63.4% of fathers and 47.2% of children left

school at the legal minimum age. These imply that xC = Φ−1(0.472) = −0.0702 and

yC = Φ−1(0.634) = 0.343 where Φ−1 is the inverse cumulative normal distribution.

These values are used in the application of the results of section 2.2 and appendix A to

give the values for γ̃IV in table 3.
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Grandfather’s Class
I II III NM III M IV V

Child’s Age of Completion
Constant 8.344*** 6.995*** 7.940*** 8.307*** 8.515*** 9.021***

(0.583) (0.950) (0.674) (0.604) (0.954) (1.233)
γC 0.604*** 0.706*** 0.635*** 0.608*** 0.592*** 0.554***

(0.041) (0.069) (0.048) (0.043) (0.070) (0.091)

Father’s Age of Completion
Constant 13.340*** 13.310*** 13.318*** 13.301*** 13.324*** 13.321***

(0.110) (0.112) (0.112) (0.112) (0.111) (0.111)
δ -1.835*** -2.289*** -2.052*** -2.195*** -1.437*** -1.528***

(0.093) (0.156) (0.117) (0.110) (0.121) (0.168)

Cut Points
Cut 1 -1.964*** -1.945***

(0.040) (0.040)
Cut 2 -0.916*** -0.914***

(0.023) (0.023)
Cut 3 -0.640*** -0.644***

(0.022) (0.021)
Cut 4 0.656*** 0.654***

(0.022) (0.023)
Cut 5 1.374*** 1.385***

(0.030) (0.031)

Variance-covariance
log σX 1.447*** 1.403*** 1.431*** 1.417*** 1.487*** 1.481***

(0.024) (0.029) (0.025) (0.025) (0.024) (0.026)
log σY 1.327*** 1.357*** 1.334*** 1.328*** 1.321*** 1.313***

(0.020) (0.031) (0.022) (0.021) (0.024) (0.024)
tanh−1σXY /(σXσY ) -0.228*** -0.383*** -0.272*** -0.244*** -0.200* -0.151

(0.049) (0.093) (0.060) (0.054) (0.088) (0.119)

N 3868 3868 3868 3868 3868 3868
Log-Lik. -14934 -10758.6 -11820.6 -12106.9 -12216.8 -11322.4
Log-Lik. (28) -14996 -10788 -11873 -12164.6 -12245.2 -11338.5

The parameters are identified by setting the variance of εZi to 1 and the covariances σXZ and

σY Z to 0.

Table 6: Parameter Estimates allowing for Censoring when Child’s Age of Completion
is influenced by Father’s Latent Age of Completion
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D.3 Multivariate ordered probit results
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Child’s age of completion Father’s age of completion Grandfather’s social class
ζ 0.654*** δ -0.438***

(0.040) (0.022)
Cut Points

16 0.368*** Class I -1.964***
(0.023) (0.040)

17 -0.082*** 17 0.877*** Class II -0.916***
(0.023) (0.024) (0.023)

18 0.279*** 18 1.154*** Class III NM -0.640***
(0.023) (0.027) (0.022)

19 0.727*** 19 1.449*** Class III M 0.657***
(0.026) (0.030) (0.022)

20 0.859*** 20 1.519*** Class IV 1.374***
(0.027) (0.031) (0.030)

21 0.932*** 21 1.563***
(0.028) (0.032)

22 1.177*** 22 1.798***
(0.031) (0.035)

23 1.535*** 23 2.021***
(0.038) (0.040)

24 1.901*** 24 2.250***
(0.046) (0.047)

25 2.299*** 25 2.457***
(0.059) (0.055)

26 3.085*** 26 2.774***
(0.126) (0.075)

27 3.030***
(0.099)

28 3.123***
(0.112)

29 3.194***
(0.122)

32 3.523***
(0.189)

33 3.691***
(0.244)

tanh−1ρXY -0.212***
(0.049)

N 3,868
Log-likelihood -14,169.9

Note that there are no observations with Xi = 30 or 31.

Table 7: The Parameters of the Ordered Probit Model
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