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Abstract

In this paper we show that �exible probability distribution functions, in addition
to been able to capture stylized facts of �nancial returns, can be used to identify pure
higher-order e¤ects of investors�optimizing behavior. We employ the �ve-parameter
weighted generalized beta of the second kind distribution �and other density func-
tions nested within it�to determine the conditions under which risk averse, prudent
and temperate agents are diversi�ers in the standard portfolio choice theory. Within
this framework, we illustrate through comparative statics the economic signi�cance of
higher-order moments in return�s distributions.
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1 Introduction

Flexible probability distribution functions (pdfs), which we refer to as pdfs with more than

two parameters, are typically employed in the �nance literature to capture asset returns

skewness and excess kurtosis. Economic theory shows that higher moments of distribution

matter for asset allocation because they are closely linked to higher-order risk preferences

such as downside risk aversion or prudence, and temperance (see Menezes et al., 1980;

Kimball, 1990; Guidolin and Timmermann, 2008).

In this context we show that the �ve-parameter weighted generalized beta of the second

kind (WGB2) pdf is of particular interest because it allows to identify the relationship

between higher-order moments and �pure�higher-order risk preferences. The WGB2 nests

densities such as the generalized beta of the second kind (GB2), generalized gamma (GG),

log-normal (LN), gamma (g) and Weibull (W), which is critical to isolate the direct

relationship between nth-order moments and nth-order risk attitudes.1

The �exibility of the WGB2 is clearly an advantage relative to two-parameter pdfs

that have limitations in portfolio choice analysis. This is the case because pdfs can only

be comparable in terms of one risk preference but not in terms of more than one. To

illustrate our argument we employ the example given by Feldstein (1969) in his seminal

paper. Feldstein demonstrated that the investor�s decision to do not diversify, or plunge,

i.e., optimally allocate all their wealth in risky assets, could occur for reasonable values

of expected return and variance of the risky asset assuming log-utility and a log-normal

distribution.2 We show that �exible pdfs can keep low(er) moments �xed while modifying

others, high(er) moments, that capture risk preferences other than risk aversion. We derive

the conditions, within the standard portfolio choice model, under which investors that are

risk averse, prudent and temperate, are diversi�ers. Our analysis thus critically illustrates

the role of the assumed pdf on the relation of higher moments and portfolio decision within

this simple, yet relevant, theoretical framework.

2 Theoretical framework: portfolio choice model

Consider a two-asset (risky/riskless) economy in which an investor with initial wealth !0
decides to invest a proportion, 0 � � � 1 (ruling out short selling), in the risky asset so that

1See McDonald (1984) and Ye et al. (2012) for the theoretical properties of these densities and their

applications in economics and �nance.
2Agents investing all their liquid wealth in risky assets is a common assumption in models of asset

allocation (see e.g. Brunnermeier and Nagel, 2008).
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after one period expected wealth becomes

! = (1� �)!0 + �!0E(r); (1)

where E(r) is the expected gross rate of return of the risky asset.

For the investor�s preferences we assume a log-utility function, u1(!) = ln(!):3 This

utility displays the features that characterize higher-order risk preferences such as prudence

(or downside risk) and temperance, i.e. u000 > 0; and uiv < 0, respectively (Eeckhoudt and

Schlesinger, 2006).4

The representative agent maximizes her expected utility (EU) by choosing the proportion

� to invest in the risky asset,

max
f�g
Ef [u(!)] = max

f�g
Ef [u ((1� �)!0 + �!0r)]

= max
f�g
Ef fu (!0 [1 + �(r � 1)])g : (2)

Following the analysis in Feldstein, the conditions under which the investor will maximize

Ef [u(!)] by holding only the risky asset are,

�f (u(!); �) > 0 8� 2 [0; 1) (3)

�f (u(!); �)
��
�=1

� 0; (4)

where �f (u(!); �) �
@Ef [u(!)]

@�
. For log-utility (2) becomes5

max
f�g

(Ef [u1(!)]) = max
f�g

(ln(!0) + Ef fln [1 + � (r � 1)]g) : (5)

�f (u1(!); �) � Ef
�

r � 1
1 + � (r � 1)

�
is (i) positive for � = 0 (equation (6)), and (ii) a strictly

decreasing function of � for all �2 [0; 1] (equation (7)),6 therefore Ef [u1(!)] has a unique
global maximum at � = 1 for all admissible � if condition (8) �f (u1(!); �)

��
�=1

� 0 holds

3For example Gandelman and Hernández-Murillo (2014) estimate the coe¢ cient of relative risk aversion

for 75 countries and suggest that it varies closely around one. Hartley et al. (2014), in the context of

attitudes to risk in a game show, suggest that log-utility is a good approximation to agents�utility function.
4We extended the analysis by considering an alternative (power) utility function for which we obtained

necessary (but not su¢ cient) plunging conditions. These results are available from the authors upon request.
5This model could easily be extended to a dynamic framework because for log-utility the optimal one-

period � is the same as the multi-period � (Brandt, 2010).
6Note that @Ef [u(!)]@� = @

@�

R
u(!)f(r)dr =

R @u(!)
@� f(r)dr = Ef

h
@u(!)
@�

i
:
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(Feldstein, 1969, p.9),

�f (u1(!); �)
��
�=0

= Ef [r � 1] > 0; (6)

@�f (u1(!); �)

@�
= �Ef

�
(r � 1)2

(1 + � (r � 1))2
�
< 0 8� 2 [0; 1]; (7)

�f (u1(!); �)
��
�=1

= 1� Ef
�
r�1
�
� 0: (8)

2.1 Conditions for optimal choice under alternative return�s pdfs

In this section we derive the theoretical condition for optimal choice (8) under alternative

return�s pdfs and express it in terms of the pdfs�central and raw moments. Table 1 displays

the density and moment generating functions (mgfs) for the �ve-, four- and three-parameter

pdfs WGB2, GB2, and GG, respectively.

[Insert Table 1]

For the WGB2 case, using its mgf and the expression for b derived from its �rst raw

moment, we can express condition (8) as,

1� Ef
�
r�1
�
= 1� 1

b

�(p+ k
c
� 1

c
)�(q � k

c
+ 1

c
)

�(p+ k
c
)�(q � k

c
)

� 0

m1;WGB2 �
�
�
p+ k

c
+ 1

c

�
�
�
q � k

c
� 1

c

�
�
�
p+ k

c
� 1

c

�
�
�
q � k

c
+ 1

c

�
�2
�
p+ k

c

�
�2
�
q � k

c

� : (9)

Hereafter mt;f denotes the th-central moment of f: Similarly, for the GB2 pdf the optimal

condition is

m1;GB2 �
�
�
p+ 1

c

�
�
�
q � 1

c

�
�
�
p� 1

c

�
�
�
q + 1

c

�
� (p)2 � (q)2

: (10)

McDonald (1984) demonstrates that the substitution b = q1=c=a as q ! 1 in the GB2

generates the GG pdf with shape parameters a > 0 and c > 0, and scale parameter p > 0:7

Thus, condition (8) for the GG is given by

m1;GG �
�(p+ 1

c
)

�(p)

�(p� 1
c
)

�(p)
: (11)

This expression allows us to obtain results for other distributions nested within the GG. For

instance, in the case of the two-parameter gamma pdf the condition for investors to allocate
7The GG family nests the gamma (c = 1), exponential (p; c) = (1; 1), Weibull (p = 1), log-normal

(p!1) and Rayleigh (p; c) = (1; 2).
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all wealth in the risky asset can be solved solely in terms of the �rst and second moment,

and is obtained as

1� Ef
�
r�1
�
= 1� a

�(p� 1
1
)

�(p)
� 0; (12)

1� Ef
�
r�1
�
= 1� �(p+ 1)

m1;g

�(p� 1)
�(p)2

� 0; (13)

which can be expressed in terms of central moments as

1� a

p� 1 = 1�

m2;g

m1; g

m2
1;g

m2;g

� 1
� 0; (14)

m1;g � 1 +
m2;g

m1;g

: (15)

For the case of the Weibull pdf the condition for the optimum is

m1;W � �(1 + 1
c
)�(1� 1

c
): (16)

Finally, we analyze the standard case of the log-normal pdf -assumed in Feldstein (1969),

i.e., we assume that the logarithm of the risky asset (gross) return, ln(r), follows a Normal

distribution with parameters m and v

�(r;m; v)=
1

rv
p
2�
e�

1
2(

ln(r)�m
v )

2

; 0 < r <1: (17)

The mgf of this distribution is given by

�t;LN = E�[r
t] =

Z
rt�(r;m; v)dr = etm+

1
2
t2v2 ; 8t 2 R or 8t 2 C. (18)

Thus, � = 1 is optimum if the condition below holds

��(u1(!); �;m; �)j�=1 = 1� E�
�
r�1
�
� 0; (19)

which is expressed as

1 � e�m+
1
2
v2 ; (20)

m � 1

2
v2: (21)

Given that �1;LN = em+
1
2
v2 and �2;LN = e2m+2v

2
the condition above is: 2 ln�1;LN �

1
2
ln�2;LN � 1

2
ln�2;LN � ln�1;LN ; or 3 ln�1;LN � ln�2;LN . So we can write the condition for
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the optimum in terms of either the parameters (equation (21)), the �rst two raw moments

(equation (22)) or the central moments (equation (23))

�1;LN �
 
1 +

�2;LN � �21;LN
�21;LN

!
; (22)

m1;LN � 1 +
m2;LN

m2
1;LN

: (23)

3 The e¤ect of higher-order moments in the investor�s

decision

In this section we employ speci�c parameter values of the pdfs to illustrate the fact that more

�exible pdfs allow the researcher to interpret portfolio decisions in terms of investors�broad

risk pro�le rather than only in terms of risk aversion. The advantage of using the WGB2,

and its nested pdfs, is that it allows to keep low(er) order moments constant while modifying

high(er) order moments in order to examine the �pure�e¤ect that higher-order preferences

play in portfolio selection. We note that previous studies in the literature typically limit

their analysis to the impact of higher-order moments in portfolio weights, but they do not

explicitly relate those weights to higher-order preferences.8

As the baseline for our comparison we employ the values in Feldstein, i.e., m1;LN = 1:05;

a net return of 5%. For this mean value, allocation of wealth in the risky asset will

occur from condition (23) if the variance of the risky asset m2;LN � 0:055125, or similarly,
unless the standard deviation is about more than four times the expected net return, i.e.,

m
1=2
2;LN > 0:23479: When the risky asset pdf has two-parameters, any two moments are

su¢ cient to determine the optimal portfolio allocation. With a mean of 1:05 and a variance

of 0:055125, the third central moment of the log-normal takes the value of 0:008826 and the

fourth central moment 0:011667. The value of the variance appears practically relevant and

hence Feldstein�s original question as to why we do not appear to observe more investors

not diversifying. In fact, if we consider an alternative two-parameter distribution such as

the gamma (nested within the GG when c = 1, Table 1) and still assume m1;g = 1:05,

no-diversi�cation is less likely since it occurs for a lower upper bound of the variance than in

the log-normal (see Table 2, Panel A).9 Consequently, the Feldstein question could be even

more salient.
8A paper that it does provide such a direct link is Ñíguez et al. (2016).
9Also note that for the Weibull no-diversi�cation occurs when its variance is smaller than the variance of

the gamma and log-normal.
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For the distributions with three, four and �ve parameters the conditions for agents

to diversify depend on the higher moments but closed form analytic solutions cannot be

obtained. In Table 2, Panel B, we show parameter values for two GG distributions that

yield the same mean and variance as the lognormal presented above. However, for those GG

pdfs investors would diversify rather than allocate all the wealth in the risky asset.10 This

critical shift in the investors�optimal portfolio decision is due to downside risk aversion. The

GG pdfs in this example imply more downside risk than the lognormal does, that is, they

involve a transfer of probability weight leftward in the distribution preserving its mean and

variance, making the individual worse o¤ by such a change and therefore willing to diversify.

Employing an even more �exible pdf, the WGB2, where the optimal conditions are

given by equation (9), we can demonstrate the e¤ect of the fourth central moment. Using

the same values of the mean, variance, and skewness that imply agents are no-diversi�ers

when the distribution is log normal, we �nd parameter values for the WGB2, namely,

(p; c; q; b; k) = (4:92879; 2:80226; 6:5; 1:1025791; 0:7), such that the individual diversi�es

rather than allocates all wealth in the risky asset. This is because the value of the

fourth moment for the WGB2 is higher than that for the log normal (m4;WGB2 =

0:01224027;m4;LN = 0:01162909).11 Figure 1 illustrates the di¤erences of the pdfs considered

in this latter example.

[Insert Table 2 and Figure 1]

4 Conclusions

In this paper we showed that �exible pdfs that are typically employed to capture stylized

features of asset returns such as skewness and leptokurtosis are a useful tool to assess the

impact that higher-order moments have on the optimal behavior of investors. In particular,

the �ve-parameter WGB2 allows the identi�cation of pure e¤ects that higher-order risk

preferences such as prudence and temperance have on portfolio choice. This is the case

because low(er) order moments can be held equal across alternative pdfs while high(er)

moments can be modi�ed to re�ect agents�preferences.

10The EU for those two GG is lower than the EU of the log-normal. In particular, EULN = 0:0243951;

(hereafter EUf denotes EU under density f) and for the two GG in Table 2 Panel B, EUGG = 0:0227413

and EUGG = 0:0237374:
11An application of the no-diversi�cation conditions derived in this section, for the S&P500 index data

in Robert Shiller�s webpage, is available upon request. We �nd that the �tted distributions that are most

�exible (GB2, GG) display closer moments to those of the data and present better �t according to information

criteria.
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FIGURE 1. Pdfs of the log normal (black solid line) and WGB2 (blue dash line).
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Tables

TABLE 1

Density and moment generating functions of the generalized distributions

pdf mgf = E[rt]

WGB2(r; k; c; b; p; q)
crcp+k�1� (p+ q)

bcp+k�
�
p+ k

c

�
�
�
q � k

c

�
(1 + rc

bc
)p+q

bt�(p+ k
c
+ t

c
)�(q � k

c
� t

c
)

�(p+ k
c
)�(q � k

c
)

GB2(r; c; b; p; q)
crcp�1� (p+ q)

bcp� (p) � (q) (1 + rc

bc
)p+q

bt�
�
p+ t

c

�
�
�
q � t

c

�
� (p) � (q)

GG(r; a; p; c)
cacprcp�1e�(ar)

c

�(p)

1

at
�(p+ t

c
)

�(p)

Notes: Pdfs and mgfs of WGB2, GB2 and GG distributions. �(p) =
R1
0
e�rrp�1dr denotes the gamma

function. Parameter k controls the shape and skewness of the WGB2 density, which nests the GB2 when
k = 0, which, in turns, nests the GG when b = a�1q1=c as q !1.
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TABLE 2

GB2-class of densities and diversi�cation: Range of moments and pdf speci�cation

GB2 GG gamma Weibull log-normal

Panel A. Maximum m2 for which ND holds within a class of pdf

m�
2

m3

ND

0.0581

0.0141

Yes

0.055125

0.008826

Yes

0.05250

0.00525

Yes

0.043580

-0.00323

Yes

0.055125

0.008826

Yes

Panel B. Examples of GG distributions with same (m1;m2) as log-normal in Panel A

GG that nests log-normal: (c; p; a) = (2; 5:11592; 2:1022)

m2

m3

ND

0.055125

0.003034

No

0.055125

0.008826

Yes

GG that nests log-normal: (c; p; a) = (0:81694; 30; 61:503)

m2

m3

ND

0.055125

0.006324

No

0.055125

0.008826

Yes

Panel C. Example of two GB2 pdfs with same (m1; sk) and ND holds for higher m2

GB2 with (m1; sk) = (1:05; 2:194406)

p

c

q

b

m2

ND

1.77451 22

7.574 4.5

0.85 1.5

0.88208 0.52162

0.06819 0.06836

No Yes

Notes: Summary of the condition under which the investor would optimally allocate all wealth in the risky
asset (ND) for the examples of the GB2 pdfs presented in this section. For all cases m1 = 1:05 and m

�
2

denotes the maximum variance so that no-diversi�cation (ND) condition holds.
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