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The Moment Expansions: A Semi-nonparametric
Method with Applications for Risk Management

Trino-Manuel Ñíguez
Department of Economics and Quantitative Methods, Westminster Business School,

University of Westminster, London NW1 5LS, UK

Javier Perote
Department of Economics, University of Salamanca, 37007 Salamanca, Spain

Abstract

This paper presents a novel family of semi-nonparametric (SNP) distributions whose
polynomials are de�ned as the di¤erence of the n-th power of the variable and the n-
th moment of the density being expanded. We show that the so-obtained Moment
Expansions (ME) pdf exhibits empirical and theoretical advantages derived from its
simple and general speci�cation that make it a useful alternative to existing SNP pdfs.
We test the applicability of our approach through a comparative empirical application
for forecasting �nancial risk. We show that a Normal-ME model presents a relatively
good forecasting peformance that together with its statistical features makes it a useful
methodlogy in risk management.

Keywords: Gram-Charlier Series; Semi-nonparametric methods; Value-at-Risk.
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1 Introduction

During the last decades, the literature related to the modelling and forecasting of �nancial

variables asymmetric and heavy-tailed distribution has undergone a huge development.

Among the existing methodologies, the semi-nonparametric (SNP hereafter) techniques have

been proven very useful for that purpose; see, for instance, Vilhelmsson (2009) and Del Brio

et al. (2011) for recent SNP applications for forecasting �nancial risk. SNP probability

density functions (pdf hereafter) feature a �exible speci�cation that allows to approximate

any �true�target distribution at any desired degree of accuracy; a result that stems from the

seminal papers of Edgeworth (1896, 1907) and Charlier (1905). In particular, a frequency

function can be expanded in an (in�nite) series of derivatives of a Normal pdf which gives

rise to the so-called Edgeworth and Gram-Charlier (GC hereafter) pdf. GC (Type A) series

were brought into econometrics by Sargan (1975, 1976), and later extensively developed by

authors such as: Jarrow and Rudd (1982), Gallant and Nychka (1987), Gallant and Tauchen

(1989), Corrado and Su (1997), Mauleón and Perote (2000), Jondeau and Rockinger (2001),

Velasco and Robinson (2001), Verhoeven and McAleer (2004), León et al. (2005, 2009),

Ñíguez and Perote (2012) and Ñíguez et al. (2012), among others. These papers provide

analyses of the SNP densities�theoretical properties and their wide variety of applications,

which range from hypothesis testing to portfolio choice and �nancial risk forecasting.

The practical application of SNP pdfs require the truncation of its polynomial expansion,

the resulting truncated function is not really a pdf since it may yield negative values

for subsets of its parametric space. This well-known de�nitional issue, �rstly highlighted

by Barton and Dennis (1952), has been tackled in the literature in di¤erent ways: (i)

through parametric restrictions (Jondeau and Rockinger 2001), (ii) through monitored

optimization (Mauleón and Perote 2000), and (iii) through density reformulations based

on the methodology of Gallant and Nychka (1987) and Gallant and Tauchen (1988), see

e.g. León et al. (2009) and Ñíguez and Perote (2012). Another practical and theoretical
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issues typical of SNP pdfs are: probable maximum-likelihood sub-optimization associated

with multimodality, and di¢ cult implementation for expansions of non-Gaussian pdfs.

This paper addresses these issues by proposing a new type of polynomial expansion that

we name Moment Expansions (ME hereafter). We analyze the ME theoretical properties

and show that ME pdfs are very theoretically tractable and easy to use in practice. With

particular regard to the well-known de�nitional issue of GC pdfs, we show that well-de�ned

(positive in the whole parametric space) ME pdfs are more �exible and easier to implement

as: (i) they involve weaker restrictions on the density parameters and (ii) they preserve

linearity between density moments and parameters for Gallant and Nychka�s (1987) type of

positivity transformations. We test our proposed method through an empirical application

for forecasting �nancial risk. The out-of-sample forecasting performance of a ME of the

Normal pdf (Normal-ME hereafter) pdf with respect to Gaussian and Student�s t pdfs is

assessed through the following criteria: ranking-robust loss functions for imperfect volatility

proxies (Patton, 2010); Value-at-Risk (VaR hereafter) predictive accuracy criteria (López,

1999); and the predictive quantile loss function (Koenker and Bassett, 1978). Our results

show that: (i) Normal-ME and Gaussian pdfs provide a similar forecasting performance for

the conditional variance, both being superior to the Student�s t pdf, and (ii) the ME model

yields more accurate VaR forecasts than the Gaussian-VaR method of Engle (2001), and the

Student�s t model.

2 The Moment Expansions

In this section, we de�ne the ME and analyse its statistical properties. In order to set up

notation we �rst summarize some results of the SNP literature. Let a random variable x be

Gram-Charlier distributed with pdf given by,

�(x;d) =

 
1 +

nX
s=1

dsHs(x)

!
�(x), (1)
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where �(�) denotes the standard Normal pdf, d = (d1; d2; : : : ; dn)
0 2 Rn, and Hs(�) is the

Hermite polynomial of order s which can be de�ned in terms of the derivatives of �(�) as,

ds�(x)

dxs
= (�1)sHs(x)�(x): (2)

It is well-known that the function in equation (1) is not really a well-de�ned density since

it may yield negative values. Recent methods proposed in the literature, based in the

methodology of Gallant and Nychka (1987) and Gallant and Tauchen (1988), to ensure

the positiveness of pdfs based on Hermitian expansions include, the GC pdf in León et al.

(2005, 2009) and the Positive Edgeworth-Sargan pdf in Ñíguez and Perote (2012). �(x;d)

can be re-written in matrix form as,

�(x;d) = (1 +H0d)�(x): (3)

H = BZ+ I��+ (4)

where B, equation (5), is a lower triangular matrix of order n containing the coe¢ cients of

xn in H, Z = (x; x2; � � � ; xn)0 2 Rn, �+ =
�
�+1 ; �

+
2 ; � � � ; �+n

�0 2 Rn is a vector containing the
�rst n � th order moments of �(�), r = n=2; and I� = diag f0;�1; 0; 1; 0;�1; � � � ; (�1)rg is

a diagonal matrix of order n that includes the sign of the corresponding intercept of every

Hermite polynomial.1

B =

26666666666666664

1 0 0 0 � � � 0

0 1 0 0 � � � 0

�3 0 1 0 � � � 0

0 �6 0 1 � � � 0

...
...

...
...

. . .
...

0
(�1)r�1n!

2r�1(r � 1)!2! 0
(�1)r�2n!

2r�2(r � 2)!4! � � � 1

37777777777777775
(5)

GC expansions are de�ned for any continuous and di¤erentiable parametric pdf. However,

expansions of non-Normal pdfs result in rather complex speci�cations that di¢ cult its
1Without loss of generality, we de�ne the matrices B and I�, and the vector �+ for n even.
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use for empirical and theoretical analyses. This complexity accentuates particularly when

guaranteeing positivity is needed since Gallant and Nychka (1987) type of re-formulations

yield non-linear relations between moments and parameters. In this paper, we propose the

ME as a feasible solution to these issues. ME are de�ned in terms of the moments of the

distribution being expanded and are valid to apply to any parametric pdf, only requiring the

expanded pdf has �nite moments up to the truncation order n.

De�nition 1 A ME of a pdf, g(�), with �nite non-central moments up to the truncation

order n, E [xs] = �s 8s = 1; 2; : : : ; n, is de�ned as,

f(x;) =

 
1 +

nX
s=1

s	s(x)

!
g(x); (6)

where  = (1; 2; : : : ; n)
0 2 Rn is a vector of parameters, and f	s(x)gns=1 is a polynomial

sequence of the form,

	s(x) = x
s � �s: (7)

Equation (6) can be re-written in matrix form as,

f(x;) = (1 + (Z� �)0) g(x): (8)

where � 2 Rn contains the n-th order moments of g(�).

2.1 ME statistical properties

In this section we discuss the ME main properties (enumerated below), which are formally

presented in Propositions 1-9 and Corollaries 1 and 2 in the Appendix, for the sake of clarity

in the exposition.

1. ME pdfs integrate up to one (Proposition 1).

2. ME pdfs are positive in a wide range of the parameter space (Proposition 2).
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3. The moment generating function of a ME pdf is straightforwardly obtained from the

moments of the expanded pdf (Proposition 3).

4. The GC pdf can be obtained as a particular case of the Normal-ME pdf (Proposition

4).

5. Standardized ME pdfs are obtained through a linear transformation (Proposition 5).

6. ME pdfs admits Gallant and Nychka�s (1987) type of transformations to ensure

positiveness (Proposition 6).

7. The moments of �positive�Normal-ME pdfs are linear functions of the squared density

parameters (Proposition 7).

8. Closed forms for the cdf of Normal-ME and its transformed positive version can be

straightforwardly derived (Propositions 8 and 9).

9. If a symmetric density is used as basis, then the ME even/odd moments depend

exclusively on its even/odd parameters (Corollary 1).

10. The ME pdf can be expressed alternatively in terms of its moments (Corollary 2).

These properties pose the ME as a novel methodology for deriving SNP densities. In

particular, the case of a Normal-ME pdf deserves especial attention as it inherits the good

asymptotic properties of the GC approximation, thus being a good alternative to the latter

for modelling the salient features of �nancial and economic variables. Examples 1 and 2

below provide a discussion of the Normal-ME and its features.2

2It is worth noting that Corollaries 1 and 2 apply to �positive�Normal-ME but do not to �positive�GC.

Besides, feature 6 does not hold for positive transformations since �positive�GC pdfs involve nonlinearity

between density moments and parameters (see also Remark 1).
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Example 1 A Normal-ME pdf, fN(�), is de�ned as

fN(x;) =

 
1 +

nX
s=1

s(x
s � �+s )

!
�(x): (9)

where

�+s =

8>><>>:
s!

2
s
2 (s=2)!

= (s� 1)(s� 3)(s� 5) � � � 3;

0;

8s even

otherwise.
(10)

From Proposition 2 (in the Appendix), we can ensure that this density is well-de�ned

(positiveness is guaranteed) provided that 0 � s �
2
s
2 (s=2)!

s!
8s even, and s = 0 8s odd.

Furthermore, its moments can easily be computed as a direct application of Proposition 3

as,

E[xi] = �+i +
nX
s=1

s(�
+
s+i � �+s �+i ) =

i!
i
2
!

1

2
i
2

"
1 +

nX
s=1

s

i
2
!

i!

1

2
s
2

 
(s+ i)!
(s+i)
2
!
� i!s!

i
2
! s
2
!

!#
: (11)

Example 2 A Normal-ME pdf truncated at n = 4 is given by

efN(x;) = �1 + 1x+ 2(x2 � 1) + 3x3 + 4(x4 � 3)��(x); (12)

which can alternatively be re-written in terms of its �rst four moments as,

efN(x;M) = [1 +m1�1(x) + (m2 � 1)�2(x) +m3�3(x) + (m4 � 3)�4(x)]�(x), (13)

where

�i(x) =

8>>>>>>>><>>>>>>>>:

x(5� x2)=2;

2(x2 � 1)� (x4 � 3)=4;

x(x2 + 3)=6;

(x4 � 3)=24� (x2 � 1)=4;

if i = 1;

if i = 2;

if i = 3;

if i = 4:

(14)

As a result, if we constrain the �rst two moments of efN(x; �) to be equal to the �rst two
moments of a GC pdf truncated at n = 4, denoted as e�(x; d); then the third and fourth-order
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moments of both densities must also be the same.3As a consequence, efN(x; ) and e�(x; d)
are exactly the same distribution (see Proposition 4), which can conveniently be expressed

in terms of the skewness (sk = m�
3=m

�3=2
2 ) and kurtosis (ku = m�

4=m
�2
2 ) as,

4

efN(x;M) = �1 + sk
3!
(x3 � 3x) + ku� 3

4!
(x4 � 6x2 + 3)

�
�(x). (15)

Furthermore, a standardized symmetric (1 = 3 = 0) and positive Normal-ME density

truncated at n = 4 is de�ned as,

F �N(x;) =
1

W �

�
1 + 22(cx

2 � 1)2 + 24(c2x4 � 3)2
�
�(c1=2x)c1=2; (16)

where W � = 1 + 222 + 96
2
4 and c =

1+1022+864
2
4

W � (see Proposition 5 in the Appendix). The

probability of any quantile a of F �N(x; ) can be obtained as, (see Propositions 8 and 9),

Pr [x � a] =
Z c1=2a

�1
F �N(x;)dx =

Z c1=2a

�1
�(x)dx+

1

W
221c

1=2a�(c1=2a)

� 1

W
(21 � 622)

�
c3=2a3 + 3c1=2a

�
�(c1=2a)+

� 1

W
22
�
c7=2a7 + 7c5=2a5 + 35c3=2a3 + 105c1=2a1=2

�
�(c1=2a): (17)

3 Empirical application

This section provides an analysis of the applicability of the ME by means of a forecasting

exercise for the conditional variance and VaR of the daily return on the British pound versus

the US dollar (BP/$) exchange rate, rt, over the period January 1983 to March 2002, for a

total of T = 4; 882 observations.

Let the conditional distribution of rt, be either Gaussian, standardized Student�s t with

� degrees of freedom (Bollerslev, 1987), or Positive Normal-ME (hereafter N-ME+), with

3Without loss of generality, we assume m1 = 0 and m2 = 1, i.e. 1 = �33, 2 = �64 and d1 = d2 = 0.
4It is worth noting that equation (15) is the traditionally employed GC density in �nancial applications;

see e.g. Jarrow and Rudd (1982), Jondeau and Rockinger (2001) or León et al. (2005).
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conditional mean and variance following AR(1) (selected according to the Akaike Information

Criterion (AIC)) and GARCH(1,1) processes, respectively, i.e.,

rt = �0 + �1rt�1 + ut; (18)

ut = h
1
2
t xt; utj
t�1 � N(0; ht); utj
t�1 � t�(0; ht); utj
t�1 � N �ME+(0; ht);

ht = '0 + '1u
2
t�1 + '2ht�1; (19)

where 
t�1 denotes the information set up to time t � 1, and ht is the variance of the

conditional distribution of ut.5We use the �rst T � R � 1 = 4; 381 observations as the

�rst in-sample window, and compute R = 500 out-of-sample 1-step-ahead forecasts of the

conditional mean, brt+1 = bE(rt+1) and the conditional variance, bht+1, by using a rolling
window that discards old observations. The models are estimated by quasi-maximum

likelihood (QML), the covariance estimates are robust Bollerslev and Wooldridge (1992).

Table 1 contains the estimation results.6We observe an e¤ect of the N-ME+ on the sum

of the GARCH coe¢ cients; b'1 + b'2 is near 1 in all three models but lower in the case of
the N-ME+. The degrees of freedom coe¢ cient, b�, is around 5:6, which together with the
estimates of the N-ME+ model shows that there is leptokurtosis in the returns distribution.

The Student�s t and the N-ME+ provide a similar goodness-of-�t and both outperform the

Gaussian, according to the mean of the AIC statistics over the R estimations. Figure 1 shows

an illustration of the models �tted in Table 1. The N-ME+ captures the sharp peak in the

center of the distribution and the tails shape, while the Student�s t seems to overestimate the

tails. Figure 2 presents an illustration of the shapes of the N-ME+ pdf, it is interesting to

observe how the density shape responds to changes in the values of the parameters allowing

for heavy tails and multimodality.

5Note that the conditional N-ME+ pdf of ut is h
� 1
2

t F �N (xt;), where F
�
N (xt;) is given in equation (16).

6It is worth noting that the optimization of the N-ME+ model likelihood function was smoothly achieved

after starting values were chosen adequately.
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TABLE 1

Estimation results

Mean equation: rt = �0 + �1rt�1 + ut; ut = h
1
2
t xt

utj
t�1 � N(0; ht); utj
t�1 � N -ME+(0; ht); utj
t�1 � t�(0; ht)

Variance equation: ht = '0 + '1u
2
t�1 + '2ht�1

Parameters Gaussian N-ME+ Student�s t

Mean equation �0 0.0014

(0.12)

�1 0.0778

(5.16)

Variance equation '0 0.0030

(3.66)

0.0020

(3.19)

0.0024

(2.43)

'1 0.0432

(8.22)

0.0339

(7.66)

0.0493

(6.26)

'2 0.9494

(150.2)

0.9459

(130.7)

0.9467

(110.5)

Weights 2 0.0966

(2.82)

4 -0.0215

(-11.45)

DoF � 5.662

(11.29)

AIC 1.7910 1.7514 1.7433

The reported coe¢ cients presented in this table are (Q)ML estimates of the AR(1)-GARCH(1,1) processes
under the Gaussian, the Student�s t or the N-ME+ distributions, for the BP/$ exchange-rate daily returns.
s denotes the weighting parameter of the s � th order polynomial in the ME distribution. DoF denotes
degrees of freedom, and AIC is the mean of the AICs of the R estimations through the out-of-sample period.
t Statistics calculated from robust standard errors are in parentheses below the parameter estimates.
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FIGURE 1
Fitted unconditional distributions
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Panel A shows the histogram and �tted distribution of the in-sample returns from Gaussian, Student�s t and
ME models. Panel B highlights the �t of the left tail.

We now proceed to compare the relative performance of the N-ME+ model for forecasting

ht. The forecast accuracy is measured with respect to the out-of-sample squared residuals,

fbu2tgTt=R+1, by using the loss functions family proposed by Patton (2010).7This class of loss
functions is shown to be robust to models ranking when using imperfect volatility proxies (as,

7Note that, if R=(T � R � 1) ! 0, then the use of bu2t as the volatility proxy leads to the choice of the
"right" model, as it does not alter the correct comparison of models, at least in terms of a quadratic loss

function: see Awartani and Corradi (2005).
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e.g., the squared residuals) and includes: the squared error loss function, L1, and asymmetric

loss measures penalizing more heavily either under-predictions, L2, or over-predictions, L3.

Lj;t(bu2t+1;bht+1) =
8>>><>>>:
e2t+1;bu2t+1=bht+1 � log(bu2t+1=bht+1)� 1;
(bu6t+1 � bh3t+1)=6� bh2t+1(bu2t+1 � bht+1)=2;

j = 1;

j = 2;

j = 3:

(20)

where et+1 = bht+1 � bu2t+1.The signi�cance of the di¤erence between these loss functions is
tested by using the Diebold and Mariano (DM) (1995) test.8

FIGURE 2
ME density allowable shapes
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The Figure shows the allowable shape of the density in terms of the values of its parameters, gamma2 and
gamma4 in the �gure correspond to 2 and 4, respectively, in the text.

8For one step ahead forecast and a given loss function Lj ; j = 1; 2; 3, the DM test null hypothesis

of equal predictive ability of forecasts from two models I and II is, H0 : E [pt+1] = 0; with pt+1 =

Lj;t+1(but+1;bhIt+1) � Lj;t+1(but+1;bhIIt+1). The test statistic is computed as: DM = p=(2�b!p (! = 0) =R) 12 ,
where p is the sample mean of the loss di¤erential series over the out-of-sample period, and b!p (! = 0) is a
heteroscedasticity and autocorrelation robust estimator of the loss di¤erential spectral density function at

frequency 0. In the present context, as the prediction period R grows at a slower rate than the estimation

period T �R� 1, R=(T �R� 1) = 0:11, then the e¤ect of parameter estimation error vanishes and the DM

statistic converges in distribution to a standard normal (see West, 1996).
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Table 2 presents the results of the DM test for all pairwise comparisons and loss functions.

The entries are the means of Lj over the out-of-sample period. The number in parenthesis below

each entry is the p-value of the test. A sharp result that emerges from Table 2 is that there

are not statistical di¤erences between Gaussian and ME models but both signi�cantly outperform

the Student�s t according to L1 and L3, respectively. A second observation is that the Student�s t

model tends to overpredict more and underpredicts less the volatility than the ME and the Gaussian

models in this order, although di¤erences are not statistically signi�cant in relation to the error of

overprediction loss function, L2; these results are in line with those in the literature on volatility

forecasting (see e.g. Ñíguez and Perote 2012).

TABLE 2
Out-of-sample volatility forecasting performance

Models Gaussian GME Student�s t
L1

GME 0.15822
(0.200)

Student�s t 0.15847
(0.024)

Gaussian 0.15905
(0.048)

L2
GME -0.41228

(1.207)
Student�s t -0.41266

(0.312)
Gaussian -0.41141

(0.714)
L3

GME 0.05586
(0.058)

Student�s t 0.05593
(0.007)

Gaussian 0.05606
(0.012)

This table contains the results of the DM predictive ability test for the models and loss functions presented
in this Section. The entries are the means of the loss functions Lj j = 1; 2; 3 over the out-of-sample period
for the models in the columns. The numbers within parentheses are DM test t-statistics for the predictive
ability of the model in the column versus the model in the row under the loss function Lj j = 1; 2; 3, over
the out-of-sample period. Predictions 500.

Next, we test the models performance for forecasting rt distribution tails. We compute R 1-step-
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ahead VaR forecasts for con�dence levels � = f0:1; 0:05; 0:025; 0:01g, [V aR
�

T+1 = brT+1 � b�Tbh1=2T+1,
where b�T is the �-quantile of the assumed distribution. Following Engle (2001), the VaR forecasts
corresponding to the Gaussian model are computed by using the percentile of the empirical

distribution of the standardized residuals for every in-sample window. The performance of the

models is assessed by using the following criteria: unconditional coverage, b�, and the magnitude of
the exception statistic,M�, (López 1999), and the predictive quantile loss (PQL) function, Q�; see,

for instance, Giacomini and Komunjer (2005). Table 3 presents the results of the VaR evaluation

criteria. A �rst observation that emerges from this table is that, according to the unconditional

coverage criterion all three models yield acceptable results for all signi�cance levels considered. On

the other hand, regarding the magnitude of the exception statistic, and the PQL function, the ME

model provides slightly more accurate VaR forecasts than the Student�s t for all signi�cance levels,

and than the Gaussian, for 1%, 2.5% and 10% levels, the latter model being generally preferred

to the Student�s t. A likely explanation for the good performance of the ME model may be the

�exibility of the density expansions to parsimoniously �t the shape of the distribution tail. To

illustrate these results, Figure 3 plots the VaR forecasts from the ME model against the out-of-

sample returns.

TABLE 3

VaR predictive accuracy

� 0.1 0.05 0.025 0.01

Gaussianb� 0.1 0.046 0.02 0.006

C� 7.1426 2.6904 1.0861 0.3537

Q� 0.11632 0.07253 0.04344 0.02117

N-ME+b� 0.098 0.048 0.018 0.006

C� 6.8856 2.7132 0.9735 0.2871

Q� 0.11620 0.07304 0.04325 0.02087

Student�s tb� 0.102 0.048 0.024 0.006

C� 7.1625 2.9044 1.1253 0.3160

Q� 0.11685 0.07394 0.04423 0.02129

This table contains the results of the VaR tests. b� denotes the estimated unconditional coverage probability,
C� denotes the magnitude of the exception statistic and, Q� is the predictive quantile loss function, for one
step ahead VaR forecasts with signi�cance levels � = 0:1, 0:05, 0:025, 0:01, obtained with the Gaussian,
ME and Student�s t models. Predictions 500.
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FIGURE 3
VaR forecasts from N-ME+ model
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Plots of 10%, 5%, 2.5% and 1% VaR forecasts from the N-ME+ model against out-of-sample BP/$
exchange-rate returns. Predictions 500.
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4 Concluding remarks

Semi-nonparametric methods in general, and in particular Edgeworth and Gram-Charlier

polynomial expansions, are typically applied to the Gaussian distribution. The resulting

SNP pdf characterizes by its �exibility to parsimoniously capture small changes of frequency

in distribution tails. However, SNP pdfs also present well-known theoretical and empirical

rigidities, for instance, to expanding non-Normal pdfs (see Mauleón and Perote, 2000) or

when ensuring positivity through, either Gallant and Nychka�s type of transformations

(Leon et al., 2009), or parametric constraints (Jondeau and Rockinger, 2001), because of

the complexity and intractability of the resulting speci�cations.

In this paper, we propose a novel SNPmethod that is useful to address the aforementioned

rigidities. We show that the resulting ME pdfs preserve the �exibility characteristic of GC

expansions presenting besides advantageous features that pose them as an alternative to

existing SNP pdfs. First, the ME has a very simple polynomial structure that does not

require the orthogonality of its polynomials to prove its statistical properties. Second, the

ME presents a general formulation that includes GC expansion as a special case. Third,

the ME overcomes non-linearities among density parameters and moments when positive

transformations are considered. Four, the ME naturally admits the use of non-normal

distributions as basis with the only requirement of having as many �nite moments as the

expansion order.

We have analyzed the relative performance of the ME through an empirical application

for forecasting the conditional variance and VaR of BP/$ exchange-rate returns, considering

the Gaussian and Student�s t pdfs as benchmark. The forecasts were evaluated by using the

class of statistical loss functions in Patton (2010), the unconditional coverage and magnitude

of the exceptions statistics in López (1999), and the PQL function in Koenker and Bassett

(1978). Our results show that the ME model is as good as the Gaussian and both are

signi�cantly better than the Student�s t for forecasting volatility. For forecasting VaR, we

�nd evidence of that the ME model provides more accurate forecasts in relation to both the

Student�s t and the Engle�s (2001) VaR-Gaussian models.
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Appendix: ME properties

This Appendix presents the features of the ME in Propositions 1-9 and provides their proofs.

Proposition 1 A ME of a pdf g(�); denoted as f(x;); integrates to one:
R
f(x;)dx = 1.

Proof.

Z
f(x;)dx =

Z
g (x) dx+

qX
s=1

s

Z
(xs � �s)g(x)dx = 1 +

qX
s=1

s(�s � �s) = 1: (21)

�

Proposition 2 0 � s �
1

n�s
8s even, and s = 0 8s odd, are su¢ cient conditions to

guarantee the positiveness of f(x;).

Proof. The ME pdf de�ned in equation (6) can be re-written as,

f(x;) =

 
nX
s=1

sx
s + k

!
g(x); (22)

where k = 1 �
nP
s=1

s�s. Therefore, if 0 � s � 1
n�s

8s even, and s = 0 8s odd, then
nP
s=1

sx
s + k � 0, since

nP
s=1

s�s � 1. Consequently, f(x;) � 0:�

Proposition 3 The non-central moments of f(x;) can be computed from the moments of

g(x) as,

mi = E[x
i] = �i +

nX
s=1

s(�s+i � �s�i); 8i = 1; 2; ::: (23)
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Alternatively, the �rst n non-central moments of f(x;) can be expressed in matrix form

as,

M = �+A: (24)

where M = (m1;m2; : : : ;mn)
0 and A is a symmetric matrix of order n whose i� th element

is faijg =
�
�s+i � �s�i

	
.

Proof.

E[xi] =

Z
xif(x;)dx (25)

=

Z
xig (x) dx+

nX
s=1

s

Z
xi(xs � �s)g(x)dx = �i +

nX
s=1

s(�s+i � �s�i):

�

Corollary 1 The even/odd non-central moments of the ME of a symmetric pdf, g(x);only

depend on the even/odd parameters in . Therefore, the matrix A in equation (24) can be

re-written as a block diagonal matrix, where the submatrices AI and AII contain the odd and

even parameters of the ME pdf, f(x; ), respectively. Accordingly, the vectors M , � and  can

also be partitioned in MI and MII , �I and �II , and I and II , respectively, containing, the

even and the odd moments of f(x; ), the moments of g(x) and the parameters of f(x; ),

respectively. Equation (26) expresses equation (24) in terms of the resulting partitioned non-

homogeneous equations system.2664 MI

MII

3775 =
2664 �I

�II

3775+
2664 AI 0

0 AII

3775
2664 I

II

3775 : (26)

Furthermore, if A is full-rank, then the system in equations (24) or (26) has the trivial

18



solution,

 = A�1(M� �), (27)

I = A�1
I (MI � �I) and II = A�1

II (MII � �II): (28)

Corollary 2 A ME of any parametric pdf, f(x;); can be expressed in terms of its �rst n

non-central moments as,

f(x;M) =
�
1 + (Z� �)0A�1(M� �)

�
g(x) =

 
1 +

nX
s=1

(ms � �s)�s(x)
!
g(x); (29)

where �s(x) is the polynomial corresponding to the s� th element of the vector (Z��)0A�1.

Proposition 4  = A�1B�1
�
Sd� (I� +B)�+

�
is a necessary and su¢ cient condition for

the Normal-ME pdf, fN(x;), and the GC density, �(x;d), to have the same moments.

Proof. The �rst n moments of the GC density can be obtained from equations (3) and (4)

as follows:

MGC = E [Z] =

Z
Z (1 +H0d)�(x)dx (30)

=

Z
B�1(H� I��+) (1 +H0d)�(x)dx

= B�1
Z
H�(x)dx

+B�1
Z
HH0d�(x)dx�B�1I��+

Z
�(x)dx�B�1I��+

Z
H0d�(x)dx

= 0+B�1(S� d)�B�1I��++0

= B�1
�
(S� d)� I��+

�
:

On the other hand, the �rst n moments of the Normal-ME, fN(x;), can be expressed as,

MGME = A + �
+: (31)
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Therefore, MME = MGC if and only if A + �+= B�1
�
(S� d)� I��+

�
if and only if

 = A�1B�1
�
Sd� (I� +B)�+

�
:�

Proposition 5 If m�
i = E[(x � m1)

i] 8i = 1; 2; : : : ; are the central moments of f(x;),

then a standardized ME pdf, i.e. zero mean and variance one, denoted as f(z; �), can be

de�ned either in terms of the density parameters, equation (32); or in terms of the density

moments, equation (33).

f(z;) =

 
1 +

nX
s=1

s	s

�
m
�1=2
2 z +m1

�!
g
�
m
�1=2
2 z +m1

�
m
�1=2
2 ; (32)

f(z;M) =

 
1 +

nX
s=1

(ms � �s)�s
�
m
�1=2
2 z +m1

�!
g
�
m
�1=2
2 z +m1

�
m
�1=2
2 : (33)

Proof. If x � f(x; �), equation (6) or (29), then the standardized variable z = x�m1

m
� 1
2
2

�

f �(z; �), equations (32) or (33), respectively.�

Proposition 6 A positive ME of a given pdf g(�), F (x;), can be obtained by squaring the

polynomials of f(x;) as,

F (x;) =
1

W

 
1 +

nX
s=1

2s	s(x)
2

!
g(x); (34)

where W is the constant that guarantees that F (x;) integrates to one,

W =

Z  
1 +

nX
s=1

2s	s(x)
2

!
g(x)dx = 1 +

nX
s=1

2s(�2s � �2s): (35)

Proof.

W =

Z  
1 +

nX
s=1

2s(x
s � �s)2

!
g(x)dx (36)

=

Z
g(x)dx+

nX
s=1

2s

�Z
x2sg(x)dx+ �2s

Z
g(x)dx� 2�s

Z
xsg(x)dx

�
= 1 +

nX
s=1

2s(�2s + �
2
s � 2�2s) = 1 +

nX
s=1

2s(�2s � �2s):�
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Proposition 7 The non-central moments of F (x;), denoted as emi, can be expressed in

terms of the moments of the expanded density, g(x); as displayed in equation (37).

emi = E[x
i] = �i +

nX
s=1

2s
�
�2s+i + �s(�s�i � 2�s+i)

�
; 8i = 1; 2; ::: (37)

Proof.

E
�
xi
�
=

Z
xi

 
1 +

nX
s=1

2s(x
s � �s)2

!
g(x)dx (38)

=

Z
xig(x)dx

+
nX
s=1

2s

�Z
x2s+ig(x)dx+ �2s

Z
xig(x)dx� 2�s

Z
xs+ig(x)dx

�
= �i +

nX
s=1

2s(�2s+i + �
2
s�i � 2�s�s+i)

= �i +
nX
s=1

2s
�
�2s+i + �s(�s�i � 2�s+i)

�
:

�

Remark 1 Corollaries 1 and 2 apply to positive ME. It is noteworthy, however, that the

positive GC pdf in León et al. (2005, 2009) and the Positive Edgeworth-Sargan pdf in

Ñíguez and Perote (2012) cannot be reproduced from the positive ME with the same type

of transformation. This is an important di¤erence between GC and ME and one of the

advantages of the latter expansion, which preserves nice properties (e.g. Proposition 7) even

when positive transformations are implemented.

Proposition 8 The cdf of a random variable x � fN(x;) can be computed as,

Pr [x � a] =
Z a

�1
fN(x;)dx =

Z a

�1
�(x)dx

�
nX
s=1

s
�
as�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab

�
�(a); (39)
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where

� =

8>><>>:
(s� 1)(s� 3) � � � 2,

(s� 1)(s� 3) � � � 3,

8s odd,

otherwise,

(40)

and

b =

8>><>>:
1,

0,

8s even,

otherwise.

(41)

Proof.

Z a

�1
fN(x;)dx =

Z a

�1

 
1 +

nX
s=1

s(x
s � �+s )

!
�(x)dx (42)

=

Z a

�1

 
1�

nX
s=1

s�
+
s +

nX
s=1

sx
s

!
�(x)dx

=

Z a

�1
�(x)dx

�
nX
s=1

s�
+
s

Z a

�1
�(x)dx+

nX
s=1
s odd

s

Z a

�1
xs�(x)dx+

nX
s=1
s even

s

Z a

�1
xs�(x)dx

=

Z a

�1
�(x)dx

�
nX
s=1

s
��
xs�1 + (s� 1)xs�3 + (s� 1)(s� 5)xs�5 + : : :+ �xb

�
�(x)ja�1

�
=

Z a

�1
�(x)dx�

nX
s=1

s
�
as�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab

�
�(a);

where,

� =

8>><>>:
(s� 1)(s� 3) � � � 2,

(s� 1)(s� 3) � � � 3,

8s odd,

otherwise,

b =

8>><>>:
1,

0,

8s even,

otherwise.

Note that the integrals are solved by parts as detailed below,

Z
xsg(x)dx =

Z
xs�1xg(x)dx = �xs�1g(x) + (s� 1)

Z
xs�2�(x)dx
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since,

u = xs�1 ) du = (s� 1)xs�2dx;

dv = xg(x)dx) v =

Z
x
1p
2�
e�

1
2
x2dx = � 1p

2�
e�

1
2
x2 = ��(x).

Therefore, by repeating the same argument recursively,

Z
xs�(x)dx =

8>><>>:
� [xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �]�(x),

�+s
R
�(x)dx� (xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �x)�(x),

8sodd

8seven,

where �+s = �. Furthermore, by applying recursively the L�Hôpital rule it is obtained,

lim
x!�1

[xs�(x)] = lim
x!�1

1p
2�

xs

e
1
2
x2
= lim

x!�1

1p
2�

sxs�1

xe
1
2
x2
= lim

x!�1

1p
2�

sxs�2

e
1
2
x2

= lim
x!�1

1p
2�

s(s� 2) � � �x
xe

1
2
x2

= lim
x!�1

1p
2�

s(s� 2) � � � 1
e
1
2
x2

= 0:

�

Proposition 9 The cdf of a random variable x � FN(x;) is given by,

Pr [x � a] =
Z a

�1
FN(x;)dx =

Z a

�1
�(x)dx

+
2

W

nX
s=1

2s�
+
s

�
as�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab

�
�(a)

� 1

W

nX
s=1

2s
�
a2s�1 + (2s� 1)as�3 + (2s� 1)(2s� 3)a2s�5 + : : :+ �+2sab

�
�(a);

(43)

where W is the constant in equation (35) for the moments of �(x), denoted as �+s , b is the

constant de�ned in equation (41) and,

� =

8>><>>:
(s� 1)(s� 3) � � � 2,

(s� 1)(s� 3) � � � 3a,

8s odd,

otherwise.

(44)
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Proof.Z a

�1
FN(x;)dx =

1

W

Z a

�1

 
1 +

nX
s=1

2s(x
s � �+s )2

!
�(x)dx

=
1

W

Z a

�1

 
1 +

nX
s=1

2s�
+2
s +

nX
s=1

2sx
2s � 2

nX
s=1

2s�
+
s x

s

!
�(x)dx

=
1

W

Z a

�1
�(x)dx+

1

W

nX
s=1

2s�
+2
s

Z a

�1
�(x)dx+

1

W

nX
s=1

2s

Z a

�1
x2s�(x)dx

� 2 1
W

nX
s=1
s odd

s�
+
s

Z a

�1
xs�(x)dx� 2 1

W

nX
s=1
s even

s�
+
s

Z a

�1
xs�(x)dx

=
1

W

Z a

�1
�(x)dx+

1

W

nX
s=1

2s�
+2
s

Z a

�1
�(x)dx

� 1

W

nX
s=1

2s
�
(x2s�1 + (2s� 1)x2s�3 + (2s� 1)(2s� 3)x2s�5 + : : :+ �+2sx)�(x)ja�1

�
+
2

W

nX
s=1

2s
�
(xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �xb)�(x)ja�1

�
+
1

W

nX
s=1

2s�
+
2s

Z a

�1
�(x)dx� 2 1

W

nX
s=1

2s�
+2
s

Z a

�1
�(x)dx

=

Z a

�1
�(x)dx

+
2

W

nX
s=1

2s�
+
s

�
(xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �xb)�(x)ja�1

�
� 1

W

nX
s=1

2s
�
(x2s�1 + (2s� 1)x2s�3 + (2s� 1)(2s� 3)x2s�5 + : : :+ �+2sx)�(x)ja�1

�
=

Z a

�1
�(x)dx

+ 2
1

W

nX
s=1

2s�
+
s (a

s�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab)�(a)

� 1

W

nX
s=1

2s(a
2s�1 + (2s� 1)a2s�3 + (s� 1)(s� 3)a2s�5 + : : :+ �+2sa)�(a)

where,

� =

8><>: (s� 1)(s� 3) � � � 2,

(s� 1)(s� 3) � � � 3a,

8s odd,

otherwise,
b =

8><>: 1,

0,

8s even,

otherwise.

�
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