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Abstract

We present a polynomial expansion of the standardized Student-t distribution. Our density, obtained
through the polynomial adjusted method in Bagnato, Potl and Zoia (2015), is an extension of the
Gram-Charlier density in Jondeau and Rockinger (2001). We derive the closed-form expressions of the
moments, the distribution function and the skewness-kurtosis frontier for a well-defined density. An
empirical application is also implemented for modeling heavy-tailed and skewed distributions for daily
asset returns. Both in-sample and hacktesting analysis show that this new density can be a good candidate

for risk management.
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1 Introduction

The Gram-Charlier (GC) distribution studied, among others, in Corrado and Su (1996), Jondeau and
Rockinger (2001, henceforth JR), Del Brio and Perote (2012), Schlégl (2013), Leén and Moreno (2017)
and Zoia, Biffi and Nicolussi (2018) has become popular in financial economics as a generalization of the
normal distribution. The GC density is the expansion of the standard normal density based on orthogonal
polynomials.! It can be seen as a particular case of the polynomially adjusted (PA) class of densities of
Bagnato, Poti and Zoia (2015, henceforth BPZ) and so, the GC is also referred to as the PA Gaussian
{PAG). These authors show a simple theorem that links the higher-order moments (skewness and kurtosis)
of a polynomially expanded (parent) distribution to those of the target distribution. The selected parent
density tends to verify the properties of symmetry and unimodality and as a result, the associated PA density
presents advantages in terms of theoretical tractability and empirical applicability. The two parameters of the
polynomial expansion become directly the skewness and excess kurtosis implied in the PA density, indeed.
The orthogonality of the polynomials depends on the selected parent density. For instance, the Hermite
polynomials verify the orthogonality condition when the parent density is the Gaussian. BPZ (2015) also
consider, as parent densities, the standardized forms of both the hyperbolic secant and logistic densities to
obtain their corresponding PA densities referred to as PAHS and PAL, respectively.?

We present the polynomial expansion of the standardized Student-t (T) distribution, or PA Student-t
(PAST hereafter). The PAST nests the PAG as the T distribution's degrees of freedom tend to infinity and
hence, it becomes more flexible than the latter for modeling the heavy-tailed and skewed distributions of
asset returns. It is well known that the PAG density is only suitable for return series with moderate kurtosis.
The literature on this topic has developed very quickly during recent years, see for instance, Wilhelmsson
{2006); Komunjer (2007); Bali, Mo and Tang (2008); Zhu and Galbraith (2011); Dendramis, Spungin and
Tzavalis (2014); Harvey and Sucarrat (2014); Li, Lin and Ng (2015); Feunou, Jahan-Parvar and Tédongap
(2016); Kumar and Patil (2016); Leén and Niguez {2020) and Thiele (2020). Contributing to this line of
research, we show that the PAST can be a good candidate for statistical analysis of financial returns and,
in general, for fitting series with high levels of kurtosis. Another advantage of using PAST is that it nests
the standard normal (N} which is an advantage in terms of tractableness.

We illustrate the practical use of the PAST pdf through an application to modeling the conditional
distribution of asset returns. For that purpose, we implement the popular conditional variance model by
Glosten-Jagannathan-Runkle (1993, henceforth GJR). We test the performance of our model through in-
sample and out-of-sample (OOS) analyses. The data we use comprises three stock indexes, four exchange
rates, and three commodity indexes. For comparison purposes, we consider the following alternative densities:

both N and T as benchmark densities; PAL, PAHS and GC as alternative PA densities, and the skewed-t (sk-

ISee Chihara (1978) for an introduction to orthogonal polynomials.
2These PA densities are also known as Gram-Charlier-like {GC-like) expansions. See Nicolussi and Zoia (2020} for the case

of multivariate GC-like expansions.



T) density of Hansen (1994). Models relative forecasting performance is evaluated through the backtesting
methods for Value-at-Risk (VaR) and expected shortfall (ES) of Du and Escanciano (2017).

The remainder of the paper is structured as follows. Section 2 deals with the general framework to
construct PA densities according to the results in BPZ (2015) and provides some new statistical properties.
In Section 3 we present the PAST distribution and specifically, we obtain the probability density function
(pdf), cumulative distribution function (cdf) and study the parametric properties together with its skewness-
kurtosis frontier that gnarantees the non-negativeness of the PAST density. Section 4 provides an empirical
application to asset returns and a performance comparative analysis. Conclusions are given in Section 5.

The proofs for some results in Section 3 are collected in the Appendix.

2 Polynomial adjusted distributions

2.1 Density function

Let f (x,#) denote a parent standardized symmetric and unimodal density function such that = € R and &
is the parameter vector implied in the density, then BPZ (2015) shows that its corresponding PA density is

obtained as

g(x;8,8) = f(x;8)¢ (x;6,0), (1)

where 8 = (63,04) is another parameter vector, and 3:(-) is defined as

0 0
o (2;8,0) = 1+ —p3 () + —p4 (2). (2)
Y3 Y4
such that p; (x) is a polynomial of order 7 with
ps (2) = @3 — o, p@) =at — aox? + ag, (3)
and .
0 =g, 5= Nig — Ny as = Mg — My (4)

mg—1" my—-1"
where my, = Ey [:vk] denotes the k-th non-central moment of x with f (2, §) as pdf. Note that ny, = my; (),
then a; = a;(8). Both polynomials in (3) with coefficients in (4) verify the orthogonality condition, i.e.
Ef [p3 (=) pa(2)] = 0, and Ef [p; (x)] = 0. Finally, the coefficient -v; = ; (8} is the squared norm associated

to p; (@), ie. v; = By [p5 (@)] = By [#/p; ()], then
v3 (8) = mg — a1y, ¥4 (8) =mg — agme + azma. (5)

2.2 Non-central moments

The selected parent density f (z; §) must verify that its moments of all order exist or, at least, those necessary

to compute a; in {4). Since my = 0, mg = 1 and my, = 0 for k& odd due to the symmetry of f(-), then



the first non-central moments from (1), denoted as my = E, [:1:"'], are given by iy = 0, iy = 1, M3 = 63
and 714 = myq + 04. Thus, 63 and 8; become directly the skewness and excess kurtosis of g (z;4.8), and
¥(x;8,8) is interpreted as a polynomial shape-adapter function reshaping f (x; §) for skewness via #3 and
excess kurtosis via 85. Note that Ey [z¥py (z)] = 0if & is odd, while Ey [«*ps (x)] = 0 if & is even, then the

general expression of my for £ € N is given by

my, (8) + 0475 ' Ey [2"pa(z)] . k even

iy (6,0) = (6)
Hg’yglEf [:r"'pg (m)] . k odd.
In short, 7, only depends on the skewness 3 (excess kurtosis €4) when k is odd (even).
2.3 Cumulative distribution function and Expected shortfall
Consider the cumulative distribution function or cdf G (x;6,8) = f_woo g {u; 8,8) du, then
4 4 z ,
G(r;8.8) = Zj:O wi; (z:0) = ijo Wwj /;OO w f (w; 8) du, (7
where
wo=1+84v;"ag, wy=—b03y3'ar, wo=—8yilas, wy=03v', wy=84n7 (8)

Note that &, {(@;8) = F (2;6) is the cdf of f(x;8), and §; (%;8) for j = 1 can be expressed in terms of
one-sided truncated j-th moments, i.e. §; (®;8) = F (x;8) By, [ | < =] with fu (v 8) = f (w;8) /F (23 8)
as pdf.

The expected shortfall, or ES, corresponding to the random variable & with g (-) as the pdf in (1) is easily
obtained as

Lo

Elele<zal=p [ ag@s 0t =Y @k (zi0), (©)

such that ©, = G~! (@) is the a-quantile, or VaR, i.e. G™! (o) = inf {& |G{2,8) > a} with G(-) as the cdf

in (7), and

1 g 0 g g 0
W= (1+ 4‘13), wz = — 361! w3 = — 4(12.‘ Wy =—3.‘ t*75=—J‘- (10)
2] T4 2305:} Qg a3 Yy

Let y = pt+ oz be a linear transformation of x where 1 € R and ¢ > 0 denote, respectively, the location and

scale parameters. It is verified that Efy |y < y.] = p+ 0 E, [z |z < 2, ] with yo = p + oz,.

2.4 Positivity restrictions

For a correct PA density in (1), we need to ensure the positivity of ¢ (a:; §, 8). There are two different methods.
First, the one suggested by Gallant and Nychka (1987) consisting on squaring v (z: §,8).> However, by doing
so, one loses the interpretation of the parameters &; in (2), as the skewness and excess kurtosis, since we

would face a new pdf: h(xz:;8,8) = Af (2:8)¢? (z;8,8) with A™! = f_"-oc: h{z;8,8)dz =1+ ﬂﬁqgl + 937‘:1.

¥See Ledn, Mencia and Sentana (2009) for the parametric properties of the Gallant-Nychka density.



Second, the method suggested in JR (2001) for building the domain, or restricted parameter set, A, over
which v (x;8,8) > 0 for every . In this study, we follow the latter approach and leave the former for
further research. So, we are interested in the boundary of A by using the analytical geometry concept of
the envelope. For a given r, the skewness-kurtosis frontier (SKF) that guarantees positivity must satisfy the
following equation system: v (z;8,8) = 0 and 9v/9x = 0. As a result, we obtain the SKF expressions for
#3 and @, as functions of x, which are given by

4z% — 2asx 322 — g

- . . B4(z;8) = - .
20+ Bt + Byt + By (%8) = 74 @b + B0t + Boa? + By

03 (x;8) = =73 (11)

where 3, = ae — 3a1, 35 = ajaz — 3ag and 3, = a;e3. In short, the PA density in (1) will be subject to
8 € A (8) such that any point in the frontier of A () is obtained according to (11). In the following section,
we use A (§) = A (v) where v denotes the degrees of freedom for the standardized Student-t as the parent

density.

3 The PAST distribution

3.1 Density function

The standardized Student-t density, or T density, is given by

flasv) = 1 (1+ a2 )—(v+1)/2 )
o (v — 22 B (v/2,1/2) v—2

where B {a,b) = fol w1 — )" due with a, b > 0 is the ordinary beta function. The non-central moments

only exist for 0 < 3 < v verifying that m, =0, ma = 1, mgpyy =0 for 3 =2k + 1, and

maw (@) = (0 —2* (2"; - 1) (13)

i=1 \ v — 2%

for = 2k. The PAST pdfis given by (1), then g {a;;v, ) = f (x;v) ¢ (x;v, 8) with f(-) as the parent density
in (12) and ¥ (-) is the polynomial function in (2) subject to v > 8 so as to obtain y; (v} in (5). For instance,
if we take v = 10, then e; in (4) and 7y; are given by a; =4, a2 =12, a3 = 8§, y3 =24 and vy, =672,

For v — oo, we obtain the GC pdf: goe (2;8) = ¢ () ¢ o (2; 8) where ¢ (2) is the standard normal pdf
and Yo (x;8) = L+ § Hs(x) + & Hy(x) with H; (x) as the j-th (orthogonal) Hermite polynomial. The first
four Hermite polynomials are: H, (z) = x, Ha (z) = 2° — 1, H3 (z) = 2* — 3z and Hy (x) = &* — 622 + 3.

Figure 1 provides an illustration of the PAST density with » = 15 (PAST15) as it compares to the sk-T
and PAHS, plots of zoomed lower tails are also provided. All these densities have zero mean, unit variance
and the same levels of skewness (—0.47) and kurtosis (11). More details about these latter values and the

densities’ parameters can be seen below in section 3.3.

[Figure 1]
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3.2 Cdf and ES

The PAST cdf is given by G (z;v,8) in (7) where £; (z:v) = [*__w/ f (u;v) du with f () as the pdfin (12).

Next, we obtain the corresponding expressions of &; (z;v).
Corollary 1. Let £, (x;v) = F {x;v) be the cdf of the standardized ST distribution, then
Fayw) = 1/2 (1 + sgn (@) Ly (1/2,0/2)), (14)

where sgn (z) =/ |@| for © # 0 (and 0, for £ =0), n{a) =22/(@* +v —2), I, (a,b) = B(a;a,b) /B(a,b)
is the reqularized beta function, and B (x;a,b) = fox w1 = u)b_l du is the incomplete beta function.

Proof. See Appendix. B

Proposition 1. The closed-form. expression of &; {(x;v) when j is an even number is obtained as

mar (v) e B(5—kk+3) 1w
Sar (@iv) = —5— +sgn (@) (v —2) 33(;,% Plyay | k+55 k), (15)

with may (v) #n (13).
Proof. See Appendix. @l
Proposition 2. The closed-form expression of §;(xiv) when j is an odd number is obtained as

ey BT —kk+1)
2B (3, 3)

v—1

§2k+1 (:17;’1}) = (’U — 2) I?’}(EJ (k + ]_, T — k) — ].] . (16)

Proof. See Appendix. @l

Hence, the cdf G (z;v,8) in (7) for PAST (henceforth, Gp asr (x;v,8)) is computed given the equations
(14), (15) and (16), and the expressions of w; in (8). For v — co, we obtain the GC cdf: Gg¢ (2;8) =
®(x) - %%Hg (x) ¢ (z) — %Hg (z) ¢ (x) where ® (x) is the standard normal cdf.*

Figure 2 showcases the cdf and ES of PAST when v = 15 (PAST15) and v = 300 (PAST300), and
both with zero mean, unit variance, skewness 83 = —0.5 and excess kurtosis 84 = 2.4545. The kurtosis of
the parent T pdf, according to (13) for & = 2, is 3.5455 for the case of v = 15 and 3.0121 for v = 300.
Note that the latter case converges to the parent N pdf and hence, to the GC pdf with the same above
values of #3 and #4. In short, the skewness is the same for both PAST pdfs, and the kurtosis is 6 for
PAST15 and 5.46 for PAST300. The plotted ES values for both PAST pdfs are computed according to the
equations (9), (15), (16) and the expressions of @; in (10). The ES values are displayed for the range —4
to —3 where Gpagr (=3;15,8) = 0.0006, Gp asr (—3;300.8) = 0.0125, Gp ss7 (—4: 15.8) = 0.0029, and
Gpast (—14;300,8) = 0.001 with 8 = (—0.5, 2.4545). We find that the ES (dashed) line for PAST300 is above

the PAST15 one, which means that expected losses (i.e., ES with a negative sign) are greater the lower is

48ee Proposition 2 in Ledn and Moreno {2017) where the GC cdf is obtained as the definite integral of the GC pdf over

{—oc, @], Note that the Hermite polynomials are expressed as orthonormal, instead of orthogonal, ones.



the parameter v. So, higher kurtosis levels for the same skewness levels lead to higher expected losses when
we move deep inside the left tail.

[Figure 2]

3.3 Skewness-kurtosis frontier

Figure 3 exhibits several frontiers of A (v) by using both equations in (11) for the PAST pdf with
v € {9,10,15,20} and v — co for the PA Gaussian, or GC, pdf. More precisely, the frontiers are in
terms of kurtosis instead of excess kurtosis. In short, the points of the skewness-kurtosis frontier (SKF)
are given by (sk, ku) = (83, m4 (v) + 84) with my in (13). Note that the SKFs are symmetric with respect
to the x-axis. It is shown that the lower v, the higher ku and the lower sk, so the PAST’s SKF enlarges
significantly the GC's. For instance, any point from the frontier of A (c0), or GC frontier, verifies that
3 < ku <7, |sk] < 1.0493, and the maximum size for sk is reached for 8, = 2.4508. The equations in (11)
for v — oo are: 03 (z) = —24H3 () /¢ (x) and 8, (&) = T2H (@) /¢ (x) where ¢ (x) = 2% — 3a? + 927 + 9. See
also JR (2001).
[Figure 3]

In order to illustrate the effect that the PAST envelope for different © has on the shape of the distribution,
Figure 4 plots theoretical quantiles from zero mean and unit variance densities of the sk-T against PAL,
PAHS and PAST with fixed v = 10, 15 (PAST10 and PAST 15, respectively). We showcase the comparison
for both distribution tails: lower tail (quantiles from 0.001 to 0.05) and upper tail (quantiles from 0.95 to
0.999). Specifically, we employ a total of fifty equally-spaced quantiles in each tail. The PA distributions’
parameters are fine-tuned so that their values of sk and &u match those of the sk-T. The specific higher-order
moment values are skyp = —0.4672 and kup = 10.9588 (rather similar to those empirical values exhibited
below in Table 1; see also Figure 1 for an illustration of these densities).® This means that #3 = —0.4672
for the three PA distributions, whilst 8, = 6.7588 for PAL (i.e., m4 = 4.2 for the parent logistic pdf) and
84 = 5.9588 for PAHS (i.e., my = 5 for the parent hyperbolic secant pdf). Note that the PAST, contrary to
PAL and PAHS, can provide the level of kg under different, combinations of ¢ and 84 as exhibited in Figure
3. We consider, for example, only two cases, namely, 84 = 6.9588 for PAST with v = 10 (i.e., my = 4 for
the parent T pdf with v = 10), and 84 = 7.4133 for PAST with v = 15 (i.e., mq = 3.5455 for the parent
T with v = 15). Note that PAST10 becomes more flexible to capture higher kurtosis levels than PAST15,
when both are restricted to the same skewness level of —0.47, as displayed in Figure 3. Several conclusions
are suggested from Figure 4. First, we find that PAST10 provides much closer quantiles to those of the sk-T
than PAST15 for both tails. That is, PAST10 quantiles are closer to the 45-degree dashed line. Second,
PAL and PAHS quantiles are very similar for the lower tail, whilst PAHS quantiles are nearer to sk-T for

the upper tail. Third, it is verified that more significant differences among PA quantiles (respecting sk-T

“Both sky and kug are obtained by plugging the sk-T parameters of A = —0.1 (parameter controlling skewness) and v = 4.8

(degrees of freedomn) into the skewness and kurtosis equations of the sk-T pdf in JR (2003).

=1



ones) can be seen at the end of both tails. Finally, PAL and PAST15 seem to provide similar quantiles for
both tails.

[Figure 4]

3.4 Conditional distribution of asset returns

Let »¢ be the asset return process characterized by the sequence of conditional densities h (i |[fi—1; X),
where I;_, denotes the information set available prior to the realization of »y, X = (4, ¢,v,8) is the vector
of unknown parameters with g as the constant mean of r;, < is the subset characterizing the conditional
variance of ¢, and (v, #) characterize the shape of the PAST distribution innovations, z;. Thus, the asset

return model is r; = g + ¢; with e; = o4z such that 0’? =FK [:? |7 t—l] 1s the GJR model:
_ s \2
of = ag + B} L+oyf ( ?Ll) + oy (Et—l) ' (17)

such that ag > 0, 3 > 0, af > 0, a; > 0, and consider e = max (z,0), ¢; = min (e;,0). Henceforth, the
above process for r; is referred to as GJR-PAST model. Note that the GJR nests the GARCH when
af = oj. Following He and Terasvirta (1999), we can rewrite the GJR as o7 = ap + c¢or_, with
ct =3+ ‘3"1 (zt 1) + a; (zf 1) If we assume (17) to be covariance stationary, then the unconditional
variance of =; is E(s7) = E(0?) = ag(l — E(e;))™" such that E(c,) = 3+ (af +af)/2 < 1. Since
E[r¢|l,-1] = p, then E (s7) is the unconditional variance of v,. Let iy = Ink({r, [I,—1;X) be the log-

likelihood (LL) function for a particular observation r¢, then

v 1 1,+1
2

2
it} s ‘ot
I = ln(a,) ln(v 2) — IB(2 3 5 ln(l—l—v_‘)+lnf;.(zm,,9), (18)

where z; = (ry — p)/o¢. Finally, alternative distributions for z, are also implemented here for a robustness
analysis. Thus, z; ~ ¢.é.d. D (0,1) such that D (0, 1) denotes a specific density (N, T, sk-T, GC, PAST, PAHS
and PAL) with zero mean and unit variance, and {7 as the corresponding LL per observation. Specifically, the
expression of I with a general PA density (henceforth, i7#) under both constant mean and GJR structure

in {17) is easily obtained as
iF4 = —% In (¢7) +1n f(z;8) + Inw{z; v, 0), (19)

with z, = (ry — u)/or. From now on, I, in (18) will be denoted as IF45T. We employ for PA densities
the method of constrained maximum likelihood (CML) so as to guarantee the positivity of ¥ (-) in (19).
Indeed, we maximize LL (Y) = 23;1 174 subject to I' (v,8) < 0, which denotes a system of two nonlinear
inequations as functions of (v, 8) according to (30) and (31) in BPZ (2015). Note that for each value of v,
both I' (»,8) < 0 and A (v) in section 2.4 become the same.

[s's]



4 Empirical application

First, we start with the descriptive statistics analysis of the daily return series. Second, we estimate the return
unconditional distribution for each series under different densities. Indeed, in this stage we are interested in
the PAST relative performance for fitting the distribution tails. Third, we analyze the fit of the conditional
distribution considering a model from the GARCH family under different densities for the standardized
return series. Finally, we implement an exhaustive backtesting procedure to compare the distributions’ QOS

performance for predicting VaR and ES.

4.1 Data and descriptive statistics

We use the log returns computed as ¢ = 1001In (Py/Pi—1) from samples of daily closing prices {Pg}?;l of
(1) exchange rates (FX): yen to euro (JAP-EU), yen to dollar (JAP-US), dollar to British pound (US-UK)
and Swiss franc to dollar (SWI-US); (2) stock indexes: FTSE 100, CAC 40 and AEX; (3) Commodity
indices: Goldman Sachs Standard & Poors (S&P) commodity index (GSCITOT), GSGCTOT S&P Gold
index (GOLD) and GSBRSPT S&P Brent Crude Oil (BRENT). The data, downloaded from Datastream,
cover the period from December 9, 2007 to April 4, 2021 for a total of T° = 3,500 observations. Table 1
provides the return descriptive statistics. All series present negative skewness ranging from -0.23 (CAC)
to -1.21 (SWI-US), and high kurtosis ranging from 8.17 (JAP-US) to 41.33 (SWI-US). The non-reported
Jarque-Bera test null of normality is rejected in all cases motivating the use of alternative distributions to
the Gaussian for modeling returns.

[Table 1]

4.2 Unconditional distribution estimation

We showcase the estimation of the models for the return series standardized by their sample means and
standard deviations. Table 2 presents the parameter estimates of the PAST density as well as alternative
pdfs considered for robustness comparison purposes. Besides, to assess the stability in the PAST estimation,
we also consider PAST with fixed v = 10,15, 20 (i.e., PAST10/15/20). The estimation is carried out using
the ML method for both T and sk-T densities, and CML for all PA densities.

The parameter estimates 63, 84 (PA densities), A (sk-T) and » (T, sk-T and PAST) are all statistically
significant for stock indices, GSCITOT, GOLD and BRENT series, indicating skewness and leptokurtosis.
For FX returns the results are mixed: (1) both » and 8, are statistically significant for all series indicating
leptokurtosis; (2) the sk-T asymmetry parameter, A, and @3 from the rest of models are not statistically
significant for JAP-US indicating that the unconditional distribution of this series is symmetric; (3) for
JAP-EU and US-UK the parameter estimates indicate milder or no skewness. In particular, for JAP-EU,
the A parameter is significant at 5 per cent; and 3 is significant at 5 per cent (GC), 10 per cent (PAST,

PAST15 and PAST?20) or not significant (PAL, PAHS, PAST10). For US-UK series, A is significant at 5 per



cent level, but f3 is not at any reasonable significance level in any of the other densities. (4) Finally, for

SWI-US, X\ and &3 are both statistically significant at 5 per cent level, except in PAHS and PAST.
[Table 2]

For the goodness-of-fit (GoF) comparison of nested pdfs, we apply the Akaike Information Criterion
{AIC). We find that sk-T performs better than T for all series except for JAP-US, for which the A parameter is
not significant indicating that the distribution is symmetric. This finding shows the importance of capturing
skewness. The three-parameter PAST log-likelihood values (not reported) are always larger than those of
PAST with restricted v, but differences are very small in most cases to turn into better fit according to the
AIC. Only for SWI-US and AEX, the three-parameter PAST provides superior fit. The PAST20 only does it
better for JAP-EU while the PAST10 for US-UK. For the rest of the six series the PAST15 performs better.

Table 3 analyzes the behavior of both tails under the alternative distributions fitted to the standardized
return series, with parameters in Table 2, by counting those observations that fall outside the specific interval
[-3,3].5 Note that under the Normal density, the probability of observations outside the previous interval is
0.27%, which is at least three times lower than the one observed in all series. Each cell in the table exhibits
two values: the lower’ or 'left’ tail corresponding to the number of observations out of 7" = 3, 500 lower than
—3, and the ’upper” or right’ tail (in parentheses) as the number of observations higher than 3. The first
row with title 'empirical’ shows the same information respecting the return series empirical distributions.
We obtain the following results. First, all series exhibit longer left tails than right ones according to all fitted
skewed densities such as sk-T and PA ones. This empirical evidence is in line with the negative skewness
values displayed in Table 1 for all series. Second, the asymmetry effect on the distribution tail behavior can
be seen if we compare the symmetric T (that is more suitable than N due to the high kurtosis levels shown
in Table 1) with the other densities. All series show longer left tails under both sk-T and PA because of the
negative skewness. The only exceptions correspond to JAP-EU and JAP-US under the PAST10 with a total
of observations of 21 and 20, respectively. These numbers are lower than 22 under T in both series. Third,
the same previous analysis applied to the right tail concludes that in most cases, as expected, there are now
more observations under the T distribution. Note that most exceptions occur under the PAST20 that shows
longer right tails than T. Fourth, if we compare sk-T and PAST we see that PAST exhibit longer tails than
sk-T in most cases, except for SWI-US and, to a lesser extent, for US-UK. Fifth, the sk-T underestimates
both tails of the empirical distribution in seven cases out of the ten. Note, for instance, the SWI-US case
where sk-T (also PAL, PAHS and GC) overestimates both empirical tails, nevertheless PAST only does it
for the left tail.

[Table 3]

Finally, a more in-depth analysis of the tail behavior, respecting the previous one in Table 3, is displayed

in Figure 5. This figure presents a comparison of the theoretical quantiles of a density with the sample

6See Tolikas (2014) for a rather similar analysis.
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standardized returns ones for both distribution tails. The tails are measured as the range of quantiles from
0.001 to 0.05 for the left tail, and 0.95 to 0.999 for the right tail. Specifically, a total of fifty equally-spaced
quantiles in each tail. To shorten, we only select four densities as the most representative ones: sk-T, PAL,
PAHS and PAST. As an example, this figure only displays four return series: JAP-US, GSCITOT, GOLD
and BRENT. Each series analysis is exhibited in both panel A (lower tail) and panel B (upper tail), where
each panel contains four graphs (each for a different density). First, the results do not throw a clear-cut
better model between sk-T and PAST for both tails in most series except for JAP-US, where sk-T seems
to fit the lower or left tail better than PAST while a similar fit occurs for the upper or right tail. Second,
PAL, PAHS and PAST make a similar performance in most cases. For BRENT, the PAST performs slightly
better than PAL and PAHS for the left tail.

[Figure 5]

4.3 Conditional distribution estimation

Next, we obtain the estimation of models for the return series conditional distribution. Table 4 presents
the parameter estimates of the PAST density with the GJR conditional variance (GJR-PAST). First, the
mean parameter, g, is not statistically significant for any return series. Second, the GJR equation parameter
estimates indicate presence of persistence in the conditional variance as well as asymmetric response of
volatility to positive and negative shocks. These estimates are very similar to the quasi-ML estimates
(QMLE), so they are not reported to save space. Third, the #3 parameter estimates show presence
of negative skewness, which is statistically significant at least at 5 per cent level for all series except
for US-UK. Fourth, the estimates for 84 and v indicate excess kurtosis in the distribution of all return
series. Fifth, the unconditional standard deviations (std} implied by the GJR-PAST model for returns, i.e.
o= \m, are very close to the sample ones. For instance, the estimation of o is equal to 0.62
and the sample std is 0.63 for JAP-US.
[Table 4]

Table 5 provides the parameter estimates for the alternative densities. As for the PAST, the GJR
parameter estimates in all cases are very similar to the non-reported QMLE ones. The parameter estimates
show that after accounting for GARCH effects there is still statistically significant, skewness and kurtosis
in all cases. The discussion of the results is close to that of Table 2. In regard to the relative GoF, the
sk-T performs better than the T for all series except for the JAP-US as for the unconditional distribution
estimation. Among the different PAST models, we conclude the following. First, only for JAP-EU and
US-UK, the three-parameter PAST provides superior fit. Second, PAST10 does it better for SWIS-US and
BRENT series, while PAST20 for FTSE and AEX. Finally, PAST15 performs better for the remaining four
Series.

[Table 5]
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Summing up, the analysis in this section shows that the PAST densities provide improvements in some
cases with respect to the alternative densities considered. A cross comparison of all models, including

non-nested ones, as regards forecasting VaR and ES is performed through a backtesting analysis next.

4.4 Backtesting analysis

We take the first T-NN observations for the first in-sample window and an OOS period of length N = 1,000
using a daily constant-sized rolling window. We adopt a two-stage estimation method to each window as can
be seen, among others, in Zhu and Galbraith (2011). The mean and GJR parameters are estimated by QML,
then each density parameters are obtained by ML using the standardized residuals, z;, from the first stage.
We evaluate the forecasting performance for the returns’ lower tail that is, for instance, of particular interest
to pension fund managers concerned with the probabilities of losing a large part of investment portfolio
value in a single day. We study the OOS performance, through VaR and ES backtesting, under alternative

distributions of z,.

4.4.1 Backtesting tests
Consider a nominal coverage rate «, the one-day conditional VaR is given by
VaR, (@) = oy +K1,Q7 (a), (20)

where Koy = g + aoy and &, = boy. Let he(a) = Z(rt < VaR; (a)) denote the violation or hit variable.
We are interested in checking whether the centered violations {f:{a) — 0}21 follow a martingale difference
sequence (MDS), which implies zero mean property and no correlation. Testing MDS leads to both the
unconditional backtest (or unconditional coverage test) and conditional backtest (or independence test).
The null hypothesis for the unconditional backtest, Ho 17 : F [h{c)] = e, corresponds to the well-known test

statistics by Kupiec (1995):

VN (R(e) —a)
Vol —a)

- ~ N ~
where i{a) is the sample average of {ht (oz)} such that A; (o) = 7 (4; < ) with %; as the estimation of
t=1

UL"aR ((}:) = ~ N (Os ]-) ) (21)

u, = F(r,|l;—1) where F'(-|[;—1) denotes the conditional cdf for returns according to the pdf of z;. For
testing the conditional backtest null hypothesis, Ho ¢ : E [he{a) — e |[Ii—1] = 0, we implement the approach

by Escanciano and Olmo (2010) based on the Box-Pierce test statistic:
Cim) = NI P42, (22)
i=1

which is asymptotically a chi-square distribution with /m degrees of freedom such that p; is the j-th lag of
the sample autocorrelation defined as p; =%; /4o where

N

y; = ﬁ_} > (he(@) - a) (he-s (@) - @) (23)

t=1+j
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The unconditional and conditional ES backtests are the analogues to the above VaR ones. Du and
Escanciano (2017) provide the ES backtest based on the notion of cumulative violations (CV), which

accumulates the violations across the tail distribution and can be rewritten as
@ 1
H, (o) = / he () die = £ (@ — ) T (g < ). (24)
0 o

Note that the equation (24) measures the distance of the returns from the corresponding c-quantile in (20)
during the violations. It is shown that {H(a) — a/2};2, follows the MDS property. The null hypothesis for
the unconditional backtest is Ho ;7 : E [H:(a)] = /2 and the related test statistics is given by

Upg = M A N(0,1), (25)

a(z —%)

— - N -~
where H(«) is the mean of {Hg (a)} such that H, (o) = 1 (& — %) T (G < ). The null for the conditional
t=1
backtest hypothesis is Ho ¢ : E [H{a) |I;—1] = /2 with the same test statistics in (22) such that

=g & (=) (e -5) &

=145
4.4.2 Backtesting results

Following Deng and Qiu (2021), and references therein, a larger coverage level o for ES than VaR is selected
to compare both risk measures. Specifically, we consider the following rule-of-thumb: the coverage level for
ES is twice, or close to twice, than that of VaR. We focus on o = 2.5% and a = 5% for ES, corresponding
roughly to @ = 1% and a = 2.5% for VaR in a standard normal distribution.” Table 6 shows the results of
the descriptive analysis of violations. First, all models perform better than the Normal for both VaR({1%)
and ES(2.5%). Respecting VaR(2.5%) and ES(5%), there are very few exceptions for which the performance
of some models is worse than that of the Normal, and primarily for the FX series: JAP-US and SWI-US.
Second, most skewed density models do not perform worse than the T, with some exceptions mainly again
found in the FX series. Indeed, there are no exceptions for any of the stock index series. Third, the GC (or
PAST when v — 00) works better than sk-T for most series and coverage levels. Fourth, the PAST works
similarly or better than the sk-T for stock and commodity indexes, whilst sk-T does it better than PAST
for the FX series. Fifth, PAHS performs better than PAL for most series. Sixth, among the two-parameter
PAST (i.e., PAST10/15/20) densities, PAST20 makes the best performance. Furthermore, PAST20 beats
sk-T for all series (and coverage levels) except for US-UK. This result is in line with the already mentioned
very good performance of GC since both densities tend to resemble each other for higher values of v, see
section 3.2

Table 6 also reports the significance at five percent, level of both unconditional and conditional backtesting

for VaR and ES (see superscripts v and ¢ for the cases of rejecting the null hypotheses). For the unconditional

TFor a discussion about the correspondence between coverage levels of ES and VaR, see Kerkhof and Melenberg (2004).
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tests, the mull is not accepted for most stock and commodity indexes under both N and T, whilst there is no
rejection for FX series for these symmetric distributions. Respecting the conditional tests, there are many
more rejections than in the case of unconditional ones independently of the densities. For the series JAP-EU,
JAP-US, GOLD and BRENT there are hardly any rejections of the conditional mull.

Finally, the previous VaR results are reinforced by the magnitude of exceptions for VaR measured through
the quadratic loss (QQL) function, see Lépez (1999). The QL incorporates the exception magnitude and so,
it provides useful information to discriminate among similar models according to the unconditional coverage
test, i.e. QL (o) = (i, — VaR, (or))2 x he(a). We are interested in the sample average of QL (AQL) for the
OO8 period of N observations. Table 6 only exhibits both the first and second best models according to
the AQL measure and denoted, respectively, with the symbols & and 4. ® First, we find that the Normal
renders the highest AQL values. Second, for SWI-US, CAC, AEX, GOLD and BRENT either PAST or
PAST20 provides the lowest AQL at 1%, while PAHS performs better for US-UK, FTSE and GSCITOT at
1%. Third, GC provides the lowest AQL in most cases at 2.5%. Note that the second best model is provided
by the PAST family, except for PAST10, in most series at both 1% and 2.5% levels.

[Table 6]

5 Conclusions

We present a polynomial expansion of the standardized Student-t distribution, referred to as PAST. The
density belongs to the polynomially adjusted (PA) class of Bagnato et al. (2015), and it is a generalization
of the Gram-Charlier (GC) density in Jondean and Rockinger (2001). The two parameters in the polynomial
expansion are by construction the skewness and excess kurtosis of this new density. We derive its parametric
properties including the moments, the distribution function and the skewness and kurtosis frontiers (SKF)
for which the density is well-defined. We show how the PAST’s SKF enlarges that of the GC.

The performance of the PAST is tested through an empirical application to different types of asset returns:
exchange rates, stock indexes and commodities. We consider several distributions for comparison purposes,
including: Normal, Student-t, Hansen's skewed T, GC, PA logistic and PA hyperbolic secant. For robustness
checks we also consider two-parameter PAST densities where the degrees of freedom are fixed to 10, 15 and
20. We find that the estimated PAST features flexibility to capture both skewness and high levels of knrtosis
for both the unconditional and conditional distributions of the return series. Our in-depth in-sample analysis
shows that the PAST density is capable to provide improvements respecting the alternative distributions.
A more general analysis based on backtesting VaR and ES shows that the PAST performance can beat the

alternative densities.

#To save space, the AQL values and all previous backtesting test statistics are not reported here, but they are available upon

request.
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Appendix

Proof of Corollary 1. The cdf of the standardized ST distribution in {14) is obtained by using previously

the integral of a symmetric region, i.e.

¢ ¢ 2 ™ ¢ @2 \~™
/; fluyv)du = c/:t (1 + = 2) du = 20/0 (1 + p— 2) du,

such that £ > 0, m = (v+1)/2 and ¢ = (1,'—2)_1/28('0/2,1/2)_1‘ If we make the substitution

y =14+ % we obtain

< ]_ ‘ _q /¢
w=(v=-2)"2(1—y)/ 2y 2, du=—§(”—2)”2y_3’2(1—y) 12 gy, (27)

Then,

1

t 9 —-m
2c/ (1+ ”‘) du = B(zrf2,1/2)_1] Yy (1 = y) V2 gy
0 v—2 8(t)
1

B(v/2, 1/2)—1/ 21 (1) V2 gy
g(¢)

= B(v/2,1/2) ' [B(v/2,1/2) — B(8(t);v/2,1/2)]

= 1—1Igy (v/2,1/2) = I gt (1/2,v/2),

where 8 (1) = 75725 and 1 — 6 () = ;5% Hence, F'{t) = § + 51y (1/2,0/2) with n{t) =1 — 6 (t) and
F(-t) =1-F () = § — 1, (1/2,0/2). Finally, we have F (z) = § + 3 sgn(z) Iy (1/2,v/2) where
x€R. B

It should be noted that the following proofs use the previous change of variable in (27).

Proof of Proposition 1. First, an alternative expression for the even-moments in (13), that is useful for

the proof, is given by

+o0 +oo w2 —-m
max (v) = / u?* f (uzv) du = 20] w?t (1 + ) du
0

oo v —2

1
=2 Blo/2 127 [ @)ty
0

(w=2)*Bw/2,1/2) ' Bw/2-k.k+1/2). (28)

15



Second, the even-moment &y, (t;v) = f_tm u2® f (u;v) du with t > 0 in (15) is obtained as

t 2 "™
) = N2k w2 v ,
Eop, (ts0) 5 —I—c]o U (1+'v—2) du

_ @ (U_z)k ! m—k—B/’2(1_ )""-—Uzd
T T2 T2B2,172) Ja” y Y
'y A
= %4—%[B(*v/?—k,k+1/2)—B(G(t);v/2—k,k+1/2)]
omay (w—2"Bw/2—kk+1/2) '
_ oma |, (v=2)"B(/2-kk+1/2) ' '
= 5+ EICRYE) Ity (k+1/2,2/2 — k). (29)

Note that cliEI 7(t) =1 in (29) and hence, £1i4n_1 Lo (k+1/2,2/2 - k) =L (k+ 1/2,v/2-k) =1 If
— o0 — 400
we consider (28), then it is shown that , liEl Eor (t;v) = migy. Finally, &5, (—1;v) with £ > 0 can be expressed
— 100

as
Eor (=t v) = mag — §or (H0). (30)
It is verified that tliT Sox (=t v) = mgp — mgp = 0. If we consider both (29) and (30), we have £, (2;v)

where 2 € R in (15). B

Proof of Proposition 2. The odd-moment £, ,, (t:v) = f_tmuzk"'l S (w;v) du with ¢ > 0 in (16) can be

—+20 ) u2 —-m t uz —-m
Eopyy (B10) = —c/ 2k (1 + - ) du + c] 2+l (1 + - ) du. (31)
0 v—2 0 v—2

(v—2)%/2

To shorten, let ¢ =2k + 1, ¢ = 5573173y, @1 =m - (g+1)/2 and @z = (g+ 1) /2. Then,

rewritten as

+oc 2 —-m 1
cf u (1+ “ 2) du=¢/ (1 =)D ym=@+3/2qy = oB (a1, az), (32)
0 v = 0

t 2 —nt 1
c/ ut (1+ “ ) du = {p/ (1 — ) V2 m—(a+3)/2g,
0 -2 a(t)

= \p[B (G‘.],G'z) - 8(9 (t);alef"-?)]

= B(a,a2) [1 — Tg(r) (al,az)]

= B (a1, a2) Iy (az,a1). (33)
By plugging (32) and (33) into (31), we have
bopr (B0) = @B (ay,02) [y (ag,01) — 1]
I e = (?’;E;’;)J’ ) [In(f} (a Y "’2;1 _ k) - 1} ‘ (34)
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Finally, &5, (—t;v) with ¢ > 0 can be expressed as

420 6(t)
Eorer (—ti0) _/ 1!-2k+1f (1 0) du = —9'3] (1— ,y){Q—l)/? ym.—(ti‘+3J/2dy
t o]

—pB (0 (t);a1.a2) = = @B (a1, a2) [1 = Iy (a2, a1)] - (35)

. 1 . . i—1 N . ) — . .
Note that fl}Tco 71(t) = 1in (35), hence t_lilerc’0 Ly (k+1,%51 —k) =1 and cl‘Tm éory1 (8 v) = 0. Finally,
if we consider both (34) and (35), we have o, (2:7) where z € R in (16). B
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Tables

Table 1: Summary statistics for daily percent log returns

JAP-EU JAP-US US-UK SWIUS FTSE CAC AEX GSCITOT GOLD BRENT

Mean -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.00 -0.03 0.02 -0.01
Median 0.01 0.00 0.00 0.01 0.04 0.04 0.06 0.00 0.01 0.00
Std. dev. 0.75 0.63 0.64 0.66 1.49 1.67 1.55 1.49 1.14 2.29
Min -6.79 -4.61 -8.31 -11.42  -14.21 -1485 -13.13 -12.52 -9.81 -26.83
Max 4.84 3.71 4.47 8.47 1222 1214 12.32 7.62 8.59 19.08
Skewness -0.40 -0.25 -0.61 -1.21 -0.41 -0.23 -031 -0.59 -0.24 -0.58
Kurtosis 9.66 8.17 14.793 41.33 15.02 1164 13.05 9.28 9.18 16.31

This table presents the summary statistics for daily percent log return series of: yen to euro (JAP-EU); yen to
dollar (JAP-US); dollar to British pound (US-UK); Swiss franc to dollar (SWI-US); FTSE 100, CAC 40 and AEX
stock indexes; Goldman Sachs Standard & Poors (S&P) commodity index (GSCITOT); GSGCTOT S&P Gold index
(GOLD); and GSBRSPT S&P Brent Crude Oil (BRENT). Sample: November 9, 2007 to April 4, 2021 (T = 3,500

observations).
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Table 2: Unconditional distribution estimation for standardized returns

AIC
sk-T

AlC
PAL

a3

84

AIC
PAHS

g3

84

AIC
GC

a3

84

AlC

JAP-EU

3.600**
(0.130)
2.6576

-0.054**
(0.016)
3.501°*
(0.128)
2.6555

-0.157
(0.107)

3.825%**

(0.420)
2.6739

-0.165
(0.138)

3541+

(0.619)
2.6613

-0.125**
(0.055)
1.979*
(0.102)
27144

JAP-US

3.689***
(0.143)
26741

-0.022
(0.016)

3.689"**

(0.143)
2.6742

-0.049
(0.107)

3.785***

(0.419)
2.6861

-0.048
(0.133)
3.575%**
(0.631)
2.6751

-0.067
(0.057)

1.807***

(0.101)
2.7266

US-UK

1.302%**
(0.217)
2.6840

-0.042**
(0.019)
1293+
(0.216)
2.6833

-0.152
(0.112)

3367

(0.435)
2.6869

-0.165
(0.138)

3.350"**

(0.648)
2.6849

-0.067
(0.057)

1467

(0.107)
27606

SWI-US

3.483***
(0.121)
2.5639

-0.044**
(0.017)
3.478***
(0.120)
2.5629

-0.246**
(0.123)
1.195***
(0.434)
2.5904

-0.249
(0.163)
1.553*
(0.657)

2.5757

-0.126**
(0.059)
1.825"**
(0.107)
2.7309

FTSE

2.068"**
(0.063)
2.5031

-0.069***
(0.015)
2964+
(0.062)
2.4984

-0.273*
(0.110)
6.002***
(0.372)
2.5434

-0.337**
(0.139)
6.953**
(0.568)
2.5234

-0.173%*
(0.058)
2474
(0.094)
2.6390

CAC

3.113%*
(0.078)
2.5644

-0.052***
(0.015)
3.138%**
(0.078)
2.5621

-0.411%**
(0.103)
5.649**
(0.379)
2.5882

-0.446***
(0.129)
6.272***
(0.580)

2.5745

-0.219***
(0.056)
2.405°**
(0.096)
2,6504

AEX

3.055%**
(0.071)
2.5342

-0.071***
(0.015)
3.057°**
(0.071)
25293

-0.490***
(0.108)
5,782+
(0.371)
2.5617

-0.554%**
(0.133)
6.816***
(0.564)
2.5445

-0.236**
(0.057)
2.379***
(0.097)
26495

GSCITOT

3.385%**
(0.107)
26350

-0.067*
(0.015)
3.378"**
(0.107)
2.6300

-0.348***
(0.102)
4.577***
(0.402)
26518

-0.375%**
(0.124)
1.626***
(0.622)
2.6391

-0.187%*
(0.057)
2.039***
(0.099)
2.6951

GOLD

3.351%**
(0.109)
2.6363

-0.030**
(0.014)
3.358"**
(0.110)
2.6359

-0.285***
(0.105)
1.342***
(0.405)
2.6573

-0.301**
(0.130)
1.351%*
(0.615)
26417

-0.103***
(0.057)
1.981***
(0.008)
2.7019

BRENT

3.108***
(0.080)
2.5586

-0.050***
(0.014)
3.107**
(0.080)
2.5564

-0.294***
(0.107)
5.416***
(0.390)
2.5912

-0.286**
(0.133)
5.952***
(0.607)
2.5745

-0.178***
(0.058)
2221
(0.097)
2.6735
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(Tadle 2 continued)

PAST

-0.142°¢
03
(0.074)
3.436**
04
(0.609)
18.447***
74
(4.207)
AlC 2.6785
PAST10
. -0.150
? (0.112)
9.279***
04
(0.903)
AlC 2.6838
PAST15
-0.146*
03
(0.081)
. 4120
! (0.296)
AlC 2.6789
PAST20
. 0.141°
i (0.072)
. 3.252°%
! (0.209)
AlC 2.6780

-0.056
(0.082)
3.733***
(0.701)
15.649°**
(2.781)
26928

-0.044
(0.109)

9.204***

(0.908)
2.6959

-0.055
(0.084)
3.015*
(0.294)
2.6923

-0.060
(0.075)
3.025***
(0.207)
2.6931

-0.155
(0.116)
8.087*
(4.458)

10.184***

(1.369)
2.6871

-0.158
(0.116)

8743

(0.954)
26865

-0.111
(0.087)
3.366™"*
(0.309)
2.6895

-0.094
(0.077)
2.540***
(0.218)
2.6942

-0.238
(0.152)
37.185***
(11.154)
8.528***
(0.165)
2.5843

-0.252**
(0.124)
10.494°**

(0.922)
2.5860

-0.222**
(0.092)
4.049**
(0.303)
25036

-0.196*
(0.081)
3.078***
(0.215)
2.6009

-0.225***
(0.087)
6.205***
(1.288)
13.820%**
(1.919)

2.5524

-0.249**
(0.106)
13.816***
(0.780)
2.5559

-0.221%**
(0.084)
5.560""*
(0.263)
2 5520

-0.209***
(0.075)
4.252%*
(0.188)

2.5557

-0.319***
(0.079)
4.807***
(0.706)
16.579***
(2.365)
2.5930

-0.390***
(0.098)
13.019***
(0.799)
2.6020

-0.332**
(0.080)
5.358"**
(0.269)
25027

-0.209*+*
(0.073)
4.114%*
(0.192)
2.5933

-0.405***
(0.096)
6.560"*
(1.494)
12.941%**
(1.636)

2.5715

-0.468"**
(0.103)
13.426***
(0.780)

2.5737

-0.371%*
(0.085)
5.271°*
(0.266)
25716

-0.324*
(0.076)
4,032+
(0.191)

2.5758

20271+
(0.080)
3.888%**
(0.636)
17.198***
(2.911)
2.6576

-0.334"**
(0.100)
10.872***
(0.864)
2.6648

-0.286***
(0.082)
4487
(0.281)
2.6574

-0.256"**
(0.074)
3.446**
(0.199)
2.6574

-0.251**
(0.078)
3.823%**
(0.657
16.972***
(2.983)
2.6645

-0.276**
(0.103)
10.380°**
(0.871)
2.6703

-0.258**
(0.082)
4349
(0.284)
26642

-0.242**
(0.074)
3,353
(0.201)
2.6644

-0.261***
(0.086)
5.931%*
(1.121)
14.583**
(2.285)
2.5975

-0.285***
(0.103)
12,677
(0.828)
2.6023

-0.259***
(0.085)
5.044"**
(0.272)
2.5969

-0.238**
(0.076)
3,832+
(0.193)
2.5993

This table presents ML estimates of density model parameters for standardized returns, z;. Heteroscedasticity-consistent standard errors are provided in
parentheses below the parameter estimates. AIC' denotes Akaike Information Criterion. (***) indicates significance at 1% level; (**) at 5% level and (*) at
10% level. Sample: November 9, 2007 to April 4, 2021 (T = 3,500 observations).
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Table 3: Number of standardized returns outside the interval [—3, 3]

empirical

N

sk-T

PAL

PAHS

GC

PAST

PAST10

PAST15

PAST20

JAP-EU
23 (25)
4 (4
2 (22)
25 (18)
27 (20)
24 (19)
20 (23)
32 (26)
21 (17)
31 (24)
33 (26)

JAP-US
27 (23)
4 (4
2 (22)
24 (20)
25 (23)
22 (21)
25 (23)
28 (24)
20 (18)
28 (25)
2 (27)

US-UK
21 (19)
4 (4
20 (20)
23 (17)
2 (20)
24 (19)
22 (19)
2 (17)
21 (17)
2 (21)
27 (23)

SWI-US
15 (16)
4 (4
23 (23)
24 (19)
30 (19)
28 (18)
28 (22)
18 (11)
25 (16)
33 (20)
33 (24)

FTSE
31 (23)
4 (4
23 (23)
2% (18)
36 (23)
32 (19)
35 (29)
38 (27)
27 (19)
40 (29)
42 (31)

CAC

34

36

41

43

(23)

(4)

(23)

(19)

(20)

(16)

(27)

(26)

(14)

(26)

(28)

AEX
34 (20)
4 (4
23 (23)
2% (18)
a1 (19)
35 (15)
36 (26)
39 (21)
31 (14)
42 (25)
43 (26)

GSCITOT
32 (23)
4 (4

23 (23)
27 (18)
32 (18)
31 (16)
31 (23)
36 (23)
27 (15)
36 (22)
37 (25)

GOLD
20 (24)
4 (4
23 (23)
25 (20)
31 (19)
28 (17)
31 (22)
35 (23)
26 (16)
34 (22)
36 (25)

BRENT
31 (24)
4 (4
23 (23)
25 (19)
35 (21)
30 (20)
33 (26)
37 (26)
27 (17)
38 (26)
30 (27)

This table exhibits the number of standardized observations z; under each assumed distribution (in row), with parameters exhibited in Table 2, for the
alternative return series (in column) that lie outside the interval [—3,3]. The left 14il is the number of observations lower than —3 and the right tai is the
number of observations (in parentheses) higher than 3. The first row with name ‘empirical’ is related to the empirical distribution of the return series. All
series have the same number of observations, 7' = 3, 500.
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Table 4: GJR-PAST model estimation results

JAP-EU JAP-US US-UK SWI-US FTSE CAC AEX GSCITOT GOLD BRENT
0.003 0.003 0.002 -0.005 -0.010 -0.001 0.008 -0.014 0.023 -0.002
# (0.008) (0.007) (0.007) (0.007) (0.016) (0.018) (0.016) (0.018) (0.015) (0.026)
0.002** 0.002*** 0.003*** 0.001°** 0.020°** 0.018*** 0.017*** 0.011** 0.004* 0.033***
o (0.001) (0.001) (0.001) (0.0005) (0.007) (0.006) (0.006) (0.004) (0.002) (0.012)
' 0.957*** 0.953*** 0.951%** 0.964°** 0.901°** 0.912°* 0.911*** 0.941°** 0.962°* 0.924***
7 (0.009) (0.007) (0.008) (0.005) (0.022) (0.015) (0.018) (0.008) (0.006) (0.011)
0.027*** 0.036*** 0.027%** 0.028*** 0.012 0.007 0.010 0.027*** 0.040*** 0.034***
o (0.007) (0.006) (0.006) (0.005) (0.011) (0.007) (0.008) (0.008) (0.009) (0.009)
) 0.051*** 0.045*** 0.053%** 0.036*** 0.164*** 0.159*** 0.151*** 0.080*** 0.027%* 0.107***
o (0.011) (0.008) (0.009) (0.007) (0.036) (0.028) (0.032) (0.012) (0.006) (0.017)
-0.226*** -0.192** -0.013 -0.304** 0317 -0.371*" -0.380*** -0.441*** -0.208*** -0.548%**
b (0.055) (0.088) (0.089) (0.121) (0.068) (0.083) (0.072) (0.106) (0.090) (0.120)
1.200*** 2.388** 0.728 28.814*** 1.406%** 1.763%** 1.163*** 2.012* 2.699*** 12.227**
b (0.259) (1.026) (1.040) (10.273) (0.273) (0.578) (0.219) (1.060) (0.670) (4.768)
18.364°** 13.146°** 9.421%** 8.122%** 23,6254 14.952*** 25.394** 12.273% 16.033*** 8.538***
? (4.081) (4.485) (1.200) (0.038) (8.583) (4.402) (12.236) (4.052) (4.275) (0.291)
o 0.684 0.620 0.566 0.628 1.392 2.00 1.427 1.376 1.042 2443
AIC 1.9127 1.6846 1.5616 1.7136 3.0525 3.3470 3.1547 3.2565 2.7952 1.0268

Model: ry = i+ ¢, 8, = 0121, 07 = a0 + B07_; +af (g )2 + a7 (e7_1)%, 2: ~ id.d. PAST (0,1) distributed with parameters (v,83,84)

This table presents CML estimates of the GJR-PAST parameters for the return series in Table 1. Heteroscedasticity-consistent standard errors are provided
in parentheses below the parameter estimates. ¢ denotes the unconditional GJR-PAST standard deviation, and AIC is Akaike Information Criterion. Finally,
(***) indicates significance at 1% level, (**) at 5% level and (*) at 10% level. Sample: November 9, 2007 to April 4, 2021 (T = 3,500 observations).
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Table 5: Alternative density (D) parameter estimates from GJR-D model

AlC
sk-T

Tt

AlC
PAL

03

04

AlC
PAHS

03

2

AlC
GC

93

04

AlC

JAP-EU

6.156***
(0.653)
1.9274

-0.063**
(0.021)
6.122***
(0.652)
1.9257

-0.145
(0.104)
0.980**
(0.418)
1.9270

-0.053
(0.110)
0.269

(0.588)
1.9282

-0.172%4
(0.058)
0.991***
(0.122)
1.9405

JAP-US

4.926**"
(0.417)
1.6299

-0.025
(0.022)

4.937***

(0.419)
1.6301

-0.116
(0.113)

1.895***

(0.493)
1.6306

-0.072
(0.140)
1.682**
(0.770)
1.6296

-0.074
(0.062)

1.421°*

(0.155)
1.6551

US-UKX

7.978%**
(1.209)
1.6926

-0.048**
(0.022)
7.950°**
(1.186)
1.6920

-0.067
(0.092)
0.284

(0.277)
1.6043

-0.083
(0.177)
0.145

(0.325)
1.7008

-0.090
(0.055)

0.801***

(0.138)
1.7110

SWI-US

5.900**
(0.733)
16172

-0.064"**
(0.022)
5.002***
(0.721)
1.6155

-0.150
(0.110)
1.048"
(0.542)
1.6266

-0.177
(0.140)
0.906
(0.770)
1.6279

-0.148**
(0.070)
1.489***
(0.527)

1.7208

FTSE

6.048%**
(0.597)
3.0559

0117
(0.021)
6.107***
(0.609)
3.0488

-0.349***

(0.088)
0.958**
(0.415)
3.0526

-0.320*

(0.134)
0.610
(0.893)
3.0552

-0.266***
(0.055)
1.088***
(0.122)
3.0593

CAC

5971
(0.602)
3.3507

-0.116***
(0.023)
6.175"**
(0.636)
3.3440

-0.418***
(0.094)

1237
(0.393)
3.3461

-0.425***

(0.138)
1.248**
(0.551)
3.3504

-0.282**
(0.056)
1.053***
(0.128)
3.3611

AEX

6.620**
(0.709)
3.1622

-0.134**
(0.022)
6.939**
(0.775)
3.1531

0487
(0.101)
1.177%*
(0.312)
3.1557

-0.358***

(0.111)
0.689**
(0.316)
3.1621

~0.319***
(0.053)
0.977***
(0.121)
3.1584

GSCITOT

5.754%**
(0.583)
3.2589

-0.094***
(0.020)
5.984**
(0.620)
3.9544

-0.448***
(0.095)
1.159***
(0.343)
3.2536

-0.415***

(0.136)
1.123*
(0.529)
3.2554

-0.267**
(0.058)
1.014***
(0.122)
3.2706

GOLD

3.951%**
(0.280)
2.7845

-0.034*

(0.020)
3.086%*
(0.284)

2.7843

-0.267**
(0.106)
2,375+
(0.453)
27891

-0.280**
(0.125)
1874+
(0.687)
2.7817

-0.150**
(0.064)
1.646**
(0.140)
2.8181

BRENT

5.235%**
(0.493)
4.0265

-0.080***
(0.020)
5.357***
(0.509)
1.0232

-0.410***
(0.099)
1.204***
(0.399)
1.0232

-0.447%*

(0.141)
1.287**
(0.503)
1.0221

-0.233%**
(0.059)
1.134***
(0.128)
1.0477
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{(Table 5 continued)

PAST10
o -0.190* -0.134 -0.086 -0.167 -0.397*** -0.463*** -0.565*** -0.504*** -0.276* -0.444***
(0.113) (0.119) (0.107) (0.114) (0.092) (0.095) (0.100) (0.096) (0.108) (0.102)
3.248*** 5.340*** 1117 2.048%** 3.198*** 3.731%** 3.443°** 3.461°** 6.288*** 3.637***
ba (1.071) (1.128) (0.854) (1.104) (1.023) (1.043) (0.795) (0.944) (0.974) (1.051)
AIC 1.9201 1.6340 1.6923 16176 3.0550 3.3471 3.1567 3.2562 2.7966 1.0265
PAST15
o -0.213** -0.107 -0.099 -0.147* -0.351*** -0.370*** -0.447*** -0.398%** -0.216** -0.329***
(0.085) (0.086) (0.078) (0.080) (0.074) (0.074) (0.070) (0.076) (0.086) (0.079)
N 1.548*** 2.410°** 0.842*** 1591+ 1.808"** 1.758*** 1.439*** 1582+ 2.870*** 1.853**
(0.316) (0.356) (0.309) (0.348) (0.320) (0.333) (0.311) (0.317) (0.323) (0.331)
AIC 1.9288 1.6338 1.6936 1.6211 3.0529 3.3464 3.1548 3.2561 2.7946 40274
PAST20
-0.205*** -0.097 -0.103 -0.139** -0.327* -0.340*** -0.403*** -0.355 -0.188** -0.295***
b (0.075) (0.076) (0.069) (0.071) (0.067) (0.067) (0.064) (0.070) (0.077) (0.072)
N 1.289*** 1.965%* 0.818*** 1383+ 1.507*** 1.444*** 1.244%** 1.322 2.325%** 1.531%**
(0.223) (0.255) (0.224) (0.246) (0.225) (0.235) (0.229) (0.225) (0.235) (0.230)
AIC 1.9293 1.6347 1.6947 1.6245 3.0521 3.3468 3.1542 3.2569 2.7950 1.0286

This table presents either CML or ML estimates of different density (D) parameters from GJR-D model. GJR estimates are not presented to save space.
Heteroscedasticity-consistent standard errors are provided in parentheses below the parameter estimates. AIC denotes Akaike Information Criterion. (***)
indicates significance at 1% level; (**) at 5% level and (*) at 10% level. Sample: November 9, 2007 to April 4, 2021 (T = 3, 500 observations).



Table 6: Descriptive analysis of violations and backtesting procedures

VaR(1%) ES(2.5%) VaR(25%) ES(G%) | VaR(1%) ES(25%) VaR(25%)  ES(5%)
JAP-EU JAP-US
N 13 1412 22 22.16 16 1593 23 24.12
T 9 11.02 20 21.66 9 12.33 23 23.63
sk-T 9 9.82 19 19.71 8 12.11 23 23.31
PAL 9 10.49 20 20.94 10 12.66 23 23.92
PAHS 9 10.04 19 19.97 9 12.14 22 22.91
ele 3% 8.84 184 17.29 8a 10.61 184 20.40
PAST 9 10.56 21 21.32 12 13.26 2% 24.77
PAST10 10 11.42 21 22.39 12 14.01 26 25.60
PAST15 9 10.05 20 20.56 9 12.37 24 24.17
PAST20 85 9.53 194 19.62 84 11.64 22, 23.25
US-UK SWI-US
Normal 13 15.44 29 28.04° 12° 14.43° 24° 22.94°
T 8¢ 11.91 29 6.45° 8° 10.59° 23¢ 22.39°
sk-T 8° 10.82 24 25.13° 6° 8.90° 22° 20.10°
PAL 8¢ 10.73 25 25.21° 5 8.71¢ 29¢ 20.81°
PAHS 64 9.19 215 23.80° 5° 8.45° 22° 20.36°
GC : 10.30 294 24.04¢ 6° 7.00¢ 155° 16.52¢
PAST 8° 11.70 28 26.42° 9° 12 68° 25° 25.23°
PAST10 8¢ 12.18 28 26.69° 7 10.60° 25¢ 23.14°
PAST15 8° 1213 28 26.62° 55 8.40° 22° 20.51°
PAST20 8¢ 11.71 28 26.20° 5% 7.58¢ 205 19.27°
FTSE CAC

N a7e 25.84¢ 38w 34.93%¢ 94%e 2279 32¢ 32.43°
T 17 21.09% 37uc 33.10™° 16 18.71% 31° 31.21°
sk-T 16¢ 17.79° 29° 29.31° 15 16.26 27¢ 27.57¢
PAL 16° 18.01° 32° 30.30° 14 15.84 27° 28.21°
PAHS 134 16.49° 295 29.30° 144 15.55 27¢ 27.93¢
ele 15° 16.89° 28 27.00° 14 15.75 245 25.05°
PAST 155 17.05° 205, 28.80° 14 16.30 27¢ 28.69°
PAST10 16¢ 19.33%¢ 34° 31.70¢ 15 17.12 30¢ 29 98¢
PAST15 15° 17.59° 32° 29.92° 14 15.96 27° 28.13°
PAST20 15¢ 17.09° 29° 29.04¢ 144 15.59 275 27.25°

26




{Table 6 continued)

VaR(1%) ES(2.5%) VaR(25%)  ES(5%) | VaR(1%) ES(2.5%) VaR(25%) ES(5%)
AEX GSCITOT
N 22w 25.10%¢ 38 35.20%¢ 22¢ 24.99* 34 35.61%
T 18" 20,23 37 33.45" 19" 20.78" 34 34,32
sk-T 14 16.37 30 29.08 18" 18.20* 31 30.40
PAL 12 15.73 31 29.61° 154 16.74 30 29.89
PAHS 12 15.65 32 29.68 154 16.11 30 29.93
GC 12 14.84 26¢, 26.16 17 17.51 204 27.75
PAST 11 15.02 30, 27.72 17" 18.00 32 31.01
PAST10 15 17.37 35° 31.28° 18" 18.21* 32 31.72
PAST15 11 15.54 30 29.04¢ 17" 17.41 30 30.07
PAST20 114 15.02 30 28.08 16 17.21 20, 29.33
GOLD BRENT

N 17" 19.01* 32 27.65 21" 23,28 34 34.86"
T 9 14.22 32 27.35 18" 19.03* 32 33.72%
sk-T 7 13.33 30 26.39 17 16.90 29 30.36
PAL 7 12.20 28 25.41 14 16.09 28 29.94
PAHS 7 11.86 2% 24.59 144 15.29 28 29.35
GC 7 9.56 214 20.46 14 16.04 214 26.59
PAST Ts 11.22 2% 24.52 16 16.89 30 30.70
PAST10 9 14.64 32 27.60 17" 17.51 32 31.96
PAST15 7 11.68 27 25.14 14 16.24 29 30.11
PAST20 Ta 10.65 254 23.87 144 15.85 284 29.10

This table shows the violations for VaR and the cumulative violations in (24) from N, T, sk-T, PAL, PAHS, PAST
and PAST10/15/20 models. We also report the significance for (i) the VaR backtesting tests in (21) and (22) with
¥; in (23), and (ii) the ES backtesting tests in (25) and (22) with %; in (26). We set 1 = 5 in the Box-Pierce test
statistic (22) for the two conditional backtests. The superscripts w and c indicate significance at five percent level for
the unconditional and conditional backtests, respectively. The subscripts & and 4 indicate the first and second hest
models, respectively, for VaR by considering the magnitude of exceptions through the average of the quadratic losses,

AQL (the lower AQL, the better). The OOS period covers from June 9, 2017 to April 8, 2021. Predictions: 1000.
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Figures

Figure 1: Distribution/tail shapes comparison
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This figure provides a comparison of density and left-tail shapes of PAST15, sk-T and PAHS.
Figure 2: Cumulative distribution and expected shortfall
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This figure plots cdf and ES

of PAST15 and PAST300 (aprox. GC) pdfs.



Figure 3: PAST skewness-kurtosis frontiers
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Skewness-kurtosis frontiers for PAST with v = 9,10, 15,20, and GC or PA Gaussian (v — 00).



Figure 4: Distribution tail comparison sk-T versus PA densities
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This figure plots theoretical quantiles of sk-T versus PA densities for both tails: lower tail (quantiles from 0.001 to
0.05) and upper tail {quantiles from 0.95 to 0.999). There is a total of fifty equally-spaced quantiles in each tail. All
densities have zero mean, unit variance and the same levels of skewness (-0.47) and kurtosis (11).
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Figure 5 Distribution tail fit analysis for standardized returns
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Figure 5 (continued)

Series: GSCITOT

Panel A: lower tail
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Figure 5 (continued)

Series: GOLD

Panel A: lower tail
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Figure 5 (continued)

Series: BRENT

Panel A: lower tail
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This figure provides sk-T. PAL, PAHS and PAST theoretical quantiles versus sample standardized return quantiles for
both distribution tails: lower tail (quantiles from 0.001 to 0.05) and upper tail {quantiles from 0.95 to 0.999). There
is a total of 50 equally-spaced quantiles in each tail. Series: JAP-US, GSCITOT, GOLD and BRENT standardized

returns (7" = 3,500 obs.).
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