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A b s t r a c t

W e present a polynom ial expansion of th e  s tandard ized  S tu den t-t d is tribu tion . O ur density, ob ta ined  
th ro u g h  th e  polynom ial ad ju s ted  m e th o d  in B agna to , P o ti  and  Zoia (2015), is an extension of th e  
G ram -C harlier  density  in Jo n d eau  and  Rockinger (2001). We derive th e  closed-form expressions of th e  
m om ents , th e  d is tr ib u tio n  function  an d  th e  skew ness-kurtosis frontier for a well-defined density. An 
em pirical app lication  is also im plem ented for m odeling heavy-tailed  and  skewed d is tr ib u tio ns for daily 
asset re tu rns. B o th  in-sam ple an d  back testing  analysis show th a t  th is  new density  can be  a good cand ida te  
for risk m anagem ent.

K e y w o r d s :  B acktesting; E x p ec ted  shortfall; K urtosis; O rthogonal polynom ials; Skewness, VaR 

J E L  c la s s if ic a t io n  codes: C l ,  C22, G i l .

* Corresponding author

1

mailto:aleon@ua.es
mailto:t.m.niguez@wmin.ac.uk


1 In trod u ction

T he Gram -Charlier (GC) distribution studied, am ong others, in Corrado and  Su (1996), Jondeau and 

Rockinger (2001, henceforth JR ), Del Brio and  Perote (2012), Schlogl (2013), León and  Moreno (2017) 

and  Zoia, Biffi and Nicolussi (2018) has become popular in financial economics as a generalization of the 

norm al distribution. The GC density is th e  expansion of the  s tandard  norm al density based on orthogonal 

polynom ials.1 It can be seen as a particular case of the  polynomially ad justed  (PA) class of densities of 

Bagnato, Poti and Zoia (2015, henceforth BPZ) and  so, the  GC is also referred to  as th e  PA Gaussian 

(PAG). These authors show a simple theorem  th a t  links the  higher-order m oments (skewness and  kurtosis) 

of a polynomially expanded (parent) distribution to  those of th e  ta rge t distribution. The selected parent 

density tends to  verify the  properties of sym m etry and unim odality and  as a result, the  associated PA density 

presents advantages in term s of theoretical trac tab ility  and  empirical applicability. The two param eters of the 

polynomial expansion become directly the  skewness and  excess kurtosis implied in th e  PA density, indeed. 

The orthogonality of the  polynomials depends on the  selected parent density. For instance, the  Hermite 

polynomials verify th e  orthogonality condition when the  parent density is the  Gaussian. BPZ (2015) also 

consider, as paren t densities, the  standardized forms of bo th  th e  hyperbolic secant and  logistic densities to  

obtain  their corresponding PA densities referred to  as PAHS and  PAL, respectively.2

We present th e  polynomial expansion of the  standardized S tudent-t (T) distribution, or PA Student-t 

(PAST hereafter). The PAST nests the  PAG as the  T  d is tribu tion’s degrees of freedom tend  to  infinity and 

hence, it becomes more flexible th a n  the  la tte r for modeling the  heavy-tailed and  skewed distributions of 

asset returns. It is well known th a t  the  PAG density is only suitable for re tu rn  series w ith m oderate kurtosis. 

The literature  on th is topic has developed very quickly during recent years, see for instance, Wilhelmsson 

(2006); Kom unjer (2007); Bali, Mo and Tang (2008); Zhu and G albraith  (2011); Dendramis, Spungin and 

Tzavalis (2014); Harvey and Sucarrat (2014); Li, Liu and  Ng (2015); Feunou, Jahan-Parvar and Tédongap 

(2016); K um ar and P a til (2016); León and  Ñiguez (2020) and  Thiele (2020). C ontributing to  th is line of 

research, we show th a t  th e  PAST can be a good candidate for statistical analysis of financial re turns and, 

in general, for fitting series w ith  high levels of kurtosis. A nother advantage of using PAST is th a t  it nests 

the  s tandard  norm al (N) which is an advantage in term s of tractableness.

We illustrate the  practical use of th e  PAST p d f th rough  an  application to  modeling the  conditional 

distribution of asset returns. For th a t  purpose, we implement th e  popular conditional variance model by 

G losten-Jagannathan-R unkle (1993, henceforth G JR ). We test the  performance of our model th rough  in- 

sample and  out-of-sample (OOS) analyses. The d a ta  we use comprises three stock indexes, four exchange 

rates, and  th ree com m odity indexes. For comparison purposes, we consider the  following alternative densities: 

bo th  N and  T  as benchm ark densities; PAL, PAHS and GC as alternative PA densities, and the  skewed-t (sk-

1 See Chihara  (1978) for an in troduction to  orthogonal polynomials.

2These PA densities are also known as Gram-Charlier-like (GC-like) expansions. See Nicolussi and Zoia (2020) for the case 

of multivariate  GC-like expansions.
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T) density of Hansen (1994). Models relative forecasting performance is evaluated through  the  backtesting 

m ethods for Value-at-Risk (VaR) and expected shortfall (ES) of Du and  Escanciano (2017).

T he rem ainder of the  paper is structu red  as follows. Section 2 deals w ith the  general framework to  

construct PA densities according to  the  results in BPZ (2015) and  provides some new statistical properties. 

In Section 3 we present the  PAST distribution and  specifically, we obtain  th e  probability density function 

(pdf), cumulative d istribution function (cdf) and  study  the  param etric  properties together w ith  its skewness- 

kurtosis frontier th a t  guarantees th e  non-negativeness of th e  PAST density. Section 4 provides an  empirical 

application to  asset re turns and a performance com parative analysis. Conclusions are given in Section 5. 

T he proofs for some results in Section 3 are collected in the  Appendix.

2 P o ly n o m ia l ad ju sted  d istr ib u tion s

2.1 D en sity  function

Let /  (x, d) denote a parent standardized sym m etric and  unim odal density function such th a t  and  d

is the  param eter vector implied in the  density, then  BPZ (2015) shows th a t  its corresponding PA density is

obtained as

9 (x; s,  9) =  f  (x; ó) ip (x; 6, 9 ) ,  ( 1 )

where 9 =  (93 , Ø4 ) is another param eter vector, and  ip(-) is defined as

ip (x; 6 ,9 )  =  1 +  —  p 3  (x) +  —  p i  ( x ) , (2)
73 74

such th a t  pj  (x) is a polynomial of order j  w ith

P3  (x) =  x 3 — 01X, p 4  (x) =  x 4 — 02X2 +  0 3 , (3)

and
m 6 - m 4 m 6 -

ax =  m 4, a 2  =  ----------— , o3 =  ----------—, (4)
777-4 — J- 777-4 — J-

where =  E f  [xfe] denotes the  k- th  non-central m om ent of x w ith  /  (x, 6) as pdf. Note th a t  (S) ,

then  Oj =  ai (ó). B oth  polynomials in (3) w ith coefficients in (4) verify th e  orthogonality condition, i.e. 

E f  [p3 (x )p 4 (x)] =  0, and E f  \pj (x)] =  0. Finally, th e  coefficient 7  - =  7  - (<5) is the  squared norm  associated 

to  pj  (x), i.e. 7 j  =  E f  [p2 (x)] =  E f  [x^pj (x )] , then

7 3  (S) =  m 6  -  axm4, 7 4 (S) =  m 8  -  a 2 m 6  +  a 3 m 4. (5)

2.2 N on-central m om ents

The selected parent density /  (x; ó) m ust verify th a t  its moments of all order exist or, a t least, those necessary 

to  com pute a¿ in (4). Since m  1 =  0, m 2  =  1 and  mk =  0 for k odd due to  the  sym m etry of / ( • ) ,  then
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th e  first non-central m om ents from (1), denoted as rhf. =  E g [xfe] , are given by rh\ =  0, rh<i =  1, m 3 =  93

and =  »714 +  Ø4 . Thus, Ø3 and Ø4 become directly the  skewness and excess kurtosis of g ( x ; d , 9 ) ,  and

ip(x; d, 9)  is interpreted  as a polynomial shape-adapter function reshaping /  (x; <5) for skewness via Ø3 and 

excess kurtosis via Ø4 . Note th a t  Ef  [xfep 4 (x)] =  0 if k is odd, while E f  [xfep 3 (x)] =  0 if k is even, then  the 

general expression of for k £  N is given by

^  g) =  Í TOfc (0 ) +  e± l l l E f [xkPi  (*)] > k even ^

I  Ø373  XE f [xkp 3 (x)] , k odd.

In short, only depends on the  skewness 93 (excess kurtosis Ø4 ) when k is odd (even).

2.3 C um ulative d istr ibu tion  function  and E x p ected  shortfall

Consider the  cumulative d istribution function or cdf G  (x; 5, 9) =  g {u; 6, 9) du, then

G ( x ; S , 6 )  =  ^ 2  Uj £j (x;S)  = ^ 2  Uj f  uJf (u- ,6)du,  (7)
3 3 J  _  QQ

where

W0  =  1 +  0474 1 a 3, W! =  - Ø 3 7 3  l o i ,  ^ 2  =  - 0 4 7 4  1 ° 2 J w3 =  0373 1; ^ i  = 9 d 4 1. ( 8 )

Note th a t  £0 (x; S) =  F  (x; <5) is the  cdf of /  (x; <5), and £ • (x; <5) for j  >  1 can be expressed in term s of

one-sided trunca ted  j - th  moments, i.e. £ • (x; 6) =  F  (x; <5) E f t \yP \u <  x] with /* (w; 6) =  f  (w; <5) /_F (x; <5) 

as pdf.

T he expected shortfall, or ES, corresponding to  the  random  variable x with g (•) as the  pdf in (1) is easily 

obtained as
1 f Xa v-^5

Eg [x \x <  x a ] =  -  / xg  (x; 6,9 )  dx =  > (xQ; 5 ) , (9)
«  J-oo ^ » = 1

such th a t  x Q =  G*- 1  (a) is the  a-quantile, or VaR, i.e. G (a) =  inf {x |G(x, 0) >  a}  with G'(-) as the  cdf 

in (7), and

1 f ,  , 0 4 « 3 \  03«1 04«2 03 04 /-.„n
H 7i =  — M  -I-----------------, IZ72 = ------------- , T&3 = -------------- , H74 =   , H75 =  -------- . (1 U )

a  V 74 )  « 7 3  « 7 4  « 7 3  « 7 4

Let y  =  fi +  a x  be a linear transform ation of x where /i £ M and  cr >  0 denote, respectively, the  location and 

scale param eters. It is verified th a t  E  [y \y <  y a ] =  ¡ 1  +  a E g [x \x <  x a ] w ith y a =  /i +  crxa .

2.4 P o sit iv ity  restrictions

For a correct PA density in (1), we need to  ensure th e  positivity of ip (x; d, 9). There are two different m ethods. 

F irst, the  one suggested by G allant and  Nychka (1987) consisting on squaring ip (x; 5, 9 ) . 3  However, by doing 

so, one loses the  in terpretation  of the  param eters 9j in (2 ), as the  skewness and  excess kurtosis, since we 

would face a new pdf: h (x; 8 , 9) =  A/  (x; 6 ) ip2 (x; 6 , 9) w ith A- 1  =  h (x; 8 ,9 )  dx =  1 +  Ø373  1 +  0474  1-

3See León, Mencía and Sentana (2009) for the parametric  properties of the  Gallant-Nychka density.
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Second, the  m ethod suggested in JR  (2001) for building th e  domain, or restricted  param eter set, A, over 

which ip (x; 6 ,9 )  > 0  for every x. In th is study, we follow th e  la tte r approach and  leave the  former for 

further research. So, we are interested in th e  boundary of A by using the  analytical geometry concept of 

the  envelope. For a given x , the  skewness-kurtosis frontier (SKF) th a t  guarantees positivity m ust satisfy the

following equation system: ip (x; 6 ,9 )  = 0  and dip I  dx  =  0. As a result, we obtain  the  SKF expressions for

6 3 and d4  as functions of x, which are given by

8 3  ( x ;  6) =  - 7 3  6 4  i a  ’ 0 4  ( x ;  <S) =  7 4  3 X  ^  , ( 1 1 )
X  ¡J ¿̂ X P 2 X  4- Po ¡-'4-3' H- h'2'^' P o

where /34 =  a 2  — 3oi, fi2  =  0102  — 3 o3 and  /30 =  0 1 0 3 . In short, the  PA density in (1) will be subject to  

8  £ A  ( 6 )  such th a t  any point in the  frontier of A ( 6 )  is obtained according to  (11). In the  following section, 

we use A ( 6 )  =  A (v) where v  denotes the  degrees of freedom for the  standardized S tudent-t as the  parent 

density.

3 T h e P A S T  d istr ib u tion

3.1 D en sity  function

The standardized S tudent-t density, or T  density, is given by

1 Í r2 \~(v+1^ 2
f ( x ; v )  =  --------------- —77:---------------------------  ( 1  + -----------  ( 1 2 )

(v -  2) 7 B  ( v / 2 , 1/2) V V - 2 J

where B  (a, b) =  f*  u0 - 1  (1 — u)b 1 du w ith a, b >  0 is th e  ordinary b e ta  function. The non-central moments 

only exist for 0  <  j  <  v  verifying th a t  m \  =  0 , m 2 =  1 , m-2fe+i =  0  for j  =  2 k +  1 , and

m 2 k (v) =  ( v - 2 )k H  "= 1 ( ^ £ ¿ )  (13)

for j  =  2k. The PAST pdf is given by (1), then  g (x; v,Q) =  f  (x; v) ip (x; v, 9) w ith /  (•) as the  paren t density 

in (12) and  ip (•) is the  polynomial function in (2) subject to  v  >  8 so as to  obtain  7  • (y) in (5). For instance, 

if we take v =  10, then  a¿ in (4) and  7  - are given by a± =  4, a 2  =  12, 03 =  8 , 73  =  24 and 7 4  =  672.

For v  —>■ 0 0 , we obtain  the  GC pdf: g a c  (*! 9) =  <f> (x) ipGC(x; 9) where <f> (x) is th e  s tandard  norm al pdf 

and ipGC(x; 9) =  1 +  ^ H ^ ix )  +  ^ H 4 {x) w ith Hj (x) as the  j -th  (orthogonal) Herm ite polynomial. The first 

four Herm ite polynomials are: Hi (x) =  x, H 2  (x) =  x 2 — 1, H% (x) =  x 3 — 3x and H 4  (x) =  x 4 — 6x 2 +  3.

Figure 1 provides an  illustration of the  PAST density w ith v =  15 (PAST15) as it compares to  the  sk-T 

and PAHS, plots of zoomed lower tails are also provided. All these densities have zero mean, un it variance 

and the  same levels of skewness (—0.47) and  kurtosis (11). More details abou t these la tte r values and the 

densities’ param eters can be seen below in section 3.3.

[F ig u re  1]
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3.2 C d f and ES

T he PAST cdf is given by G  (x; v, 9) in (7) where ^  (x; v) =  J^  vP f  (w; v) du w ith /  (•) as the  p d f in (12). 

Next, we obtain  the  corresponding expressions of £ • (x;v).

C o ro l la ry  1. Let  £0 (x;t>) =  F  ( x ; v )  be the cdf of the standardized S T  distribution, then

where sgn  (x) =  x /  \x\ for  x / 0  (and 0, for x =  0), r¡ (x) =  x 2 / ( x 2 +  v — 2), Ix (a,b) =  B  (x; a,b) / B  (a, b)

P ro o f .  See Appendix. ■

Hence, the  cdf G  (x; v ,  9) in (7) for PAST (henceforth, G PAs t  ( x ;  v ,  9))  is com puted given the  equations 

(14), (15) and  (16), and the  expressions of ujj in (8 ). For v  —>■ oo, we obtain  the  GC cdf: G q c  (x ;9) =

Figure 2 showcases the  cdf and ES of PAST when v =  15 (PAST15) and v =  300 (PAST300), and 

bo th  w ith  zero mean, unit variance, skewness 6 3 =  —0.5 and excess kurtosis Ø4 =  2.4545. The kurtosis of 

the  parent T  pdf, according to  (13) for k =  2, is 3.5455 for the  case of v =  15 and  3.0121 for v =  300. 

Note th a t  the  la tte r case converges to  the  paren t N p d f and  hence, to  th e  GC pdf w ith the  same above 

values of 6 3 and  Ø4 . In short, the  skewness is the  same for bo th  PAST pdfs, and  the  kurtosis is 6 for 

PAST15 and  5.46 for PAST300. The plo tted  ES values for bo th  PAST pdfs are com puted according to  the 

equations (9), (15), (16) and  the  expressions of v j¿ in (10). The ES values are displayed for the  range —4 

to  - 3  where G PAST ( - 3 ;  15, G) =  0.0096, G PAST ( - 3 ;  300, G) =  0.0125, G PAST ( - 4 ;  15, 6 ) =  0.0029, and 

G P A s t  (—4; 300, 9) =  0.001 with 9 =  (—0.5, 2.4545). We find th a t  th e  ES (dashed) line for PAST300 is above 

th e  PAST15 one, which means th a t  expected losses (i.e., ES with a negative sign) are greater the  lower is

4See Proposition 2 in León and Moreno (2017) where the  GC cdf is obtained as the  definite integral of the GC pdf over 

(—oo,x]. Note th a t  the  Hermite polynomials are expressed as orthonormal, instead of orthogonal, ones.

F  (x; v) =  1/2 (1 +  sgn (x) / ?)(x) (1/2, v /2 ) )  , (14)

is the regularized beta function, and B  (x; o, b) =  f j  ua 1 (1 — u)b 1 du is the incomplete beta function. 

P ro o f .  See Appendix. ■

P r o p o s i t io n  1. The closed-form expression of  £ • (x;v) when j  is an even number is obtained as

(15)

with rri2 k (v) in (13). 

P ro o f .  See Appendix. ■

P r o p o s i t io n  2. The closed-form expression of  £ • (x;v) when j  is an odd number is obtained as

2fc+l (16)

H 3  (x) <f) (x) where $  (x) is the  s tandard  norm al cdf.
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th e  param eter v. So, higher kurtosis levels for the  same skewness levels lead to  higher expected losses when 

we move deep inside th e  left tail.

[F ig u re  2]

3.3 Skew ness-kurtosis frontier

Figure 3 exhibits several frontiers of A (y) by using bo th  equations in (11) for the  PAST pdf with 

v £  {9, 10, 15, 20} and  v  —>■ oo for th e  PA Gaussian, or GC, pdf. More precisely, the  frontiers are in 

term s of kurtosis instead of excess kurtosis. In short, the  points of the  skewness-kurtosis frontier (SKF) 

are given by (s/e, ku) =  (93 , »714 (y) +  Ø4 ) w ith »714 in (13). Note th a t  the  SKFs are sym m etric w ith respect 

to  the  x-axis. It is shown th a t  th e  lower v, the  higher ku and  th e  lower sk, so the  P A ST ’s SKF enlarges 

significantly the  G C ’s. For instance, any point from th e  frontier of A (0 0 ), or GC frontier, verifies th a t  

3 <  ku <  7, |s/e| <  1.0493, and the  maxim um  size for sk  is reached for Ø4 =  2.4508. The equations in (11) 

for v  —>■ 00  are: 93 (x) =  —24ÍÍ3 (x) / q  (x) and 94 (x) =  72Ü2 (x) / q  (x) where q (x) =  x 6 — 3x4 +  9x2 +  9. See 

also JR  (2001).

[F ig u re  3]

In order to  illustrate the  effect th a t  the  PAST envelope for different v  has on the  shape of the  distribution, 

Figure 4 plots theoretical quantiles from zero m ean and  unit variance densities of th e  sk-T against PAL, 

PAHS and PAST w ith fixed v  =  10, 15 (PAST10 and PAST 15, respectively). We showcase the  comparison 

for bo th  distribution tails: lower ta il (quantiles from 0.001 to  0.05) and  upper tail (quantiles from 0.95 to  

0.999). Specifically, we employ a to ta l of fifty equally-spaced quantiles in each tail. The PA d istribu tions’ 

param eters are fine-tuned so th a t  their values of sk  and ku m atch those of th e  sk-T. The specific higher-order 

m om ent values are sko =  —0.4672 and kuo =  10.9588 (rather similar to  those empirical values exhibited 

below in Table 1; see also Figure 1 for an  illustration of these densities) . 5 This means th a t  Ø3 =  —0.4672 

for the  three PA distributions, whilst 94 =  6.7588 for PAL (i.e., »714 =  4.2 for the  parent logistic pdf) and 

94 =  5.9588 for PAHS (i.e., »714 =  5 for th e  parent hyperbolic secant pdf). Note th a t  the  PAST, contrary to  

PAL and  PAHS, can provide the  level of kuo under different combinations of v  and  Ø4 as exhibited in Figure 

3. We consider, for example, only two cases, namely, Ø4 =  6.9588 for PAST w ith v =  10 (i.e., »714 =  4 for 

the  paren t T  pdf w ith v =  10), and  Ø4 =  7.4133 for PAST w ith v =  15 (i.e., »714 =  3.5455 for the  parent 

T  with v =  15). Note th a t  PAST10 becomes more flexible to  capture higher kurtosis levels th a n  PAST15, 

when bo th  are restricted to  the  same skewness level of —0.47, as displayed in Figure 3. Several conclusions 

are suggested from Figure 4. F irst, we find th a t  PAST10 provides much closer quantiles to  those of th e  sk-T 

th an  PAST15 for bo th  tails. T h a t is, PAST10 quantiles are closer to  the  45-degree dashed line. Second, 

PAL and  PAHS quantiles are very similar for the  lower tail, whilst PAHS quantiles are nearer to  sk-T for 

the  upper tail. Third, it is verified th a t  more significant differences am ong PA quantiles (respecting sk-T

5Both  sko and kuo are obtained by plugging the  sk-T param eters  of A =  —0.1 (param eter  controlling skewness) and v =  4.8 

(degrees of freedom) into the skewness and kurtosis equations of the  sk-T pdf in JR  (2003).
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ones) can be seen a t the  end of bo th  tails. Finally, PAL and PAST15 seem to  provide similar quantiles for 

b o th  tails.

[F ig u re  4]

3.4 C onditional d istr ibu tion  o f  asset returns

Let r t be the  asset re tu rn  process characterized by the  sequence of conditional densities h (rt \It-i', Y ), 

where I t - i  denotes the  inform ation set available prior to  th e  realization of r t , T  =  (/i, c , t>,0) is th e  vector 

of unknown param eters w ith /i as the  constant m ean of r t , c is the  subset characterizing the  conditional 

variance of r t , and  (y , 9) characterize th e  shape of the  PAST distribution innovations, z t . Thus, the  asset 

re tu rn  model is r t =  /i +  et w ith  e t =  crt zt such th a t  cr2 =  E  [e2 \ I t - i  \ is the  G JR  model:

such th a t  o?o >  0, ¡3 >  0, a >  0, a^ >  0, and  consider e f  =  m a x (e t ,0), =  m in (e t ,0). Henceforth, the 

above process for r t is referred to  as G JR -PA ST model. Note th a t  the  G JR  nests the  GARCH when 

a f  =  . Following He and  Terasvirta  (1999), we can rewrite the  G JR  as cr2 =  a¡o +  ctcr2 _ 1 with

ct =  (3 +  a f  (-ẑ ) 2 +  (z~tl x) 2- If we assume (17) to  be covariance stationary, then  th e  unconditional

variance of et is E  {ef) =  E  (erf) =  a¡o (1 — E  (ct)) 1 such th a t  E  (ct) =  ¡3 +  +  a~f) /2  <  1. Since

E [ r t \ I t - i  ] =  /U, then  E  (ef) is the  unconditional variance of r t . Let lt =  In h (rt \It-i', T ) be the  log- 

likelihood (LL) function for a particu lar observation r t , then

h =  In (cr2) -  i l n ( u -  2) -  In B  ^  In ( \  +  +  In ip{zt ; v ,9 ) ,  (18)

where z t =  (r t — ¡ i ) /a t . Finally, alternative distributions for z t are also implemented here for a robustness 

analysis. Thus, z t ~  i.i.d. D  (0,1) such th a t  D  (0, 1) denotes a specific density (N, T, sk-T, GC, PAST, PAHS 

and PAL) w ith zero m ean and  un it variance, and  i f  as the  corresponding LL per observation. Specifically, the 

expression of i f  w ith a general PA density (henceforth, l f A) under bo th  constant m ean and  G JR  structure  

in (17) is easily obtained as

l f A =  — ̂  In (cr2) + \ n f ( z t \ 8 ) + \ n i p ( z t , v , 9 ) ,  (19)

w ith z t =  (r t — f i ) /a t . From now on, lt in (18) will be denoted as l f AST. We employ for PA densities 

the  m ethod of constrained maxim um  likelihood (CML) so as to  guarantee the  positivity of tp (•) in (19). 

Indeed, we maximize LL  (T) =  Ylt= i  subject to  T (v , 9) <  0, which denotes a system of two nonlinear 

inequations as functions of (v , 9) according to  (30) and  (31) in BPZ (2015). Note th a t  for each value of v , 

bo th  r  (v, 9) <  0 and  A (v ) in section 2.4 become the  same.
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4 E m pirical ap p lication

First, we s ta rt w ith th e  descriptive statistics analysis of the  daily re tu rn  series. Second, we estim ate the  re tu rn  

unconditional d istribution for each series under different densities. Indeed, in th is stage we are interested in 

th e  PAST relative performance for fitting th e  distribution tails. Third, we analyze the  fit of the  conditional 

d istribution considering a model from the  GARCH family under different densities for the  standardized 

re tu rn  series. Finally, we implement an  exhaustive backtesting procedure to  compare the  d istribu tions’ OOS 

performance for predicting VaR and ES.

4.1 D a ta  and descriptive sta tistics

We use the  log re turns com puted as r t =  100  In (Pt / P t - i )  from samples of daily closing prices {Pt}J= i of 

(1) exchange rates (FX): yen to  euro (JA P-EU ), yen to  dollar (JAP-US), dollar to  B ritish pound (US-UK) 

and Swiss franc to  dollar (SWI-US); (2) stock indexes: F T S E  100, CAC 40 and  AEX; (3) Com m odity 

indices: Goldm an Sachs S tandard  & Poors (S&P) com m odity index (G SC ITO T), G SG C T O T  S&P Gold 

index (GOLD) and G SB R SPT S&P Brent Crude Oil (BREN T). The data , downloaded from D atastream , 

cover the  period from December 9, 2007 to  April 4, 2021 for a to ta l of T  =  3, 500 observations. Table 1 

provides th e  re tu rn  descriptive statistics. All series present negative skewness ranging from -0.23 (CAC) 

to  -1.21 (SWI-US), and high kurtosis ranging from 8.17 (JAP-US) to  41.33 (SWI-US). The non-reported 

Jarque-Bera tes t null of norm ality is rejected in all cases m otivating the  use of alternative distributions to  

the  Gaussian for modeling returns.

[Table 1]

4.2 U nconditional d istr ibu tion  estim ation

We showcase th e  estim ation of the  models for th e  re tu rn  series standardized by their sample means and 

standard  deviations. Table 2 presents the  param eter estim ates of th e  PAST density as well as alternative 

pdfs considered for robustness comparison purposes. Besides, to  assess the  stability  in the  PAST estim ation, 

we also consider PAST w ith fixed v  =  10,15, 20 (i.e., PA ST10/15/20). The estim ation is carried out using 

the  ML m ethod for bo th  T  and  sk-T densities, and  CML for all PA densities.

T he param eter estim ates 6 3 , Ø4 (PA densities), A (sk-T) and  v  (T, sk-T and PAST) are all statistically  

significant for stock indices, G SCITO T, GOLD and B R EN T series, indicating skewness and leptokurtosis. 

For FX  returns the  results are mixed: (1) b o th  v  and Ø4 are statistically  significant for all series indicating 

leptokurtosis; (2) the  sk-T asym m etry param eter, A, and 6 3 from the  rest of models are not statistically  

significant for JAP-US indicating th a t  the  unconditional distribution of this series is symmetric; (3) for 

JA P-E U  and  US-UK the  param eter estim ates indicate milder or no skewness. In particular, for JA P-EU , 

th e  A param eter is significant a t 5 per cent; and 6 3 is significant a t 5 per cent (GC), 10 per cent (PAST, 

PAST15 and PAST20) or not significant (PAL, PAHS, PAST10). For US-UK series, A is significant a t 5 per
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cent level, bu t 6 3 is not a t any reasonable significance level in any of the  other densities. (4) Finally, for 

SWI-US, A and 6 3 are bo th  statistically  significant a t 5 per cent level, except in PAHS and PAST.

[Table 2]

For the  goodness-of-fit (GoF) comparison of nested pdfs, we apply the  Akaike Inform ation Criterion 

(AIC). We find th a t  sk-T performs b e tte r th a n  T  for all series except for JAP-US, for which the  A param eter is 

not significant indicating th a t  the  d istribution is symmetric. This finding shows the  im portance of capturing 

skewness. The three-param eter PAST log-likelihood values (not reported) are always larger th a n  those of 

PAST w ith restricted u, bu t differences are very small in m ost cases to  tu rn  into b e tte r fit according to  the 

AIC. Only for SWI-US and  AEX, the  th ree-param eter PAST provides superior fit. The PAST20 only does it 

b e tte r  for JA P-E U  while the  PAST10 for US-UK. For the  rest of the  six series the  PAST15 performs better.

Table 3 analyzes th e  behavior of bo th  tails under the  alternative distributions fitted to  the  standardized 

re tu rn  series, w ith param eters in Table 2, by counting those observations th a t  fall outside th e  specific interval 

[—3, 3] .6 Note th a t  under the  Normal density, the  probability of observations outside the  previous interval is 

0.27%, which is a t least three tim es lower th a n  the  one observed in all series. Each cell in the  tab le  exhibits 

two values: the  ’lower 7 or ’left’ tail corresponding to  the  num ber of observations out of T  =  3, 500 lower than  

—3, and the  ’u p p e r7 or ’righ t’ ta il (in parentheses) as the  num ber of observations higher th a n  3. The first 

row w ith title  ’em pirical’ shows the  same inform ation respecting the  re tu rn  series empirical distributions. 

We obtain  the  following results. F irst, all series exhibit longer left tails th a n  right ones according to  all fitted 

skewed densities such as sk-T and PA ones. This empirical evidence is in line w ith the  negative skewness 

values displayed in Table 1 for all series. Second, th e  asym m etry effect on th e  d istribution tail behavior can 

be seen if we compare the  sym m etric T  ( tha t is more suitable th an  N due to  the  high kurtosis levels shown 

in Table 1) with the  o ther densities. All series show longer left tails under bo th  sk-T and PA because of the 

negative skewness. The only exceptions correspond to  JA P-E U  and JAP-US under the  PAST10 w ith a to ta l 

of observations of 21 and 20, respectively. These num bers are lower th a n  22 under T  in bo th  series. Third, 

th e  same previous analysis applied to  the  right ta il concludes th a t  in m ost cases, as expected, there  are now 

more observations under the  T  distribution. Note th a t  m ost exceptions occur under the  PAST20 th a t  shows 

longer right tails th a n  T. Fourth, if we compare sk-T and  PAST we see th a t  PAST exhibit longer tails th an  

sk-T in m ost cases, except for SWI-US and, to  a lesser extent, for US-UK. Fifth, the  sk-T underestim ates 

b o th  tails of the  empirical d istribution in seven cases out of the  ten. Note, for instance, the  SWI-US case 

where sk-T (also PAL, PAHS and  GC) overestimates bo th  empirical tails, nevertheless PAST only does it 

for the  left tail.

[Table 3]

Finally, a more in-depth analysis of the  tail behavior, respecting the  previous one in Table 3, is displayed 

in Figure 5. This figure presents a comparison of the  theoretical quantiles of a density w ith the  sample

6 See Tolikas (2014) for a ra ther similar analysis.
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standardized re tu rns ones for bo th  distribution tails. The tails are m easured as the  range of quantiles from 

0.001 to  0.05 for the  left tail, and  0.95 to  0.999 for th e  right tail. Specifically, a to ta l of fifty equally-spaced 

quantiles in each tail. To shorten, we only select four densities as the  m ost representative ones: sk-T, PAL, 

PAHS and  PAST. As an example, this figure only displays four re tu rn  series: JAP-US, G SCITO T, GOLD 

and B REN T. Each series analysis is exhibited in bo th  panel A (lower tail) and  panel B (upper tail), where 

each panel contains four graphs (each for a different density). F irst, the  results do not throw  a clear-cut 

b e tte r  model between sk-T and  PAST for bo th  tails in m ost series except for JAP-US, where sk-T seems 

to  fit the  lower or left tail b e tte r th an  PAST while a similar fit occurs for the  upper or right tail. Second, 

PAL, PAHS and PAST make a similar performance in most cases. For B REN T, the  PAST performs slightly 

b e tte r  th a n  PAL and  PAHS for the  left tail.

[F igure 5]

4.3 C onditional d istr ibu tion  estim ation

Next, we obtain  the  estim ation of models for the  re tu rn  series conditional distribution. Table 4 presents 

the  param eter estim ates of the  PAST density with the  G JR  conditional variance (G JR-PA ST). F irst, the 

mean param eter, /i, is not statistically  significant for any re tu rn  series. Second, the  G JR  equation param eter 

estim ates indicate presence of persistence in the  conditional variance as well as asym m etric response of 

volatility to  positive and negative shocks. These estim ates are very similar to  the  quasi-ML estim ates 

(QMLE), so they are not reported  to  save space. Third, the  6 3 param eter estim ates show presence 

of negative skewness, which is statistically  significant a t least a t 5 per cent level for all series except 

for US-UK. Fourth, th e  estim ates for Ø4 and  v  indicate excess kurtosis in the  distribution of all re tu rn  

series. Fifth, the  unconditional s tandard  deviations (std) implied by the  G JR -PA ST model for returns, i.e. 

a  =  sJoiqI (1 - E ( c t )), are very close to  the  sample ones. For instance, the  estim ation of a  is equal to  0.62 

and the  sample s td  is 0.63 for JAP-US.

[Table 4]

Table 5 provides the  param eter estim ates for the  alternative densities. As for the  PAST, the  G JR  

param eter estim ates in all cases are very similar to  th e  non-reported QM LE ones. The param eter estim ates 

show th a t  after accounting for GARCH effects there  is still statistically  significant skewness and kurtosis 

in all cases. The discussion of the  results is close to  th a t  of Table 2. In regard to  the  relative GoF, the 

sk-T performs b e tte r th a n  the  T  for all series except for th e  JAP-US as for the  unconditional distribution 

estim ation. Among th e  different PAST models, we conclude the  following. F irst, only for JA P-E U  and 

US-UK, the  three-param eter PAST provides superior fit. Second, PAST10 does it b e tte r  for SWIS-US and 

BR EN T series, while PAST20 for F T S E  and AEX. Finally, PAST15 performs b e tte r  for the  rem aining four 

series.

[Table 5]
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Summing up, the  analysis in th is section shows th a t  the  PAST densities provide improvements in some 

cases w ith  respect to  th e  alternative densities considered. A cross comparison of all models, including 

non-nested ones, as regards forecasting VaR and  ES is performed through  a backtesting analysis next.

4.4  B ack testin g  analysis

We take the  first T - N  observations for th e  first in-sample window and an  OOS period of length N  =  1,000 

using a daily constant-sized rolling window. We adopt a two-stage estim ation m ethod to  each window as can 

be seen, am ong others, in Zhu and  G albraith  (2011). The m ean and  G JR  param eters are estim ated by QML, 

then  each density param eters are obtained by ML using the  standardized residuals, zt , from the  first stage. 

We evaluate the  forecasting performance for th e  re tu rn s’ lower tail th a t  is, for instance, of particu lar interest 

to  pension fund m anagers concerned w ith the  probabilities of losing a large p a rt of investment portfolio 

value in a single day. We study  the  OOS performance, th rough VaR and  ES backtesting, under alternative 

d istributions of z t .

4 .4 .1  B a c k te s t in g  te s ts

Consider a nominal coverage ra te  a , the  one-day conditional VaR is given by

V a R t (a?) =  kqj +  H\ttQ  1 (a?) , (2 0 )

where Ko,t =  M +  a a t and =  bat . Let ht (a) =  X ( r t <  V a R t (a))  denote the  violation or h it variable. 

We are interested in checking w hether the  centered violations {h t (a) — follow a m artingale difference

sequence (MDS), which implies zero m ean property  and  no correlation. Testing MDS leads to  b o th  the 

unconditional backtest (or unconditional coverage test) and  conditional backtest (or independence test). 

T he null hypothesis for the  unconditional backtest, H q u  : E  [ht (a)\ =  a , corresponds to  the  well-known test 

sta tistics by Kupiec (1995):

/ x V Ñ  (h(a) — a?) a 
UVaR (oO =  j  J  0 ,1 ) ,  (21)

where h(a)  is the  sample average of <̂ ht (c*) j  such th a t  ht (a ) =  X (ut <  a)  w ith ut as the  estim ation of 

ut =  F  (rt | / ( - i )  where F  (• \ I t - i )  denotes th e  conditional cdf for re turns according to  the  pdf of z t . For 

testing  the  conditional backtest null hypothesis, Ho c  '■ E  [ht (a ) — a  | i t_ i ]  =  0 , we implement the  approach 

by Escanciano and  Olmo (2010) based on the  Box-Pierce tes t statistic:

m

C ( m )  =  n J 2 p 23 “ x l ,  (22)
i = i

which is asym ptotically a chi-square distribution w ith m  degrees of freedom such th a t  pj is the  j - th  lag of 

th e  sample autocorrelation defined as p- =  7 ?/ 7 0 where
1 j '

1 N
T? =  -  a )  -  a )  ■ (23)

3  t= i+j
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T he unconditional and conditional ES backtests are the  analogues to  the  above VaR ones. Du and 

Escanciano (2017) provide the  ES backtest based on the  notion of cumulative violations (CV), which 

accum ulates the  violations across the  tail d istribution and can be rew ritten  as

f a 1
7it (a) =  /  ht (u) du =  — (a — ut ) I  (ut <  a ) . (24)

Jo a

Note th a t  the  equation (24) measures the  distance of the  re turns from the  corresponding a-quantile  in (20) 

during the  violations. I t is shown th a t  { H t (a) — a  12 } ^  follows the  MDS property. The null hypothesis for 

the  unconditional backtest is H qu  : E  [Tit (a)] =  a / 2 and the  related tes t statistics is given by

0 ,1 ) ,  (25)

where Ti(a) is the  m ean of < Tit (c>0 \ such th a t  TLt (cO =  — (a: — ut ) I  (ut <  a).  The null for the  conditional
I J t=l “

backtest hypothesis is Ho c  '■ E  | / t - i ]  =  a / 2  w ith  th e  same tes t statistics in (2 2 ) such th a t

1 N
f i t  (“ ) -  f )  ( f i t - ,  («) -  I )  • (26)

J t = i + j

4 .4 .2  B a c k te s t in g  resu lts

Following Deng and  Qiu (2021), and references therein, a larger coverage level a  for ES th a n  VaR is selected

to  compare bo th  risk measures. Specifically, we consider the  following rule-of-thumb: the  coverage level for

ES is twice, or close to  twice, th a n  th a t  of VaR. We focus o n a  =  2.5% and a  =  5% for ES, corresponding 

roughly to  a  =  1% and  a  =  2.5% for VaR in a s tandard  norm al d is tribu tion .7 Table 6 shows the  results of 

th e  descriptive analysis of violations. F irst, all models perform b e tte r  th a n  th e  Normal for bo th  V aR(l% ) 

and  ES(2.5%). Respecting VaR(2.5%) and  ES(5%), there  are very few exceptions for which th e  performance 

of some models is worse th a n  th a t  of the  Normal, and  prim arily for the  FX  series: JAP-US and SWI-US. 

Second, most skewed density models do not perform worse th a n  the  T, w ith  some exceptions mainly again 

found in the  FX  series. Indeed, there  are no exceptions for any of the  stock index series. Third, the  GC (or 

PAST when v  —>■ oo) works b e tte r th a n  sk-T for m ost series and  coverage levels. Fourth, the  PAST works 

similarly or b e tte r th a n  the  sk-T for stock and  com m odity indexes, whilst sk-T does it b e tte r  th a n  PAST 

for the  FX  series. Fifth, PAHS performs b e tte r th a n  PAL for m ost series. Sixth, am ong th e  tw o-param eter 

PAST (i.e., PA ST10/15/20) densities, PAST20 makes the  best performance. Furtherm ore, PAST20 beats

sk-T for all series (and coverage levels) except for US-UK. This result is in line w ith the  already mentioned

very good performance of GC since bo th  densities tend  to  resemble each other for higher values of u, see 

section 3.2

Table 6 also reports the  significance a t five percent level of b o th  unconditional and  conditional backtesting 

for VaR and  ES (see superscripts u and  c for the  cases of rejecting th e  null hypotheses). For the  unconditional

^For a discussion about the correspondence between coverage levels of ES and VaR, see Kerkhof and Melenberg (2004).

Ue s  =
V N ( H ( a )  -  f

Ja(h ~ f)
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tests, th e  null is not accepted for m ost stock and  com m odity indexes under bo th  N and T, whilst there  is no 

rejection for FX  series for these sym m etric distributions. Respecting the  conditional tests, there  are m any 

more rejections th an  in the  case of unconditional ones independently of the  densities. For the  series JA P-EU , 

JAP-US, GOLD and  B R EN T there  are hardly any rejections of the  conditional null.

Finally, the  previous VaR results are reinforced by th e  m agnitude of exceptions for VaR m easured through 

th e  quadratic  loss (QL) function, see López (1999). The QL incorporates the  exception m agnitude and  so, 

it provides useful inform ation to  discrim inate am ong similar models according to  the  unconditional coverage 

test, i.e. Q L t (a) =  (rt — V a R t (a ) ) 2  x ht (a).  We are interested in the  sample average of QL (AQL) for the

OOS period of N  observations. Table 6 only exhibits b o th  the  first and  second best models according to  

th e  AQL measure and  denoted, respectively, w ith  the  symbols Jit and ♦ .  8 F irst, we find th a t  the  Normal 

renders the  highest AQL values. Second, for SWI-US, CAC, AEX, GOLD and  B R EN T either PAST or 

PAST20 provides th e  lowest AQL a t 1%, while PAHS performs b e tte r for US-UK, F T S E  and  G SC ITO T at 

1%. Third, GC provides the  lowest AQL in m ost cases a t 2.5%. Note th a t  th e  second best model is provided 

by the  PAST family, except for PAST10, in m ost series a t bo th  1% and  2.5% levels.

[Table 6]

5 C onclu sions

We present a polynomial expansion of the  standardized S tudent-t distribution, referred to  as PAST. The 

density belongs to  th e  polynomially adjusted  (PA) class of B agnato  et al. (2015), and it is a generalization 

of th e  G ram -Charlier (GC) density in Jondeau and  Rockinger (2001). The two param eters in the  polynomial 

expansion are by construction the  skewness and  excess kurtosis of th is new density. We derive its param etric 

properties including the  moments, the  distribution function and  the  skewness and  kurtosis frontiers (SKF) 

for which the  density is well-defined. We show how the  PA S T ’s SKF enlarges th a t  of the  GC.

T he performance of the  PAST is tested  through  an  empirical application to  different types of asset returns: 

exchange rates, stock indexes and  commodities. We consider several d istributions for comparison purposes, 

including: Normal, Student-t, H ansen’s skewed T, GC, PA logistic and PA hyperbolic secant. For robustness 

checks we also consider tw o-param eter PAST densities where the  degrees of freedom are fixed to  10, 15 and 

20. We find th a t  th e  estim ated PAST features flexibility to  capture  bo th  skewness and  high levels of kurtosis 

for bo th  th e  unconditional and  conditional d istributions of the  re tu rn  series. Our in-depth in-sample analysis 

shows th a t  th e  PAST density is capable to  provide improvements respecting the  alternative distributions. 

A more general analysis based on backtesting VaR and  ES shows th a t  the  PAST performance can beat the 

alternative densities.

8To save space, the AQL values and all previous backtesting test statistics are not reported here, bu t  they are available upon 

request.
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A p p en d ix

P r o o f  o f  C oro llary  1. The cdf of the  standardized ST d istribution in (14) is obtained by using previously 

th e  integral of a sym m etric region, i.e.

2 \ ~ m

du ,L f{uiv)du=cL (  1+ ^ )  <!“=2ci  (i+ i!b )

such th a t  t  >  0, m  =  (y +  1) /2  and c =  (y — 2) 1 ^ 2  B  ( v / 2 , 1/2) If we make the  substitu tion
—  1 2 

y~ =  1 +  - ^ 2 , we obtain

u =  (v -  2 ) 1 / 2  (1 - y ) 1 / 2 y ~ 1/2, du =  (v -  2) 1/2 y ~ 3 / 2  (1 -  y ) ~ 1 / 2  dy. (27)

Then,

pt  /  2 \  ^  p 1
2c ( 1  + ------- )  du =  B ( y / 2 ,1 /2 ) - 1 /  y m ~ 3/ 2 (1 -  y ) - 1 ' 2  dy

Jo \  V - 2 J  Jg(t)

=  B  ( v / 2 , 1/2) 1 f  y v ! 2  ~ 1 (1 — y) 1/2 dy 
Je(t)I8(t)

=  B  ( v /2 ,1 /2 ) - 1 [B ( v / 2 , 1/2) — B  (9 (t ) ;  v / 2 , 1/2)]

=  1 -  I0(t) 0v / 2 , 1/ 2 ) =  1 ^ 0 ^  ( 1/ 2 , v / 2 ) ,

where 9 (t ) =  p + 2_2  and 1 — 0 (t) =  t2 +v_ 2- Hence, F  (t) =   ̂ (1/2, v /2 )  with r¡ (t) =  1 — 9 (t ) and

F  (—t) =  1 — F  (t) =  tj — \lr¡(t) (1/2, v /2 ) .  Finally, we have F  (x) =  \  sgn (x) Ir¡(x) (1/2, v /2 )  where

x €  R. ■

It should be noted that the following proofs use the previous change of variable in (27).

P r o o f  o f  P r o p o s it io n  1. First, an alternative expression for the even-moments in (13), that is useful for 

the proof, is given by

/
+ ° °  ,+oo  /  2 \  ~ m

u2kf  (u; v) du =  2 c J  u2k ( l  H - J  du

=  ( v - 2 )k B ( v / 2 , l / 2 ) - 1  i"  ( I - y ) k - 1 / 2  y m - k - 3/ 2dy
Jo

=  ( v - 2 )k B ( v / 2 , l / 2 y 1 B ( v / 2 - k , k  +  l / 2 ) .  (28)
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Second, the  even-moment £2fc (¿5 v) =  /_! u2kf  (u; v) du w ith t  >  0 in (15) is obtained as

Z2 /A t;v ) =  +  c J 0  u2k (p  + 7“7 2 ) du

^  +  w h r r m  f  y m - t - 3 , 2 ( 1 - y ^ t , l d y2 2B  ( v / 2 , 1/2) J0{t)

m 2k , (v -  2 ) ‘

2 2B ( v / 2 , 1/2)
[B (v/2  - k , k +  1/2) — B ( 9  (t) ; v / 2 - k , k  +  1/2)]

m 2k (v -  2)k B  (v /2  — k , k +  1/2)

2 +  2 B  ( v / 2 , 1/2)

m 2k (v — 2)k B  (v/2 — k.k +  1/2) „  , , „  „  „
=  —  +  — ----------------B ( v / 2 . 1/2)------- ¡nm (k +  i /2,  v / 2 - k ) .  (29)

Note th a t  lim r¡ (t) =  1 in (29) and  hence, lim Iv(t) (k +  1/2, v / 2  — k) =  I\  (k +  1/2, v / 2  — k) =  1. If
t— > -|-00 Í ^ + O O  V '

we consider (28), then  it is shown th a t  lim £2fc (¿jt ’) =  TO2fe- Finally, £2fc (—¿5t ’) w ith t  >  0 can be expressed
t—> + 00

[1 -  J e(t) (v /2  -  A, A: +  1/2)]

Í 2 k { - t - , v ) = m 2 k - Í 2 k (t-,v). (30)

n ?2k(~^v) = 7
- O O

where i  £  E  in (15).

It is verified th a t  lim £2fe (—t;v )  =  m 2k — m 2k =  0. If we consider bo th  (29) and (30), we have £2fe (x; v)

P r o o f  o f  P r o p o s it io n  2. T he odd-m om ent £2fc+i (t',v) =  f _ oou 2 k+1 f ( w , v ) d u  w ith t  >  0 in (16) can bei u j / u o i u i u u  111V u u u - m u i iu ,n u  S>2/c+l u } ^ o p k + l

rew ritten  as

f» +  00

(31)^2 k + i( t ; v )  =  ~ c J o u ‘¿ k + 1 { 1  +  ^ ^ )  du +  c j ^ u 2k+1( l  +  - ^ - )  du.

To shorten, let q =  2k +  1, tp =  2B^y2 ¡̂y2y, ° i  =  m  — ( q +  1) /2  and 02 =  (g +  1) ¡2. Then,

^•+00 /  2 \  /-l
c j  m 9 ( 1 +  ¡ ^ T 2 J  du =  (P J  ( l - y ) ('q~ 1 ) / 2 y m~{q + 3)/2dy =  (pB(a 1 , a 2) ,  (32)

and

/•t /  2 \  ~ rn r 1
c uq ( l  +  ^ — ) du =  ip ( l - y ) {q- 1 )/ 2 y m- ^  + Ŝ 2dy 

Jo \  V - 2J  J mm
ip [B (o1; a2) -  B ( 0  ( t ) ; o1; a2)]

(pB (0 1 , o2) [1 -  Io(t) (®i, 0 2 )]

p B  («4 , o2) Iv(t) (a2, 0 1 ) . (33)

By plugging (32) and (33) into (31), we have

Í 2fe+i(í ; u ) =  (PB (ai , a 2 ) [ln(t) («2 ,Oi) - 1]

_ , . - - 1
Iti(t) I & +  1 , /e ) — 1 (34)
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Finally, £2fc+i w ith t >  0 can be expressed as

r+oo n6{t)

W i ( - ^ )  =  -  u2k+1f ( u ; v ) d u  =  - íp (1 - y ) ^ - 1)/2y m- ^ / 2dy
Jt J 0

=  —ipB (9 (t); o!, o2) =  • • • =  (pB (a1, o2) [l  — In(t) («2 , «i)] • (35)

Note th a t  lim r¡ (t) =  1 in (35), hence lim Ir¡(t) {k +  1> —  /e) =  1 and lim C2f e + i  =  0- Finally,

if we consider bo th  (34) and  (35), we have £2fc+i (x;v)  where i  £  E  in (16). I
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Tables

Table 1: S um m ary  s ta tis tics  for daily percent log re tu rn s

JA P -E U JA P-U S US-UK SWI-US F T S E CAC A EX G SC IT O T G OLD B R E N T

M ean -0.01 0.00 -0.01 - 0.01 -0.01 0.00 0.00 -0.03 0.02 - 0.01

M edian 0.01 0.00 0.00 0.01 0.04 0.04 0.06 0.00 0.01 0.00

Std. dev. 0.75 0.63 0.64 0.66 1.49 1.67 1.55 1.49 1.14 2.29

Min -6.79 -4.61 -8.31 -11.42 -14.21 -14.85 -13.13 -12.52 -9.81 -26.83

M ax 4.84 3.71 4.47 8.47 1 2 . 2 2 12.14 12.32 7.62 8.59 19.08

Skewness -0.40 -0.25 -0.61 - 1.21 -0.41 -0.23 -0.31 -0.59 -0.24 -0.58

K urtos is 9.66 8.17 14.73 41.33 15.02 11.64 13.05 9.28 9.18 16.31

T his  tab le  presents th e  sum m ary  s ta tis tics  for daily percent log re tu rn  series of: yen to  euro (JA P-E U ); yen to  

dollar (JA P-U S); dollar to  B rit ish  pou nd  (US-UK); Swiss franc to  dollar (SWI-US); F T S E  100, CAC 40 and  A EX  

stock indexes; G oldm an Sachs S tan d a rd  & Poors (S&P) com m odity  index (G S C IT O T ); G S G C T O T  S&P Gold index 

(G OLD ); and  G S B R S P T  S&P B rent C rude Oil (B R E N T ). Sample: N ovember 9, 2007 to  A pril 4, 2021 (T  =  3,500 

observations).
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T able 2: U nconditional d is tr ibu tion  estim ation  for s tandard ized  re tu rn s

JA P -E U JA P-U S US-UK SWI-US F T S E CAC A EX G S C IT O T G OLD B R E N T

1

3 .600*" 3.689*** 4.302*** 3.483*** 2.968*** 3 .1 1 3 " 3.055*** 3.385*** 3.351*** 3.108***
V

(0.130) (0.143) (0.217) (0 .1 2 1 ) (0.063) (0.078) (0.071) (0.107) (0.109) (0.080)

A IC 2.6576 2.6741 2.6840 2.5639 2.5031 2.5644 2.5342 2.6350 2.6363 2.5586

sk-T

A
-0 .0 5 4 " -0 . 0 2 2 -0 .0 4 2 " -0 .0 4 4 " -0.069*** -0.052*** -0.071*** -0.067*** -0 .0 3 0 " -0.050***

(0.016) (0.016) (0.019) (0.017) (0.015) (0.015) (0.015) (0.015) (0.014) (0.014)

V
3 .591"* 3.689*** 4.293*** 3.478*** 2.964*** 3.138*** 3.057*** 3.378*** 3.358*** 3.107***

(0.128) (0.143) (0.216) (0 .1 2 0 ) (0.062) (0.078) (0.071) (0.107) (0 .1 1 0 ) (0.080)

A IC 2.6555 2.6742 2.6833 2.5629 2.4984 2.5621 2.5293 2.6309 2.6359 2.5564

PAL

/) -0.157 -0.049 -0.152 -0 .2 4 6 " -0.273** -0.411*** -0.490*** -0.348*** -0.285*** -0.294***

(0.107) (0.107) (0 .1 1 2 ) (0.123) (0 .1 1 0 ) (0.103) (0.108) (0 .1 0 2 ) (0.105) (0.107)

04
3.825*** 3.785*** 3.367*** 4.195*** 6 .0 0 2 *** 5.649*** 5.782*** 4.577*** 4.342*** 5.416***

(0.420) (0.419) (0.435) (0.434) (0.372) (0.379) (0.371) (0.402) (0.405) (0.390)

A IC 2.6739 2.6861 2.6869 2.5904 2.5434 2.5882 2.5617 2.6518 2.6573 2.5912

PAHS

03
-0.165 -0.048 -0.165 -0.249 -0.337** -0.446*** -0.554*** -0.375*** -0 .3 0 1 " -0 .2 8 6 "

(0.138) (0.133) (0.138) (0.163) (0.139) (0.129) (0.133) (0.124) (0.130) (0.133)

04
3.541*** 3.575*** 3.350*** 4.553*** 6.953*** 6.272*** 6.816*** 4.626*** 4.351*** 5.952***

(0.619) (0.631) (0.648) (0.657) (0.568) (0.580) (0.564) (0.622) (0.615) (0.607)

A IC 2.6613 2.6751 2.6849 2.5757 2.5234 2.5745 2.5445 2.6391 2.6417 2.5745

GC

03
-0 .1 2 5 " -0.067 -0.067 -0 .1 2 6 " -0.173*** -0.219*** -0.236*** -0.187*** -0.193*** -0.178***

(0.055) (0.057) (0.057) (0.059) (0.058) (0.056) (0.057) (0.057) (0.057) (0.058)

04
1.979*** 1.807*** 1.467*** 1.825*** 2.474*** 2.405*** 2.379*** 2.039*** 1.981*** 2 .2 2 1 ***

(0 .1 0 2 ) (0 .1 0 1 ) (0.107) (0.107) (0.094) (0.096) (0.097) (0.099) (0.098) (0.097)

A IC 2.7144 2.7266 2.7606 2.7399 2.6390 2.6504 2.6495 2.6951 2.7019 2.6735



(Table 2 continued)

PA ST

03
-0.142* -0.056 -0.155 -0.238 -0.225*** -0.319*** -0.405*** -0.271*** -0.251** -0.261***

(0.074) (0.082) (0.116) (0.152) (0.087) (0.079) (0.096) (0.080) (0.078) (0.086)

04
3.436*** 3.733*** 8.087* 37.185*** 6.205*** 4.807*** 6.560*** 3.888*** 3.823*** 5.231***

(0.609) (0.701) (4.458) (11.154) (1.288) (0.706) (1.494) (0.636) (0.657) ( 1 .1 2 1 )

V
18.447*** 15.649*** 10.184*** 8.528*** 13.820*** 16.579*** 12.941*** 17.198*** 16.972*** 14.583***

(4.207) (2.781) (1.369) (0.165) (1.919) (2.365) (1.636) (2.911) (2.983) (2.285)

A IC 2.6785 2.6928 2.6871 2.5843 2.5524 2.5930 2.5715 2.6576 2.6645 2.5975

PAST10

03
-0.150 -0.044 -0.158 -0.252** -0.249** -0.390*** -0.468*** -0.334*** -0.276** -0.285***

(0 .1 1 2 ) (0.109) (0.116) (0.124) (0.106) (0.098) (0.103) (0 .1 0 0 ) (0.103) (0.103)

04
9.279*** 9.294*** 8.743*** 10.494*** 13.816*** 13.019*** 13.426*** 10.872*** 10.380*** 12.677***

(0.903) (0.908) (0.954) (0.922) (0.780) (0.799) (0.780) (0.864) (0.871) (0.828)

A IC 2.6838 2.6959 2.6865 2.5860 2.5559 2.6020 2.5737 2.6648 2.6703 2.6023

PAST15

03
-0.146* -0.055 -0.111 -0 .2 2 2 ** - 0 .2 2 1 *** -0.332*** -0.371*** -0.286*** -0.258** -0.259***

(0.081) (0.084) (0.087) (0.092) (0.084) (0.080) (0.085) (0.082) (0.082) (0.085)

04
4.129*** 3.915*** 3.366*** 4.049*** 5.560*** 5.358*** 5.271*** 4.487*** 4.349*** 5.044***

(0.296) (0.294) (0.309) (0.303) (0.263) (0.269) (0.266) (0.281) (0.284) (0.272)

A IC 2.6789 2.6923 2.6895 2.5936 2.5520 2.5927 2.5716 2.6574 2.6642 2.5969

PAST20

03
-0.141* -0.060 -0.094 -0.196** -0.209*** -0.299*** -0.324*** -0.256*** -0.242** -0.238***

(0.072) (0.075) (0.077) (0.081) (0.075) (0.073) (0.076) (0.074) (0.074) (0.076)

04
3.252*** 3.025*** 2.540*** 3.078*** 4.252*** 4.114*** 4.032*** 3.446*** 3.353*** 3.832***

(0.209) (0.207) (0.218) (0.215) (0.188) (0.192) (0.191) (0.199) (0 .2 0 1 ) (0.193)

A IC 2.6780 2.6931 2.6942 2.6009 2.5557 2.5933 2.5758 2.6574 2.6644 2.5993

T his  tab le  presents ML estim ates  of density  m odel pa ram ete rs  for s tandard ized  re tu rns, zt- H eteroscedasticity-consistent s tan d a rd  errors are provided in 
paren theses below th e  p a ram ete r  estim ates . A IC  denotes Akaike Inform ation  Criterion. (***) indicates significance at 1% level; (**) a t  5% level and  (*) at 
10% level. Sample: N ovember 9, 2007 to  April 4, 2021 (T  =  3 ,500 observations).



Table 3: N um ber of s tandard ized  re tu rn s  ou tside th e  in terval [—3, 3]

JA P -E U JA P-U S US-UK SWI-US F T S E CAC A EX G SC IT O T G OLD B R E N T

empirical 23 (25) 27 (23) 2 1 (19) 15 (16) 31 (23) 32 (23) 34 (2 0 ) 32 (23) 29 (24) 31 (24)

N 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)

T
2 2 (2 2 ) 2 2 (2 2 ) 2 0 (2 0 ) 23 (23) 23 (23) 23 (23) 23 (23) 23 (23) 23 (23) 23 (23)

sk-T 25 (18) 24 (2 0 ) 23 (17) 24 (19) 26 (18) 25 (19) 26 (18) 27 (18) 25 (2 0 ) 25 (19)

PAL 27 (2 0 ) 25 (23) 26 (2 0 ) 30 (19) 36 (23) 38 (2 0 ) 41 (19) 32 (18) 31 (19) 35 (21)

PAHS 24 (19) 2 2 (2 1 ) 24 (19) 28 (18) 32 (19) 34 (16) 35 (15) 31 (16) 28 (17) 30 (20)

GC 29 (23) 25 (23) 2 2 (19) 28 (2 2 ) 35 (29) 36 (27) 36 (26) 31 (23) 31 (2 2 ) 33 (26)

PA ST 32 (26) 28 (24) 2 2 (17) 18 ( 1 1 ) 38 (27) 42 (26) 39 (2 1 ) 36 (23) 35 (23) 37 (26)

PAST10
2 1 (17) 2 0 (18) 2 1 (17) 25 (16) 27 (19) 30 (14) 31 (14) 27 (15) 26 (16) 27 (17)

PAST15 31 (24) 28 (25) 26 (2 1 ) 33 (2 0 ) 40 (29) 41 (26) 42 (25) 36 (2 2 ) 34 (2 2 ) 38 (26)

PAST20 33 (26) 29 (27) 27 (23) 33 (24) 42 (31) 43 (28) 43 (26) 37 (25) 36 (25) 39 (27)

T h is  tab le  exhibits  the  num ber of s tan dard ized  observations zt under  each assum ed d is tr ibu tion  (in row), w ith  pa ram ete rs  exhibited  in Table 2, for the  
a lternative  re tu rn  series (in column) th a t  lie outs ide th e  interval [—3,3]. T h e  left tail is th e  num ber of observations lower th a n  —3 and  th e  right tail is the  
num ber of observations (in parentheses) higher th a n  3. T h e  first row w ith  nam e ’em pirical’ is re la ted  to  th e  em pirical d is tr ibu tion  of the  re tu rn  series. All 
series have th e  sam e num ber of observations, T  =  3, 500.



Table 4: G JR -P A S T  m odel estim ation  results

JA P -E U JA P-U S US-UK SWI-US F T S E CAC AEX G SC IT O T GOLD B R E N T

0.003 0.003 0 . 0 0 2 -0.005 -0 . 0 1 0 - 0. 0 0 1 0.008 -0.014 0.023 -0 . 0 0 2

(0.008) (0.007) (0.007) (0.007) (0.016) (0.018) (0.016) (0.018) (0.015) (0.026)

a  0

0 .0 0 2 " 0 .0 0 2 *** 0.003*** 0 .0 0 1 *** 0 .0 2 0 *** 0.018*** 0.017*** 0 .0 1 1 " 0.004* 0.033***

(0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0.0005) (0.007) (0.006) (0.006) (0.004) (0 .0 0 2 ) (0 .0 1 2 )

P
0.957"* 0.953*** 0.951*** 0.964*** 0.901*** 0.912*** 0.911*** 0.941*** 0.962*** 0.924***

(0.009) (0.007) (0.008) (0.005) (0 .0 2 2 ) (0.015) (0.018) (0.008) (0.006) (0 .0 1 1 )

0.027*** 0.036*** 0.027*** 0.028*** 0. 0 1 2 0.007 0 . 0 1 0 0.027*** 0.040*** 0.034***
Ct-^

(0.007) (0.006) (0.006) (0.005) (0 .0 1 1 ) (0.007) (0.008) (0.008) (0.009) (0.009)

0.051*** 0.045*** 0.053*** 0.036*** 0.164*** 0.159*** 0.151*** 0.080*** 0.027*** 0.107***

(0 .0 1 1 ) (0.008) (0.009) (0.007) (0.036) (0.028) (0.032) (0 .0 1 2 ) (0.006) (0.017)

-0.226*** -0 .1 9 2 " -0.013 -0 .3 0 4 " -0.317*** -0.371*** -0.380*** -0.441*** -0.208*** -0.548***

(0.055) (0.088) (0.089) (0 .1 2 1 ) (0.068) (0.083) (0.072) (0.106) (0.090) (0 .1 2 0 )

1.290*** 2 .3 8 8 " 0.728 28.814*** 1.406*** 1.763*** 1.163*** 2 .0 1 2 * 2.699*** 1 2 .227 "
V 4

(0.259) (1.026) (1.040) (10.273) (0.273) (0.578) (0.219) (1.060) (0.670) (4.768)

V

18.364*** 13.146*** 9.421*** 8 .1 2 2 *** 23.625*** 14.952*** 2 5 .3 9 4 " 12.273*** 16.033*** 8.538***

(4.081) (4.485) (1 .2 0 0 ) (0.038) (8.583) (4.402) (12.236) (4.052) (4.275) (0.291)

a 0.684 0.620 0.566 0.628 1.392 2.00 1.427 1.376 1.042 2.443

A IC 1.9127 1.6846 1.5616 1.7136 3.0525 3.3470 3.1547 3.2565 2.7952 4.0268

Model: rt = fJ, + St, £t =  crtZt, &t =  a o +  P&t-i +  a i (£t - i )2 +  a i (£t - i ) 2> z t ~  i-i-d. P A S T  (0,1) d is tr ibu ted  w ith  pa ram ete rs  (i?, Ø3 , Ø4)

T his  tab le  p resents CML estim ates  of th e  G JR -P A S T  pa ram ete rs  for the  re tu rn  series in Table 1. H eteroscedasticity-consistent s ta n d a rd  errors are  provided 
in parentheses below th e  p a ram e te r  estim ates , a  denotes th e  unconditiona l G JR -P A S T  s tan d a rd  deviation, and  A IC  is Akaike Inform ation  C riterion. Finally, 
(***) indicates significance at 1% level; (**) a t 5% level and  (*) a t 10% level. Sample: November 9, 2007 to  A pril 4, 2021 (T  =  3 ,500 observations).



Table 5: A lte rna tive  density  (D) p a ram e te r  estim ates  from G JR -D  m odel

JA P -E U JA P-U S US-UK SWI-US F T S E CAC AEX G S C IT O T G OLD B R E N T

1

6 .156*" 4.926*** 7.978*** 5.909*** 6.048*** 5 .9 7 1 " 6.620*** 5.754*** 3.951*** 5.235***
V

(0.653) (0.417) (1.209) (0.733) (0.597) (0.602) (0.709) (0.583) (0.280) (0.493)

A IC 1.9274 1.6299 1.6926 1.6172 3.0559 3.3507 3.1622 3.2589 2.7845 4.0265

sk-T

A
-0.063*** -0.025 -0.048** -0.064*** -0.117*** -0.116*** -0.134*** -0.094*** -0.034* -0.080***

(0 .0 2 1 ) (0 .0 2 2 ) (0 .0 2 2 ) (0 .0 2 2 ) (0 .0 2 1 ) (0.023) (0 .0 2 2 ) (0 .0 2 0 ) (0 .0 2 0 ) (0 .0 2 0 )

V
6 .1 2 2 *** 4.937*** 7.950*** 5.902*** 6.107*** 6.175*** 6.939*** 5.984*** 3.986*** 5.357***

(0.652) (0.419) (1.186) (0.721) (0.609) (0.636) (0.775) (0.620) (0.284) (0.509)

A IC 1.9257 1.6301 1.6920 1.6155 3.0488 3.3440 3.1531 3.2544 2.7843 4.0232

PAL

/) -0.145 -0.116 -0.067 -0.150 -0.349*** -0.418*** -0.487*** -0.448*** -0 .2 6 7 " -0.410***

(0.104) (0.113) (0.092) (0 .1 1 0 ) (0.088) (0.094) (0 .1 0 1 ) (0.095) (0.106) (0.099)

04
0 .9 8 0 " 1.895*** 0.284 1.048* 0 .9 5 8 " 1.237*** Í . Í 7 7 " * 1.159*** 2.375*** 1.204***

(0.418) (0.493) (0.277) (0.542) (0.415) (0.393) (0.312) (0.343) (0.453) (0.399)

A IC 1.9270 1.6306 1.6943 1.6266 3.0526 3.3461 3.1557 3.2536 2.7891 4.0232

PAHS

03
-0.053 -0.072 -0.083 -0.177 -0.329** -0.425*** -0.358*** -0.415*** -0 .2 8 0 " -0.447***

(0 .1 1 0 ) (0.140) (0.177) (0.140) (0.134) (0.138) (0 .1 1 1 ) (0.136) (0.125) (0.141)

04
0.269 1 .6 8 2 " 0.145 0.906 0.610 1 .2 4 8 " 0 .6 8 9 " 1.123** 1.874*** 1 .2 8 7 "

(0.588) (0.770) (0.325) (0.770) (0.893) (0.551) (0.316) (0.529) (0.687) (0.503)

A IC 1.9282 1.6296 1.7008 1.6279 3.0552 3.3504 3.1621 3.2554 2.7817 4.0221

GC

03
-0.172*** -0.074 -0.090 -0 .1 4 8 " -0.266*** -0 .2 8 2 " -0.319*** -0.267*** -0 .1 5 0 " -0.233***

(0.058) (0.062) (0.055) (0.070) (0.055) (0.056) (0.053) (0.058) (0.064) (0.059)

04
0.991*** 1.421*** 0.801*** 1.489*** 1.088*** 1.053*** 0.977*** 1.014*** 1.646*** 1.134***

(0 .1 2 2 ) (0.155) (0.138) (0.527) (0 .1 2 2 ) (0.128) (0 .1 2 1 ) (0 .1 2 2 ) (0.140) (0.128)

A IC 1.9405 1.6551 1.7110 1.7298 3.0593 3.3611 3.1584 3.2706 2.8181 4.0477



(Table 5 continued)

PAST10

/) -0.190* -0.134 -0.086 -0.167 -0.397*** -0.463*** -0.565*** -0.504*** -0.276** -0.444***

(0.113) (0.119) (0.107) (0.114) (0.092) (0.095) (0 .1 0 0 ) (0.096) (0.108) (0 .1 0 2 )

di
3 .248*" 5.340*** 1.117 2.948*** 3.198*** 3.731*** 3.443*** 3.461*** 6.288*** 3.637***

(1.071) (1.128) (0.854) (1.104) (1.023) (1.043) (0.795) (0.944) (0.974) (1.051)

A IC 1.9291 1.6340 1.6923 1.6176 3.0550 3.3471 3.1567 3.2562 2.7966 4.0265

PAST15

03
-0.213** -0.107 -0.099 -0.147* -0.351*** -0.370*** -0.447*** -0.398*** -0.216** -0.329***

(0.085) (0.086) (0.078) (0.080) (0.074) (0.074) (0.070) (0.076) (0.086) (0.079)

04
1.548*** 2.410*** 0.842*** 1.591*** 1.808*** 1.758*** 1.439*** 1.582*** 2.870*** 1.853***

(0.316) (0.356) (0.309) (0.348) (0.320) (0.333) (0.311) (0.317) (0.323) (0.331)

A IC 1.9288 1.6338 1.6936 1.6211 3.0529 3.3464 3.1548 3.2561 2.7946 4.0274

PAST20

03
-0.205*** -0.097 -0.103 -0.139** -0.327*** -0.340*** -0.403*** -0.355 -0.188** -0.295***

(0.075) (0.076) (0.069) (0.071) (0.067) (0.067) (0.064) (0.070) (0.077) (0.072)

04
1.289*** 1.965*** 0.818*** 1.383*** 1.507*** 1.444*** 1.244*** 1.322 2.325*** 1.531***

(0.223) (0.255) (0.224) (0.246) (0.225) (0.235) (0.229) (0.225) (0.235) (0.230)

A IC 1.9293 1.6347 1.6947 1.6245 3.0521 3.3468 3.1542 3.2569 2.7950 4.0286

T his  tab le  p resents e ither CML or ML estim ates  of different density  (D) pa ram ete rs  from G JR -D  model. G JR  estim ates are no t presen ted  to  save space. 
H eteroscedasticity-consistent s tan d a rd  errors are provided in parentheses below th e  p a ram ete r  estim ates . A IC  denotes Akaike Inform ation  Criterion. (***) 
indicates significance at 1% level; (**) a t 5% level and  (*) a t  10% level. Sample: N ovember 9, 2007 to  A pril 4, 2021 (T  =  3 ,500 observations).



Table 6 : D escriptive analysis of violations and  back testing  procedures

V aR (l% ) ES(2.5%) VaR(2.5%) ES(5%) V aR (l% ) ES(2.5%) VaR(2.5%) ES(5%)

JA P -E U JA P-U S

N 13 14.12 2 2 22.16 16 15.93 23 24.12

T 9 11 . 0 2 2 0 21 . 6 6 9 12.33 23 23.63

sk-T 9 9.82 19 19.71 8 1 2 . 1 1 23 23.31

PAL 9 10.49 2 0 20.94 1 0 1 2 . 6 6 23 23.92

PAHS 9 10.04 19 19.97 9 12.14 2 2 22.91

GC
8 * 8.84 18* 17.29 8 * 10.61 18* 20.40

PA ST 9 10.56 21 21.32 1 2 13.26 26 24.77

PAST10 1 0 11.42 21 22.39 1 2 14.01 26 25.60

PAST15 9 10.05 2 0 20.56 9 12.37 24 24.17

PAST20
8 ? 9.53 19* 19.62 8 * 11.64 2 2 * 23.25

US-UK SWI-US

N orm al 13 15.44 29 28.04c 1 2 c 14.43c 24c 22.94c

T 8 C 11.91 29 26.45c 8 C 10.59c 23c 22.39c

sk-T 8 C 10.82 24 25.13c 6 C 8.90c 2 2 c 2 0 .1 0 c

PAL 8 C 10.73 25 25.21c 5C 8.71c 2 2 c 20.81c

PAHS 6 * 9.19 2 1 * 23.80c 5C 8.45c 2 2 c 20.36c

GC 8 ? 10.30 22% 24.04c 6 C 7.00c 1 5 * C 16.52“ ’c

PA ST 8 C 11.70 28 26.42c 9C 1 2 .6 8 c 25c 25.23c

PAST10 8 C 12.18 28 26.69c 7C 10.60c 25c 23.14c

PAST15 8 C 12.13 28 26.62c 5* 8.40c 2 2 c 20.51c

PAST20 8 C 11.71 28 26.20c 5* 7.58c 20$ 19.27c

F T S E CAC

N 27“ 25.84“ ’c 3 8 “ , c 34.93“ ’c 2  4 u ,c 2 2  79“ ,c 32c 32.43c

T -j fjU,C 21.09“ ’c 37“ ’c 33.10“ ’c 16 18.71“ 31c 31.21c

sk-T 16c 17.79c 29c 29.31c 15 16.26 27c 27.57c

PAL 16c 18.01c 32c 30.30c 14 15.84 27c 28.21c

PAHS 13* 16.49c 2% 29.30c 14* 15.55 27c 27.93c

GC 15c 16.89c 28 27.00c 14 15.75 24* 25.05c

PA ST 155 17.05c 29* 28.80c 14 16.30 27c 28.69c

PAST10 16c 19.33“ ,c 34c 31.70c 15 17.12 30c 29.98c

PAST15 15c 17.59c 32c 29.92c 14 15.96 27c 28.13c

PAST20 15c 17.09c 29c 29.04c 14* 15.59 27% 27.25c
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(Table 6 continued)

V aR (l% ) ES(2.5%) VaR(2.5%)

A EX

ES(5%) V aR (l% ) ES(2.5%) VaR(2.5%) 

G SC IT O T

ES(5%)

N 2 2 “ ’c 25.10“ ,c 3 8 “ , c 35.29“ ,c to to £ 24.99“ 34 35.61“

T 18“ 20.23“ 3 7 “ , c 33.45“ 19“ 20.78“ 34 34.32“

sk-T 14 16.37 30 29.08 18“ 18.20“ 31 30.40

PAL 1 2 15.73 31 29.61c 15* 16.74 30 29.89

PAHS 1 2 15.65 32 29.68 15* 16.11 30 29.93

GC 1 2 14.84 26^ 26.16 17“ 17.51 29* 27.75

PA ST 1 1 * 15.02 30* 27.72 17“ 18.00 32 31.01

PAST10 15 17.37 35c 31.28c 18“ 18.21“ 32 31.72

PAST15 11 15.54 30 29.04c 17“ 17.41 30 30.07

PAST20 1 1 * 15.02 30 28.08 16 17.21 29* 29.33

GOLD B R E N T

N 17“ 19.01“ 32 27.65 2 1 “ 23.28“ 34 34.86“

T 9 14.22 32 27.35 18“ 19.03“ 32 33.72“

sk-T 7 13.33 30 26.39 17“ 16.90 29 30.36

PAL 7 12 . 2 0 28 25.41 14 16.09 28 29.94

PAHS 7 11 . 8 6 26 24.59 14* 15.29 28 29.35

GC 7 9.56 2 1 * 20.46 14 16.04 2 1 * 26.59

PA ST 7* 11 . 2 2 26 24.52 16 16.89 30 30.70

PAST10 9 14.64 32 27.60 17“ 17.51 32 31.96

PAST15 7 11 . 6 8 27 25.14 14 16.24 29 30.11

PAST20 7* 10.65 25* 23.87 14* 15.85 28* 29.10

T his  tab le  shows th e  violations for VaR and  th e  cum ulative violations in (24) from N, T , sk-T, PAL, PAHS, PA ST  
and  P A S T 1 0 /1 5 /2 0  models. We also repo r t th e  significance for (i) th e  VaR back testing  te s ts  in (21) and  (22) w ith  

in (23), and  (ii) th e  ES backtesting  te s ts  in (25) and  (22) w ith  7 - in (26). W e set m  = 5 in th e  Box-Pierce test 
s ta tis tic  (22) for th e  two conditional backtests . T h e  superscrip ts  u  and  c indicate  significance at five percent level for 
th e  unconditiona l and  conditional backtests , respectively. T h e  subscrip ts  Jft and  ♦  indicate  th e  first and  second best 
models, respectively, for VaR by considering th e  m ag n itu de  of exceptions th rou gh  th e  average of the  quad ra t ic  losses, 
AQL (the  lower AQL, th e  b e t te r) .  T h e  OOS period  covers from Jun e  9, 2017 to  A pril 8 , 2021. Predictions: 1000.
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F igures

Figure  1: D is t r ib u t io n / ta i l  shapes com parison
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T his  figure provides a com parison of density  and  left-tail shapes of PAST15, sk-T  and  PAHS.

F igure 2: C um ula tive  d is tr ibu tion  and  expected  shortfall
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T his  figure p lo ts  cdf and  ES of PA ST 15 and PAST300 (aprox. G C) pdfs.
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Figure  3: PA ST  skew ness-kurtosis frontiers

i  i i i i i i i r

v =  10

G aussian

5 I__________ I__________ I__________ I__________ I__________ I__________ I__________ I__________ I__________
0 5 10 15 20 25 30 35 40 45 50

Kurtosis

Skewness-kurtosis frontiers for PAST with v =  9,10,15, 20, and GC or PA Gaussian (v —► oo).
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Figure 4: D istribu tion  ta il  com parison sk-T versus PA densities
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T his  figure plo ts theore tica l quantiles of sk-T versus PA densities for b o th  tails: lower ta il  (quantiles from 0.001 to  
0.05) and  u p p er  ta il  (quantiles from 0.95 to  0.999). T here  is a to ta l  of fifty equally-spaced quantiles in each tail. All 
densities have zero m ean, u n it variance and  th e  sam e levels of skewness (-0.47) and  kurtosis  (11).
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Figure  5: D istribu tion  ta il fit analysis for s tandard ized  re tu rn s  
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Figure 5 (continued)
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Figure 5 (continued)

Series: G O LD

P an e l A: lower ta il
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Figure 5 (continued)

lower tail (sk-T)
■1

-2

oj *3
c'j
§ - 4

■5

-6

■7
-4.5 -3.5 ■3 -2.5 -2 -1.5■5 -4

s am p le  quantile

6

5

i  4
:Y.

5  3 

2 

1

6 

5

w
I 43
cr cn
5 3
Q.

2

1

s am p le  quantile

upper tail (sk-T)

s am p le  quantile 

upper tail (PAHS)

Series: B R E N T

P anel A: lower ta il

-1 1— 

-2 -
(B
£ -3 - ro3
cr

<  -4 -
CL

-5 -

lower tail (PAL)

-6
-5 -3.5 -3

s am p le  quantile

lower tail (PAHS)

-3.5 -3 -2.5 -2 -1.5-5 -4.5 -4

lower tail (PAST)

-3.5 -3 -2.5 -2 -1.54 .5

2 3

P anel B: u p p e r  ta il  

6 —

3 4
s am p le  quantile

5

4
3
cr

<  3
Q.

2

6

5

æ
1 43
crH
U) 'i 
<  0 
CL

2

1

s am p le  quantile

upper tail (PAL)

3 4
sample quantile

upper tail (PAST)

3 4
sample quantile

T his  figure provides sk-T, PAL, PAHS and  PA ST  theore tica l quantiles versus sam ple s tandard ized  re tu rn  quantiles for 
b o th  d is tr ibu tion  tails: lower ta il  (quantiles from 0.001 to  0.05) and  up p er  ta il (quantiles from 0.95 to  0.999). T here  
is a to ta l  of 50 equally-spaced quantiles in each tail. Series: JA P -U S, G S C IT O T , G O LD  and  B R E N T  s tandard ized  
re tu rn s  (T  =  3 ,500 obs.).
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