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Abstract

In this paper we estimate the skewness of the unconditional distribution of
energy returns and test its statistical significance. We compare the performance
of traditional and robust tests for skewness with those based on the implied un-
conditional skewness in a TGARCH model with Gram-Charlier (TGARCH-GC)
innovations. We also analyze the implications of TGARCH-GC skewness for tail
risk through evaluation of Value-at-Risk (VaR) and expected shortfall (ES) accu-
racy. Our results show that crude oil (Brent and WTI) and Gasoline returns are
negatively skewed, while we do not find evidence of skewed distribution for other
energy returns such as Heating oil, Kerosene and Natural gas. This indicates that
the returns of the former are likely to encapsulate more largely the effect of neg-
ative shocks and so present higher tail risk than those of the latter. These results
differ from traditional and robust tests for skewness providing important informa-
tion on how to improve mean-variance risk management measures. Indeed, we find
that the three-moment VaR and ES measures based on the third-order Cornish
Fisher (CF3) expansion for the unconditional distribution of returns considerably
improve their corresponding two-moment ones. We adopt CF3 to disentangle
skewness effects from kurtosis in tail risk.
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1 Introduction

Portfolio return skewness can be viewed as a source of tail risk and so, managing skew-
ness risk becomes crucial since it measures the outcome resulting from bad news in
financial markets that causes portfolio negative returns. The skewness importance in
asset pricing was early recognized by Kraus and Litzenberger (1976, 1983) to model
investor’s behavior. Scott and Horvath (1980) show that a risk-averse investor with
consistent moment preferences exhibits a positive preference for skewness.1 In expected
utility theory, preference for skewness captures the investor’s gambling nature that is
associated with prudence; see Kimball (1990) and Ebert and Wiesen (2011). Kumar
(2009) shows evidence that people who find lotteries attractive are likely to invest much
more in stocks with higher idiosyncratic volatility, higher skewness and lower prices,
even if those stocks have lower expected returns. This empirical study does comple-
ment the skewness heterogeneity preference model by Mitton and Vorkink (2007) where
investors with greater demand for skewness will, in equilibrium, hold less-diversified
portfolios than those with less demand for skewness. Some recent works based on the
role of skewness in portfolio choice are, for instance, Zakamouline and Koekebakker
(2009),2 Ghysels et al. (2016), De Roon and Karehnke (2017), Ñíguez et al. (2019) and
Zhen and Chen (2022). For energy markets, in particular, Kuang (2021) evaluates clean
energy portfolio risk through the four-moment modified Value-at-Risk (VaR) by Favre
and Galeano (2002), which accounts for skewness and excess kurtosis, in order to build
more diversified portfolios respecting a benchmark equity index portfolio.
Testing for evidence of asymmetry in energy commodities, such as oil and oil-related

products, is relevant since they tend to exhibit higher tail risk than stocks, see Aboura
and Chevallier (2013) and Zhang et al. (2022). Price-formation fundamentals in energy
markets are rather different than in the stock markets; see, e.g., Baur and Dimpfl(2018).
In fact, commodity prices are highly sensitive to global economic issues, so they present

1Consider an investor who cares about the payoff uncertainty of the asset return, r, via expected
utility function, E [U (·)]. Let µ, σ2 and sk denote, respectively, the unconditional mean, variance and
skewness of r. The investor’s expectation of the third-order Taylor series expansion of U (·) around µ
is given by E [U (r)] ≈ U (µ) + 1

2U
(2) (µ)σ2 + 1

6U
(3) (µ)

(
σ2
)3/2

sk, where U (i) (µ) is the derivative of
order i of U (·) evaluated at point µ, and satisfying the following conditions: U (2) (·) < 0 (aversion to
variance) and U (3) (·) > 0 (preference for positive skewness).

2Assume the investor has a wealth of W and invests a in the risky asset r and W −a in the risk-free
asset rf . If we maximize expected utility in footnote 1 with respect to the investor’s wealth after one
period∆t, then the optimal amount invested in the risky asset a∗ is given by a∗ ≈ SR

λ2σ
√

∆t

(
1 + λ3

sk
2 SR

)
where SR =

(µ−rf )

σ
√

∆t
denotes the Sharpe ratio, λ2 = −U

(2)(µ)
U(1)(µ)

is the traditional absolute risk aversion

coeffi cient, and λ3 = −U
(3)(µ)

U(2)(µ)
is the coeffi cient of absolute prudence. See also Ñíguez et al. (2016).
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more accentuated sharp falls, which might make energy returns skewness prevalent in
tail risk. This discussion motivates us to focus on the skewness in energy markets which
has been less studied than that of the stock market.
The Brent, WTI and Gasoline spot returns series, that we study here among others,

may be skewed due to several factors: (i) Sudden shifts in either supply or demand
can result in significant uneven price changes because of, on the one hand, geopolitical
tensions, natural disasters, and production policies affecting the supply side, on the other
hand, changes in consumption patterns or economic growth have a more prevalent effect
on the demand side; (ii) limited storage capacity can give rise to notable fluctuations in
prices. A sudden increase in supply without suffi cient storage capacity can lead to lower
prices, while higher prices can arise from a sudden drop in supply; (iii) seasonality does
also affect the prices of these commodities. For instance, the demand for crude oil and
Gasoline increases in summer, when people drive more, and decreases in winter when
they travel less; (iv) disruptions in refining operations can cause the price of Gasoline
to fluctuate. For example, hurricanes and other natural disasters can disrupt refineries,
reducing Gasoline production and increasing prices; and (v) fluctuations in exchange
rates. Since these commodities are priced in US dollars, any changes in exchange rates
can affect their prices. A strong (weak) dollar can cause prices to fall (rise).
Skewness is typically estimated by the sample skewness which has been shown to

be highly unreliable and biased; see, e.g., Kim and White (2004), Bai and Ng (2005),
Ghysels et al. (2016) and Li (2020). To address this issue, robust estimators of the
skewness in Bowley (1901), Yule (1911) and Hinkley (1975) have been applied in previous
studies. Despite that, many papers still employ the sample estimator of Pearson’s
moment of skewness. See, for instance, Fernandez-Perez et al. (2018), Jondeau et al.
(2019), Mo et al. (2019), Dai et al. (2021) and Liu et al. (2022).
In regard to testing for skewed financial returns, several methods have been pro-

posed in the literature delivering mixed results; see, for example, Peiró (1999), Kim
and White (2004), Premaratne and Bera (2005) and Bai and Ng (2005). In spite of
that, many of the existing conditional heteroskedastic models assume a symmetric dis-
tribution for the innovations, which implies, for most of these models, that returns are
symmetric.3 During the last years, models assuming asymmetric distributions for the
innovations have become more popular since they allow to test for the significance of
the skewness parameter.4 Regarding energy markets, Aloui and Mabrouk (2010), Cheng

3If the conditional mean is not constant, returns can be asymmetric although innovations are sym-
metric; see He et al. (2008).

4See, for example, Harvey and Siddique (1999), León et al. (2005), Ghysels et al. (2016), Carnero
et al. (2022) and Serna (2022).
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and Hung (2011), Lyu et al. (2017), Laporta et al. (2018) and Kwang (2022), among
others, fit GARCH-type models to energy return series and compare their performance
for measuring VaR under alternative distributions. Their results show the importance
of accounting for skewness and kurtosis in energy commodity returns since models with
skewed and fat-tailed distributed innovations outperform those under symmetric re-
turns distributions. Nevertheless, in such studies where GARCH-type models are used
together with non-normal distributed innovations, the unconditional skewness cannot
be estimated or tested, remaining sample skewness measures as the typical way used to
estimate and test the returns unconditional distribution’s skewness. To the best of our
knowledge, skewness in those models is not known and hence, it has not been used for
asset pricing and risk management. The complication stems from that the GARCH-type
structure interacts with the unconditional skewness of the distribution, so the derivation
of the model implied skewness becomes cumbersome. This problem has been recently
studied in Carnero et al. (2022) for the Threshold GARCH (TGARCH) model of Za-
koian (1994) assuming a Gram-Charlier distribution, see Jondeau and Rockinger (2001),
for the innovations (henceforth, TGARCH-GC).5

In this paper, we investigate the appropriateness of alternative measures of skewness
for energy return series in relation to the skewness implied in a GARCH-type model with
non-normal errors. The main contributions are threefold. First, we apply the TGARCH-
GCmodel to estimate the returns’implied (unconditional) skewness and compare it with
sample and robust measures of skewness.6 Second, we show that testing for skewed
returns through the statistical significance of the implied skewness of a TGARCH-GC
model differs from traditional skewness tests based on sample skewness or quantiles;
see, for example, Cabilio and Masaro (1996), Bai and Ng (2005), Ngatchou-Wandji

5More precisely, the TGARCH model has the advantage that its moments (both odd and even) can
be computed and therefore, it is possible to derive their closed-form expressions. This is because the
model is specified for the conditional volatility σt, and not for σ2

t as in other GARCH-type models.
Hence, we can only obtain second-order Taylor approximations for the unconditional skewness measure
when modeling directly σ2

t . See, for instance, Alexander et al. (2021) for the case of the GJR-GARCH
model of Glosten et al. (1993).

6When simulating 1000 series of daily returns from a TGARCH-GC model of sample size T = 10000,
the sample estimates of the variance are close to the true variance, while the sample estimates of the
skewness are very bad, even when the sample size is very large (T = 100000). As expected, the estimates
of the implied skewness from the model are much better. Obviously, in this case, the model we are
assuming for the data generating process (DGP) is the true one, and we are aware that in practice
we do not know the true DGP. However, estimating the skewness assuming the above model, which
captures many stylized facts of financial returns, seems to be a good alternative to standard methods
in this case. Since daily financial returns are leptokurtic and not independent, we know that standard
methods to estimate skewness are not going to perform well. More details are available upon request.
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(2006) and Ekström and Jammalamadaka (2012). We do this through the methodology
recently proposed in Carnero et al. (2022). This approach allows to estimate and
test for the significance of energy returns unconditional skewness in a feasible manner.
Thus, our paper contributes to the discussion on the inference that can be made using
different estimators of the skewness in energy markets. An analysis of the power functions
performance for the previous skewness tests (both asymptotic and bootstrap ones) is
also provided. In summary, the paper shows how to improve accuracy in measuring
and testing for skewness in energy returns using techniques recently proposed in the
literature.
Last but not least, we also analyse the implications of employing different measures

of skewness for tail risk through the evaluation of VaR and expected shortfall (ES)
accuracy. We estimate sample and implied VaR and ES measures by assuming the
third-order Cornish-Fisher (CF3) expansion, see Cornish and Fisher (1938), for the
unconditional distribution of returns. We study in some detail CF3, which has hardly
been studied in the literature. The CF3 expansion depends on one parameter, which is
closely related to the unconditional skewness for a given range of the parameter values.
This parameter is replaced by the closed-form expression for the skewness implied in the
TGARCH-GC model. We adopt CF3 instead of the popular CF4 (fourth order Cornish-
Fisher) expansion so as to disentangle the unconditional effect of skewness in tail risk
from the kurtosis performance under CF4. Definitively, we are only interested in the
skewness marginal effects on the tail risk contribution with respect to the one based on
the first two moments; that is why testing skewness in a previous stage is important.

Finally, our results can be summarized as follows. First, we find evidence of nega-

tive skewness for the series of crude oil (WTI and Brent) and Gasoline returns, while

the unconditional distribution of other energy returns such as Heating oil, Kerosene

and Natural gas is found to have zero skewness.7 These series with significant skewed

distributions may confirm price fluctuations derived from some of the aforementioned

economic factors, nevertheless the question of which of those factors can really cause

skewed distributions deserves a deeper analysis that is beyond the scope of this work al-

though welcoming for future research. Regarding the less skewed returns evidence found

in Kerosene, Heating oil, and Natural gas, it may be attributed to several reasons: (i)

relative homogeneity, their similar properties and uses lead to less variation in prices

and returns as compared to commodities that have more diverse uses; (ii) there is some

seasonality in the demand for Heating oil and Natural gas, although it is less pronounced

7In contrast to what one would conclude using sample skewness measures.
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compared to crude oil and Gasoline. Moreover, the demand for Kerosene is relatively

stable throughout the year due to its use in aviation and other industrial applications;

(iii) unlike crude oil and Gasoline, Natural gas and Heating oil have significant storage

capacity, which helps to smooth out short-term fluctuations in supply and demand; (iv)

while crude oil and Gasoline are often affected by geopolitical tensions and conflicts, the

production and transportation of Kerosene, Heating oil, and Natural gas are often less

affected. This stability in supply helps to stabilize prices and returns; (v) Natural gas

and Heating oil are often sold under long-term contracts that can span several years,

ensuring more stable prices and returns.

Second, the three-moment VaR and ES measures perform significantly better than

their corresponding two-moment counterparts. These findings highlight that energy

market asset pricing and risk management analyses that use sample skewness may deliver

misleading conclusions regarding portfolio performance. Certainly, improved skewness

measures, based on the TGARCH-GC implied unconditional skewness, does enhance

the performance of skewness-based portfolios in terms of Sharpe ratio, see Zakamouline

and Koekebakker (2009) and Li (2020) for further evidence on this issue.

The remainder of the paper is divided into four sections. Section 2 reviews the al-

ternative methods for testing the unconditional skewness. In particular, we describe

traditional tests for skewness as well as the TGARCH-GC model that will be used to

estimate the unconditional skewness of returns, and also to test its statistical signifi-

cance. Section 3 is about modeling the tail risk based on VaR and ES according to the

CF3 expansion for the unconditional distribution of returns. In Section 4, we describe

the data and apply the different methods to test whether energy returns are symmetric

or skewed, and also the effects of skewness in tail risk through estimations of both VaR

and ES measures. Section 5 concludes the paper.

2 Testing for skewness

We start by considering three classical statistics to test for skewness in energy returns.

Specifically, the robust skewness statistics of Bowley (1901) and Yule (1911) as well as

the sample skewness statistic. Next, we employ the TGARCH-GC model, for which we

know the analytical expression of skewness, to estimate and test whether the uncondi-

tional skewness of energy returns is equal to zero.
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2.1 Traditional tests for Skewness

Consider a stationary time series, yt, with mean µ and variance σ2. It is well known (see,

for example, Kendall and Stuart, 1969) that, if yt with t = 1, 2, ..., T, is independent

and identically distributed (iid) as a normal distribution, µ̂ = 1
T

∑T
t=1 yt is the sample

mean and ŝk is the sample skewness given by

ŝk =
1
T

∑T
t=1(yt − µ̂)3(√

1
T−1

∑T
t=1(yt − µ̂)2

)3 , (1)

then √
T ŝk −→d N(0, 6). (2)

This skewness test is widely used by practitioners. However, as discussed by Bai and Ng

(2005) and Holgersson (2007), among others, it has serious drawbacks. For example, it

does not discriminate between skewed and non normal symmetric distributions. Several

alternatives have been proposed and analyzed in the literature, for example, the robust

skewness estimators of Bowley (1901) and Yule (1911) given, respectively, by

ŝkB =
Q̂3 − 2M̂ + Q̂1

Q̂3 − Q̂1
(3)

and

ŝkY =
µ̂− M̂
σ̂

, (4)

where M is the median of yt, σ is the standard deviation, Q1 and Q3 are the first and

third quartiles respectively, and M̂, σ̂, Q̂1 and Q̂3 are their sample estimators. According

to Ngatchou-Wandji (2006) and Ekström and Jammalamadaka (2012), it can be seen

that √
T
(
Q̂3 − 2M̂ + Q̂1

)
−→d N(0,Θ2), (5)

where

Θ2 = 0.25×0.75
f2(Q3)

+ 0.25×0.75
f2(Q1)

+ 1
f2(M)

+ 2×0.252
f(Q3)×f(Q1) −

2×0.25
f(Q3)×f(M)

− 2×0.25
f(Q1)×f(M)

(6)

and f is the density function of yt. Moreover, Cabilio and Masaro (1996) showed that

√
T ŝkY −→d N(0, σ−2ν2), (7)
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where

ν2 = σ2 +
1

4f 2(M)
− E |yt −M |

f(M)
. (8)

Using the previous asymptotic distributions, we could test whether or not the uncon-

ditional skewness of energy returns is equal to zero by means of three alternative tests

statistics, which are all approximately distributed as a standard normal. More precisely,

the three test statistics are given by

zs =

√
T × ŝk√

6
, zB =

√
T ×

(
Q̂3 − Q̂1

)
× ŝkB

Θ̂
and zY =

√
T × ŝkY
σ̂−1 ν̂

, (9)

where Θ and ν are estimated by considering the sample estimators of M , σ, Q1 and

Q3, as well as the sample counterpart of E |yt −M |. Finally, the density function of yt,
denoted as f , can be estimated non-parametrically by using the Epanechnikov kernel

function.

2.2 Tests for the TGARCH-GC skewness

First, we introduce the model for returns and the unconditional moments given in

Carnero et al. (2022). Second, we consider several tests for the implied unconditional

skewness under the TGARCH-GC model.

2.2.1 Model for returns

Consider a conditionally heteroskedastic process rt given by

rt = µ+ εt, εt = σtzt, (10)

where µ and σ2t denote, respectively, the conditional mean and variance of rt given the

information set Ft−1 and {zt} is a sequence of iid random variables distributed as a

Gram-Charlier (GC) with probability density function (pdf) given by

h (x,ϑ) = φ (x)ϕ(x,ϑ), (11)

where x ∈ R, ϑ = (ϑ1, ϑ2) ∈ R2 is the parameter vector, φ (·) is the pdf of the standard
normal distribution and ϕ(·) is defined as

ϕ(x,ϑ) = 1 +
ϑ1√
3!
H3(x) +

ϑ2√
4!
H4(x), (12)
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such that Hk (·) are the k-th orthonormal Hermite polynomials. Specifically,

H3(x) = (x3 − 3x) /
√

3!, H4(x) = (x4 − 6x2 + 3) /
√

4!. (13)

In this case, the third and fourth order moments of zt are its skewness and kurtosis and

will be denoted, respectively, by skz = ϑ1 and kz = 3 + ekz, being ekz = ϑ2 the excess

kurtosis, see Jondeau and Rockinger (2001). Consider ψk = E
[
zkt
]

=
∫ +∞
−∞ xkh (x,ϑ) dx

where h (·) is given in (11), then ψ1 = 0, ψ2 = 1, ψ3 = skz and ψ4 = 3 + ekz.

We assume that the error process {εt} in (10) follows the TGARCH(1,1) model pro-

posed by Zakoian (1994) which specifies directly the volatility σt and, as discussed by

Rodríguez and Ruiz (2012), it is an appropriate and flexible GARCH-type model to rep-

resent the dynamic properties of financial returns, namely, excess kurtosis, conditional

heteroskedasticity and leverage effect. In this model, σt is given by

σt = ω + βσt−1 + α+ε+t−1 − α−ε−t−1
= ω + σt−1ct−1, (14)

such that ct = β + α+z+t − α−z−t , ω > 0, β ≥ 0, α+ ≥ 0 and α− ≥ 0. We use the

notation x+t = max (xt, 0) and x−t = min (xt, 0) where xt can be either εt or zt.

This model allows for an asymmetric response of volatility to positive and negative

past returns. In particular, the volatility tends to be higher following negative return

shocks than following positive ones of the same magnitude. This leads generally to

negative cross-correlations between lagged returns and volatility. As we can see in (14),

when εt−1 is positive, the volatility response is linear in εt−1 with slope α+, but if εt−1
is negative, the slope of the response is α− and it is expected that α+ < α−. Notice

that when α+ = α−, the volatility responds symmetrically to positive and negative past

returns and the model collapses to the Absolute Value GARCH (AVGARCH) model of

Taylor (1986) and Schwert (1989).

Francq and Zakoian (2010) show that (14) is strictly stationary if E (ln (ct)) < 0,

and it is second-order stationary if E (c2t ) < 1. Carnero et al. (2022) show that the

skewness of rt in (10) is

skr = skz
E (σ3t )

E (σ2t )
3/2
, (15)

where

E
(
σkt
)

=
ωkfk∏k

j=1 (1− aj)
, k = 1, 2, 3 (16)

9



with f1 = 1, f2 = 1 + a1, f3 = 1 + 2a1 + 2a2 + a1a2, and ak = E
(
ckt
)
is given by

a1 = β + g1φ0 (1− ekz/24) ,

a2 = β2 +
(
α+
)2 − 2βg1ψ

−
1 + t2ψ

−
2 , (17)

a3 = β3 + 3β
(
α+
)2

+
(
α+
)3
skz − 3β2g1ψ

−
1 + 3βt2ψ

−
2 − g3ψ−3 ,

where ψ−1 = (ekzφ0 − 24φ0) /24,ψ−2 = (3− 2skzφ0) /6, ψ
−
3 = (2skz − ekzφ0 − 8φ0) /4

and φ0 = 1/
√

2π. Note that ψ−k = E
[(
z−t
)k]

=
∫ 0
−∞ x

kh (x,ϑ) dx.

Finally, other GARCH-type models are based on modeling directly the conditional

variance σ2t . For instance, if we consider the GJR-GARCH of Glosten et al. (1993),

there is no closed-form expression for E(σ3t ) in (15) and so, E(σ3t ) is obtained ac-

cording to the following second-order Taylor approximation: E (σ3t ) ≈ 5
8

[E (σ2t )]
3/2

+
3
8
E (σ4t ) [E (σ2t )]

−1/2, where σ2t = ω + βσ2t−1 + α+1
(
ε+t−1

)2
+ α−1

(
ε−t−1

)2
, εt = σtzt and zt

is GC-distributed (GJR-GC model). This is the main reason why we have not used

alternative GARCH models.8

2.2.2 Testing the TGARCH-GC implied unconditional skewness

A test for skewness of the unconditional distribution of returns can be obtained through

the asymptotic distribution of the maximum likelihood (ML) estimator ŝkr of the un-

known skr in (15) by using the Delta method. Nevertheless, this estimator leads to a

very slow convergence rate to its asymptotic distribution. This evidence can be found,

for instance, in Franq and Zakoian (2022) when testing the existence of the unconditional

GARCH moments. They tackle their slow convergence rate problem by implementing

bootstrap-based tests. In our case, this latter method has the drawback of being very

high time-consuming due to the large number of TGARCH-GC estimations that it re-

quires.

Another alternative testing method is driven by Anatolyev (2019), who implements

the IM test of Ibragimov and Müller (2010), to build alternative confidence intervals

8Indeed, we tried to compute estimations of GJR-GC approximated skewness (also considering other
distributions) for both daily and weekly series, and in most cases, the condition for the existence of the
third order moment did not hold leading to infinite skewness. For those cases where it was possible
to compute the approximate skewness, we found large differences with respect to the TGARCH-GC
skewness. In short, the exact skewness under the TGARCH model seems to behave better than the
approximated one under the GJR for the parameter values obtained with the energy return series of
this paper.
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(CIs) from those based on the large sample theory for the unconditional GARCH kur-

tosis. The IM method allows to construct CIs for skr with a small number of repeated

TGARCH-GC estimations. To compute the IM test statistic, the original sample is

divided into q ≥ 2 non-overlapping groups, with nj observations in each group j and

T =
∑q

j=1 nj. Let us denote by ŝkr,j the implied skewness estimate of skr obtained with

only the observations in group j. The robust test for the null hypothesis H0 : skr = 0

against the two-sided alternative H1 : skr 6= 0 is based on the usual t-statistic:

tskr =
√
q
ŝkr
S
, (18)

where ŝkr = q−1
∑q

j=1 ŝkr,j and S2 = (q − 1)−1
∑q

j=1

(
ŝkr,j − ŝkr

)2
. The IM test

statistic is approximately distributed as a Student-t with q− 1 degrees of freedom. The

IM confidence interval for skr with 1 − α approximate coverage can be constructed as
ŝkr±cvα S√

q
, where cvα denotes the (1− α/2) quantile of the Student-t distribution with

q − 1 degrees of freedom. The null hypothesis, H0 : skr = 0, will be rejected when the

zero is not contained in the IM confidence interval for skr.

3 Skewness implications for tail risk

We consider the CF3 expansion for the unknown returns unconditional distribution in

(10) to compute quantiles for VaR and ES calculation and evaluate the implications of

skewness in returns’tail risk.

3.1 Third-order Cornish-Fisher expansion

Let y denote the CF3 random variable, which is a second-order polynomial expansion

of the standard normal w given by

y = ϕ (w) = w +
ξ

6

(
w2 − 1

)
, (19)

with mean and variance: µy = 0 and σ2y = 1 + ξ2/18. The skewness is sky =

E (y3) /
(
σ2y
)3/2

where E (y3) = (ξ/3)3 + ξ. To compute the quantiles of y, we must

guarantee the monotonicity condition, which means that the transformation from w to

y is one-to-one. This implies that the derivative of y relative to w is positive, ϕ′ (w) > 0.

11



The quantile of y in (19) at a given probability level α is:

yα = ϕ (wα) = wα +
ξ

6

(
w2α − 1

)
, (20)

with wα = Φ−1 (α) such that Φ (·) denotes the cumulative distribution function (cdf)
of the standard normal distribution. It is verified that sky ≈ ξ when ξ ∈ (−3/4, 3/4).9

This result suggests that the sample skewness of returns series (with constant mean)

can be a good candidate estimate for the parameter ξ. The fourth-order moment of y

can be easily obtained as E (y4) =
(
1 + c2ξ

2 + c4ξ
4
)
with c2 = 5/6 and c4 = 5/324. The

kurtosis ky, defined as ky = E (y4) /
(
σ2y
)2
, is an even function with respect to ξ such

that 3 ≤ ky < 3.72. Figure 1 exhibits the skewness-excess kurtosis frontier of CF3, i.e.

the points (eky (ξ) , sky (ξ)) where eky = ky − 3 for the previous range of ξ. The plot

shows that the CF3 allows ranges of skewness and excess kurtosis that include those of

the return series considered in our empirical analysis.

[Figure 1]

Consider the affi ne transformation x = a + by with y as the random variable in (19),

and both a and b as the location and scale parameters, respectively. The cdf of x

is given by Fx (u; ξ) = Φ (γ (u, ξ)) with u ∈ R and γ (u, ξ) = ϕ−1
(
u−a
b

)
; while the

pdf of x is obtained as fx (u; ξ) = φ(γ)
bϕ′(γ) . Note that v = γ is one of the roots of the

equation ϕ (v) = u−a
b
verifying that ϕ′ (γ) > 0. The previous equation can be rewritten

as h (v) = 0 such that h (v) = (ξ/6) v2 + v − (u+ ξ/6) where u = (u− a) /b. Then,

γ (u, ξ) = −3ξ−1
(

1−
√

∆
)
with ∆ = (ξ/3)2 + 2u (ξ/3) + 1.

3.2 VaR under CF3

Definitively, the unconditional VaR at probability level α of rt in (10) can be obtained

through yα in (20) such that ξ is replaced with skr in (15), as follows

V aR3 (α) = µ+
σr
σy

(
wα +

1

6
(w2α − 1)skr

)
(21)

where, according to (16), σ2r = ω2 (1 + a1) (1− a1)−1 (1− a2)−1 with ak in (17). Hence-

forth, we denote (21) as the implied three-moment VaR (VaR3). We also compare VaR3

9This result is very easy to check. It is also available upon request.
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with the two-moment VaR (VaR2) based on the standard normal distribution. Hence,

the implied VaR2 is easily obtained from (21) when skr = 0 (which implies σy = 1), i.e.

V aR2 (α) = µ+ σrwα. (22)

3.3 ES under CF3

Following Maillard (2018), we can easily obtain a closed-form expression for the condi-

tional VaR, or ES, under the CF3 expansion in (19) as

E [y |y ≤ yα ] = E [ϕ (w) |w ≤ wα ]

= −φ (wα)

α

(
1 +

ξ

6
wα

)
. (23)

Figure 2 exhibits, on the left panel, the ES in (23) and the corresponding VaR, or

quantile yα, in (20) with wα = −2.326 for α = 1% as a function of ξ ∈ (−3/4, 3/4). The

right panel displays the cdf of y evaluated at each ES value10 represented in the left plot

according to ξ.

[Figure 2]

The implied unconditional ES of rt in (10) under CF3 is the conditional expectation of

returns smaller than VaR in (21) at probability level α,

ES3 (α) = µ+
σr
σy
E [y |y ≤ yα ] , (24)

where ξ in (23) is replaced with skr in (15). The implied ES with only the first two

moments is obtained when skr = 0 (and so, σy = 1), i.e.

ES2 (α) = µ− σr
φ (wα)

α
. (25)

4 Empirical application

In this section we analyze empirically whether or not the unconditional distribution of

energy returns is skewed. First, we consider different series of daily and weekly returns

and test for skewness using the different methods described in Section 2. Second, we

show practical applications of TGARCH-GC implied skewness for measuring tail risk.

10The cdf at point y∗α, which denotes the ES in (23), is Fy (y∗α; ξ) = Φ
(
−3ξ−1

(
1−
√

∆
))

with

∆ = (ξ/3)
2

+ 2y∗α (ξ/3) + 1. For more details, see Section 3.1.
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4.1 Data and summary statistics

The series analyzed are the log returns computed as rt = 100 ln (Pt/Pt−1) from samples

of closing prices observed at daily frequency, {Pt}Tdt=1 with Td as sample size, and weekly
frequency, {Pt}Twt=1 with Tw as sample size, of six common energy commodities traded in
the market such as, West Texas Intermediate (WTI) crude oil; Brent crude oil; Heating

oil No. 2; New York Harbour Conventional Gasoline Regular; Kerosene-Type jet fuel and

Henry Hub Natural gas. Table 1 provides the returns summary statistics. The observa-

tion period for all series covers until April 5, 2021, and the start date for each series de-

pends on data availability and is provided in Table 1. The data is publicly available from

the Federal Reserve Economic Database (FRED) https://fred.stlouisfed.org/. All

series present a negative skewness coeffi cient, except the weekly Heating oil returns,

ranging from -1.83 (Brent oil) to -0.19 (Natural gas) for daily frequency, and from -

3.08 (WTI) to 0.04 (Heating oil) for weekly returns. The kurtosis is high for all series

ranging from 14.62 (Gasoline) to 72.51 (Brent oil) for the daily series, and from 8.11

(Kerosene) to 331.14 (WTI) for weekly returns. The non-reported Jarque-Bera test

rejects normality for all series.

[Table 1]

4.2 Tests for skewness

We test for skewed distributions using, first, the classical tests described in Section 2.1

and later, we use the TGARCH-GC model described in Section 2.2.

4.2.1 Traditional tests

We have computed standard, Bowley and Yule tests statistics given by (9).11 Under

the standard normal distribution, we have calculated both asymptotic and bootstrap

p-values of the three tests. For the bootstrap approach, see Jiang et al. (2020), we have

obtained 500 block-bootstrap time series, r∗t , from the original series, rt. For each of the

bootstrap series
{
r∗t,i
}
where i = 1, . . . , 500, we have found the three estimators of the

skewness, ŝk∗i , ŝk
∗
B,i, and ŝk

∗
Y,i in (1) , (3) and (4) respectively. Then, we calculated the

sample variance of each bootstrap estimator with the 500 values previously obtained.

11In particular, we have used Matlab functions fitdist.m and quantile.m in order to estimate the
density function f and the first and third quartiles.
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For instance, ̂
V ar(ŝk∗) = 1

499

∑500
i=1

(
ŝk∗i − ŝk∗

)2
where ŝk∗ = 1

500

∑500
i=1 ŝk

∗
i . Finally, the

bootstrap test statistics are given by

z∗s =
ŝk√
̂

V ar(ŝk∗)

, z∗B =
ŝkB√
̂

V ar(ŝk∗B)

and z∗Y =
ŝkY√
̂

V ar(ŝk∗Y )

. (26)

Table 2 reports both asymptotic and bootstrap p-values, denoted as p-va and p-vb,

respectively. At daily frequency, the results show that under asymptotic p-values the

standard test rejects symmetry for all series, while the Bowley test rejects only for both

Kerosene and Natural gas, and the Yule test only for WTI. This is expected from the

results of a comparison analysis of the power functions of the previous asymptotic tests,

which is provided later on. For weekly frequency and under asymptotic p-values, the

standard test rejects symmetry for all series apart from Heating oil, while the Bowley

test rejects for WTI, Kerosene and Natural gas, and the Yule test for Brent oil, Gasoline

and Kerosene. For weekly returns and bootstrap p-values, the null is rejected only for

WTI and Kerosene (Bowley and Yule tests) and Brent oil (Yule test). We can see that,

using the robust tests, the null hypothesis of skewness equal to zero is never rejected for

Heating oil, indicating that there is no evidence of skewed unconditional distributions

for this series of returns under both frequencies. However, results differ for the rest of

the series depending on the test used and also on the frequency. For instance, the daily

returns series of Brent oil and Gasoline show no evidence of skewness under the two

robust tests. It is also worth observing from the comparative of tests power functions

provided below that if the series is not symmetric, the Yule test is expected to reject

more often that the Bowley test.

[Table 2]

4.2.2 Tests under the TGARCH-GC model

Table 3 presents maximum likelihood estimates (MLEs) of the TGARCH-GC model for

the returns series in Table 1. All series at both frequencies present high persistence and

kurtosis as well as an asymmetric response of volatility to positive and negative shocks,

as we can see, in most cases, from the different estimates of α+ and α−. Note that the

asymmetric volatility behavior in most series, and also under both frequencies, is in line

with the empirical evidence of that the estimated values of α+ are smaller than those

of α−, except for Natural gas daily and weekly returns. Regarding the skewness-related
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parameter, skz,it is found to be negative and statistically significant for WTI, Brent

oil and Gasoline daily and weekly returns.12 Table 4 contains the implied skewness,

skr, obtained by plugging the TGARCH-GC parameter estimates into equation (15).

Comparing these estimates with the sample skewness displayed in Table 1, we can see

that both sample and implied estimates are negative for most of the series, although

there are a couple of exceptions. First, the case of the Natural gas weekly returns, for

which the implied skewness is positive. Second, the weekly series of the Heating oil

returns, for which the sample skewness is positive but the implied one is negative.

[Table 3]

Next, we compute 95% CIs for skr following the methodology described in Section

2.2. Table 4 shows the CIs calculated for all the series taking q = 10. The reason for

such a number is because the larger q, the higher the power function of the test, as

shown in Carnero et al. (2022). We can see that using this test, the null hypothesis of

zero skewness is rejected only for the daily series of WTI, Brent oil and Gasoline.13

Finally, we perform a bootstrap test using the TGARCH-GC skewness skr in (15).

Specifically, following the same procedure as in (26), we get 500 block-bootstrap time

series, r∗t , from the original series, rt. For each of the bootstrap series
{
r∗t,i
}
where

i = 1, . . . , 500, we have found the estimator of the implied skewness, ŝk∗r,i, given by

the fitted TGARCH-GC model, and then we calculated the sample variance of the

bootstrap implied skewness estimates by using the 500 values previously obtained, i.e.
̂

V ar(ŝk∗r) = 1
499

∑500
i=1

(
ŝk∗r,i − ŝk∗r

)2
where ŝk∗r = 1

500

∑500
i=1 ŝk

∗
r,i. Hence, the test statistic

is given by

z∗implied =
ŝkr√
̂

V ar(ŝk∗r)

, (27)

and the p-value given by the standard normal distribution. The results, exhibited in

Table 4, show that, returns’skewness is statistically different from zero for WTI, Brent

oil and Gasoline daily series as well as for Brent oil and Gasoline weekly series.

[Table 4]
12As a robustness check, we have also considered the TGARCH model assuming that innovations zt

in (10) follow the well-known skewed Student’s t distribution of Hansen (1994). The estimation results,
available upon request, for the skewness-related parameter are in line with the results obtained for the
TGARCH-GC.
13Weekly CI results are not reported as they are not reliable enough due to small partitioned sub-

sample sizes. However, they are available upon request.
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In order to check the robustness of our results, we have estimated the unconditional

skewness of the daily returns series by means of the implied skewness given by the fitted

TGARCH-GC model using a rolling window scheme, with sample size T = 5000. As an

example, we present the results for two series of daily returns.14 Specifically, Heating

oil, for which the null hypothesis of skewness equal to zero is not rejected, and Gasoline,

for which the null hypothesis of skewness equal to zero is rejected. We first estimate

the TGARCH-GC model and the implied skewness using the period from June 2, 1986

to April 19, 2006. When a new observation is added to the sample, we delete the first

observation and re-estimate the TGARCH-GC model and the implied skewness. This

process is repeated until we reach the last 5000 observations in the sample, from May

1, 2001 to April 5, 2021. This amounts to considering 3758 different subsamples and

therefore the same number of unconditional skewness estimates, which are exhibited in

Figure 3. This figure also plots the 95% IM confidence intervals for skr, together with

the implied skewness obtained with the full sample, both displayed in Table 4. Finally,

Figure 3 also exhibits the zero line in order to see whether or not it is included in the

confidence interval for skr. As we can see, on the one hand, for the Heating oil, the

estimated skewness obtained using the 3758 different subsamples is close to zero, rather

similar to the unconditional skewness obtained with the full sample, and it is always

inside the 95% confidence interval. Notice that the previous CI does contain the zero line,

confirming that the unconditional skewness of the Heating oil daily returns is equal to

zero. On the other hand, for the Gasoline series, the estimated skewness corresponding

to the different subsamples is always negative, very close to the unconditional skewness

computed with the full sample, and it is always inside the 95% confidence interval,

which does not contain the zero line. This result shows evidence that the unconditional

distribution of the Gasoline daily returns is negatively skewed.

[Figure 3]

4.2.3 Skewness tests power comparisons

We provide a simulation exercise to compare the power of traditional, robust and

TGARCH-GC implied skewness tests for skewness. The sample, Boyle and Yule as-

ymptotic and bootstrap skewness test statistics are given in (9) and (26), respectively,

14This robustness analysis results for the rest of series in the paper are not presented to save space
and as they consistent to those exhibited but they are available upon request.
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and the TGARCH-GC implied skewness bootstrap test statistic is in (27).

We obtain 1000 replicates of TGARCH-GC series, of size T = 3000, given by model

(10) for asset returns typical parameter values: µt = 0, ω = 0.0217, α+ = 0.0244,

α− = 0.1252, β = 0.9239, ekz = 0.7533 and skz = 0 (under the null hypothesis,

H0 : skz = 0) and skz = ±0.1, 0.2, 0.3, 0.4, 0.5, 0.6 (under H1 : skz 6= 0). The tests

significance level is α = 0.05.15 Figure 4 displays the estimated power function for the

asymptotic (left plot) and bootstrap (right plot) skewness tests. Sample, Boyle and

Yule power functions for asymptotic (bootstrap), in the left (right) plot, are denoted by

Astand (Bstand), Aboyle (Bboyle) and Ayule (Byule), respectively, and the TGARCH-

GC power function is denoted by BTGARCH.

Regarding the asymptotic tests, the estimated size of the test (i.e. the probability

of rejecting the null hypothesis when it is true) is 0.6340 for Astand, 0.0300 for Aboyle

and 0.0440 for Ayule. Clearly, Astand performs much worse than the asymptotic robust

tests in regard to size, the latter provide rather close values to the nominal level, not

only for α = 0.05, but also for α = 0.01, 0.10 -these last results are available upon

request. This illustrates the high probability of rejecting symmetric distributions when

employing sample asymptotic tests. Under H1, the Bowley asymptotic test estimated

power function is much worse than that of Yule and sample tests, needing very high

levels of skewness to be able to reject the null successfully. Turning to the bootstrap

tests, we find that all provide very similar and close size to the nominal level. TGARCH

estimated power is much better, as expected, than the rest of the tests. It is confirmed

that the Bowley bootstrap test performs much worse too than Yule and sample ones.

Finally, Yule test estimated power is better than that of the sample test.

[Figure 4]

4.3 VaR and ES accuracy

In order to evaluate sample and implied estimated VaR and ES relative accuracy, we con-

sider empirical number of violations as well as magnitude of exceptions, see López (1998)

and Angelidis and Degiannakis (2007). For this purpose, we implement a constant-size

rolling window exercise with Nd = 2000 and Nw = 500 OOS estimations for daily and

weekly frequencies, respectively.

15An analysis of the test power in relation to lower sample sizes, e.g. T < 1000 typical for weekly
data, is discarded in our simulation exercise because of the same reason explained in footnote 13.
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Let ht(α) = I (rt < X) be the violation or hit variable with X = V aR (α), ES (α)

as the unconditional VaR and ES measures in section 3.2. Let ĥt(α) be the estimation

of ht(α), i.e. ĥt(α) = I
(
rt < X̂t

)
where X̂t =

{
̂V aRjt (α), ̂ESjt (α) : j = 2, 3

}
. Note

that both ̂V aRjt (α) and ̂ESjt (α) depend now on the subscript t since they are obtained

with the estimation of the parameters under the information set at time t determined

by the rolling window procedure. The quadratic loss function, which incorporates the

exception magnitude, is QLt (α) = (rt −X)2 × ht(α). The sample average of the esti-

mation of QLt (α) over the OOS period is given by ̂AQL (α) = N−1
N∑
t=1

Q̂Lt (α), where

Q̂Lt (α) =
(
rt − X̂t

)2
× ĥt(α) and N = Nd, Nw. The risk measures of X̂t are obtained

under two alternative estimation methods. First, the ’implied method’based on esti-

mating the unconditional moments µ, σ2r and skr as a function on the ML parameter

estimates from the TGARCH-GC model described in section 2.2.1. Second, the ’sample

method’that consists on replacing the above moments by their sample ones.

Table 5 reports mean values across the OOS period corresponding to measures of

X̂t for comparison purposes.16 Our results show that, in most cases, the mean values

of ̂V aR2t (α) and ̂ES2t (α) are lower (in absolute value) than ̂V aR3t (α) and ̂ES3t (α)

for each method and frequency. Indeed, we find that the latter are more conservative

measures of tail risk (higher absolute values) than the former when the average (sample

and implied) skewness over the N windows of the OOS period is negative. Only for

Heating oil (weekly) and Natural gas (daily and weekly), ̂V aR3t (α) and ̂ES3t (α) under

the sample method are lower (in absolute value) than their corresponding ̂V aR2t (α) and
̂ES2t (α) since for these series the OOS average sample skewness is positive. The same

pattern occurs for Natural gas (daily and weekly) under the implied method, as the

OOS average implied skewness is positive for these series.

Table 6 shows the number of violations
∑N

t=1 ĥt(α) and the average of the magnitude

of exceptions (AQL). We use these measures to evaluate the accuracy of two-moment

risk measures (VaR2, ES2) versus three-moment ones (VaR3, ES3), and sample versus

implied estimated VaR and ES. Several conclusions are obtained. First, the VaR results

(Panel 1) show that in most cases the number of exceptions from ̂V aR3t (α) under both

16Those cases where the CF3 quantile estimation is non-monotonic, i.e. ϕ′ (wα) < 0, the increasing
rearrangement procedure by Chernozkukov et al. (2010) has been implemented to restore monotonicity.
An empirical application of this methodology can be seen in Amédée et al. (2015).
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methods are no higher than their respective ones from ̂V aR2t (α), as well as the former

exhibit lower AQL values than the latter, for both frequencies. As a peculiarity, we find

that (i) for Heating oil (weekly), ̂V aR3t (α) presents a higher number of violations (and

higher AQL) than ̂V aR2t (α) under the sample method; and (ii) for Natural gas (daily

and weekly), ̂V aR3t (α) present a higher number of violations (and higher AQL) than
̂V aR2t (α) under both methods. This is because for these cases the sample and/or im-

plied OOS average skewness are positive, in addition Natural gas daily returns’skewness

is not statistically significantly different from zero as it can be seen from the implied

skewness test outcomes exhibited in Table 4. Similar conclusions can be inferred from

the ES results in Panel 2.17 Second, both two-moment and three-moment VaR and ES

measures from the implied method provide lower AQL values than their sample coun-

terparts with the following exceptions: Heating oil (daily) and WTI (weekly) series for

VaR3 and ES3.

In summary, our results suggest that VaR3 and ES3 significantly improve VaR2 and

ES2 accuracy as the former measures deliver closer number of exceptions to the ex-

pected ones as well as lower AQL for both sample and implied methods and frequencies.

Furthermore, AQL values (number of exceptions) from VaR2 and ES2 are higher (no

lower) than those obtained under VaR3 and ES3, which means that the former measures

systematically underestimate tail risk as a result of skewness not being accounted for.

[Tables 5 & 6]

5 Conclusions

In this paper we analyze whether or not energy returns have a skewed unconditional

distribution. To address the problem, we first use traditional tests of skewness which

most of them agree in pointing out a distribution with zero skewness for Heating oil

return series. Then, we use the TGARCH model assuming a Gram-Charlier distribution

for the innovations to estimate the unconditional skewness of the return series. We
17The expected number of violations has been adjusted for the OOS sample. Specifically, several

days (or weeks) have been eliminated since the TGARCH-GC parameter estimations do not verify the
condition of a3 < 1, see equation (17). The failure to comply with this condition means the non-
existence of the third moment. As a result, the expected one-percent VaR number of violations for
each series, exhibited in brackets next to series names in Table 6, is different for those series requiring
the previous adjustment.
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show that testing for skewed returns through the statistical significance of the skewness

implied by the estimated TGARCH-GC modeldiffers from traditional skewness tests.

Our results give evidence of negative skewness for the series of crude oil (WTI and

Brent) and Gasoline returns. Finally, we show how skewness affects tail risk through

an empirical application for VaR and ES. We find that three-moment VaR and ES

are consistently lower than two-moment ones, which means that they provide more

conservative measures of tail risk. Besides, improvements in accuracy from TGARCH-

GC-implied VaR and ES respecting sample moment ones are also rather apparent. These

results have important implications for risk management.

A fruitful avenue for future research would be obtaining the orthogonal decomposi-

tion of total tail risk into both skewness and kurtosis tail risk components. This kind

of analysis would develop the approach in You and Daigler (2010) for VaR under the

CF4 expansion. Specifically, we propose using polynomial adjusted densities as an al-

ternative and simple method, see León and Ñiguez (2022), in order to disentangle the

tail risk marginal contribution of skewness and kurtosis in the ES measure.
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Table 5
This table provides average one per cent (α = 0.01) third-order Cornish-Fisher approximated
VaR and ES for the OOS period from sample moments and TGARCH-GC-implied moments.
Predictions: 2000 (daily), 500 (weekly).

Sample Implied Sample Implied Sample Implied Sample Implied

Panel 1: Daily frequency Panel 2: Weekly frequency

WTI Brent oil WTI Brent oil

VaR2 -5.69 -9.10 -5.23 -7.95 -10.03 -10.43 -9.76 -11.34

ES2 -6.52 -10.42 -5.99 -9.11 -11.51 -11.96 -11.20 -12.99

VaR3 -6.67 -10.16 -6.17 -8.54 -11.55 -11.41 -10.82 -12.35

ES3 -7.90 -11.91 -7.31 -9.94 -13.64 -13.33 -12.69 -14.41

Heating oil Gasoline Heating oil Gasoline

VaR2 -5.47 -6.89 -6.13 -6.82 -10.10 -11.34 -11.15 -11.87

ES2 -6.26 -7.90 -7.02 -7.82 -11.59 -13.01 -12.79 -13.60

VaR3 -8.02 -6.90 -6.53 -7.15 -9.74 -11.44 -11.26 -12.98

ES3 -9.85 -7.92 -7.59 -8.29 -11.09 -13.15 -12.94 -15.16

Kerosene Natural gas Kerosene Natural gas

VaR2 -5.81 -10.23 -10.34 -19.12 -10.04 -10.70 -17.37 -20.21

ES2 -6.65 -11.73 -11.84 -21.91 -11.52 -12.28 -19.89 -23.15

VaR3 -6.01 -10.64 -8.36 -17.98 -10.61 -11.00 -15.07 -19.65

ES3 -6.94 -12.30 -9.06 -20.44 -12.32 -12.71 -16.66 -22.37
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