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1 Introduction

Evaluating models performance presents often pitfalls in practice even if theoretic principles are followed. 

Specifically, when models performance is rather similar, conclusions on statistical differences, relying on 

Diebold and Mariano (1995) type of tests, can be defective as they may hinge on the subsample type or size 

used. See also, for instance, Fissler, Ziegel and Gneiting (2016) for expected shortfall (ES) and Value-at-Risk 

(VaR) point forecast evaluation; Amisano and Giacomini (2007) for weighting score rules for probabilistic 

forecast evaluation.

As an alternative, we propose here copula methods to evaluate models’ performance differences. In 

particular, we use conditional copula for studying the tail dependence patterns of portfolio return series 

obtained through equity-screening based on performance measures (PMs). This approach is useful to identify 

differences in performance related to the tails of a distribution. We analyze the relationship between the 

portfolio return distributions obtained under alternative conditional PMs with regard to the benchmarking 

conditional Sharpe ratio (SR), see Sharpe (1994). For example, if two conditional PMs lead to similar 

(different) stock screenings, then the corresponding bivariate return distribution would exhibit a very high 

(low) dependence according to copula methods. We adopt different tail dependence patterns according to 

the following copula models: Gaussian; symmetrized Joe-Clayton (SJC); Gumbel and Clayton.

The conditional PMs are closed-form expressions based on the semi-nonparametric (SNP) distribution 

of Gallant and Nychka (1987) and obtained in León and Ñíguez (2020). Indeed, our portfolio returns series 

data come from PMs based on asymmetric reward/risk measures with respect to those from the SR. The 

alternative conditional PMs considered are the following: (a) The skewness and kurtosis ratio (SKR), see 

Watanabe (2006). (b) PMs based on partial moments, such as (i) the Farinelli-Tibiletti (FT) ratio, which 

nests the popular Omega and Upside potential ratios, see Farinelli and Tibiletti (2008), and (ii) the Sortino 

ratio, see Sortino and Van der Meer (1991). (c) Quantile-based PMs, such as the Rachev or expected tail 

ratio (ETR), and the Value-at-Risk ratio (VaRR); see Biglova, Ortobelli, Rachev and Stoyanov (2004) and 

Caporin and Lisi (2011), respectively.

The remainder of the paper proceeds as follows. Section 2 describes the empirical application on portfolio 

composition through equity screening under alternative PMs. Section 3 presents the copula methods applied 

to evaluate tail dependence and models’ performance differences. Section 4 provides a summary of the 

conclusions. Finally, the appendix shows a brief description about the alternative PMs.

2 Modeling Portfolio returns

2.1 Database description

We use a total of thirteen daily portfolio return series borrowed from León and Ñíguez (2020). These 

portfolios were constructed from selecting stocks that were constituents of the S&P 100 index in October 

2017. The data series correspond to the period from December 8, 2009 to October 18, 2017, a total of 

T = 1, 980 daily percentage log-return observations. Each portfolio return series is obtained according to an 

equity-screening procedure based on a particular PM, which is described in the Appendix, under a weekly
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the asset return model is rt = µ+ εt with εt = σtzt such that σ2t = E
[
ε2t |It−1

rebalancing horizon and the reward-to-risk (RRT) weighting scheme; see Kirby and Ostdiek (2012).1 We are 

interested in the PM portfolio return behavior respecting the SR one. Figure 1 (upper panel) provides a 

boxplot comparison of spread series from the alternative PMs for cumulative returns. The spread is obtained 

as the difference between a specific PM and the SR cumulative return series. We have a total of 12 series, 

each denoted with the selected PM. Note that the ETR(99,1) exhibits highest gains respecting the SR. The 

second portfolio with better performance would be VaR(99,1). Figure 1 (lower panel) shows the plots of 

cumulative return spread series from some selected portfolios.

2.2 The GJR-SNP model

First, we estimate the different PM return series according to the conditional variance model suggested 

by Glosten et al. (1993), and denoted as the GJR model, with constant mean and the SNP distribution 

for the innovations or standardized returns, see León et al. (2009). Let rt be the portfolio return process

characterized by the sequence of conditional densities f (rt |It−1; Υ ), where It−1 denotes the information 
set available prior to the realization of rt, Υ = (µ, θ,v) is the vector of unknown parameters with µ as

the constant (C) mean of rt, θ is the subset characterizing the conditional variance of rt, and v = (v1,v2)

characterize the shape of the standardized SNP distribution for the innovations,] zt iid∼ SNP (0, 1,v). Thus,

is the GJR model:

σ2t = α0 + βσ2t−1 + α+1
(
ε+t−1

)2
+ α−1

(
ε−t−1

)2
, (1)

such that α0 > 0, β ≥ 0, α+1 ≥ 0, α−1 ≥ 0, and consider ε+t = max (εt, 0), ε−t = min (εt, 0). Henceforth,

the above process for rt is referred to as C-GJR-SNP. We estimate this model for each return series by

maximum likelihood (ML). The parameter estimates, exhibited in Table 1, show that all return series

present significant skewness and kurtosis; their conditional variances are highly persistent and respond

asymmetrically to positive and negative shocks.

3 Conditional dynamic correlations

Next, we proceed to analyze the behavior of the daily conditional correlations between the PM portfolio

returns and the SR ones. We apply the conditional Gaussian copula, see Patton (2006). The copula

dependency parameter (or conditional correlation in this particular case), ρt, is driven by an ARMA(1,q)-

type process:

ρt = Λ(−1,1)

(
γ0 + γ1ρt−1 + γ2

1

q

∑q
j=1 Φ−1 (u1,t−j) Φ−1 (u2,t−j)

)
, (2)

where Λ(−1,1) (x) = (1− e−x) (1 + e−x)
−1 is the logistic transformation that keeps ρt within (−1, 1), and

ui,t = Fi (ri,t |It−1 ) i = 1, 2 such that Fi (· |It−1 ) denotes the conditional distribution for the C-GJR-SNP

model for the return ri,t. We set q = 8 in equation (2) which is a common value adopted in some studies as

e.g. Reboredo (2011). The parameters γj in (2) are also estimated by ML where the inputs are the estimates

1 It is available upon request some results under alternative weighting strategies based on equally weighted, global minimum

variance and volatility timing portfolios.
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of ui,t, denoted as ûi,t. In short, the parameters of our bivariate distribution are estimated in two stages.

In a first stage, we estimate all parameters implied in the conditional marginal distributions for ri,t and in

a second stage those for the copula model. The same procedure is applied in the next section.

Figure 2 exhibits the time series of (2) for the different PMs. Note that the daily conditional correlations

are very high for Sortino, Omega, Upside Potential and most PMs based on VaRR. Finally, those portfolios

based on ETR and SKR exhibit remarkably low correlations respecting the SR portfolio, which enhance the

difference between the latter and the former PMs. These results are also in line with those about equity

screening by León et al. (2019). Because of these findings, in the following section we explore the behavior

of the upper/lower tail of the bivariate distribution of SR and every other PM portfolio so as to highlight

possible differences in simultaneous occurrence of large/small PM portfolio returns.

4 Tail dependence analysis

In this section, we focus on the tail dependence measuring the probability that two variables are either in the

lower or in the upper joint tails. Specifically, we study the propensity of two portfolio returns, from a given

PM and SR strategies, to upward or downward comovements. This behavior is explained through the upper

and lower tail dependence parameters denoted by λU ∈ [0, 1] and λL ∈ [0, 1], respectively. Larger values

of λU (λL) indicate greater trend of the portfolio returns to cluster in the upper (lower) tail of a bivariate

distribution. In such a case, the returns are said to be upper (lower) tail dependent. More precisely, λU (λL)

measures the probability that a random variable —defined as a PM portfolio return—is above (below) a high

(low) quantile, given that a second random variable —defined as the SR portfolio return—is above (below) a

high (low) quantile. This dependence structure is modeled through copula functions.

Note that the Gaussian copula does neither capture upper nor lower dependence where the extreme tails

of the distribution of the variables are independent, i.e. λU = λL = 0. Thus, we implement alternative

copula models allowing for both/either upper or lower tail dependence. Namely, among the wide range of

copula functions, we use the SJC, Gumbel and Clayton copulas. The SJC has both upper and lower tail

dependence parameters, whilst Gumbel (Clayton) gathers only upper (lower) tail dependence. The SJC is

defined directly in terms of the above probabilities. Nonetheless, both Gumbel and Clayton copulas are

defined in terms of the parameters γG > 0 and γC > 1, respectively. Hence, the corresponding probabilities

are given by λU = 2 − 2(1/γG), λL = 0 for the Gumbel copula and, λU = 0, λL = 2−(1/γC) for the Clayton

copula, see Patton (2006).

Table 2 reports the probability estimates of the previous time-invariant copula models. We obtain the

following conclusions. Firstly, for the SJC copula it is found a statistically significant and higher asymmetry

value on the lower than on the upper tail, mainly for both SKR and ETR. Note that the estimates of λL

double those of λU for the latter two strategies. Secondly, for Sortino, Omega, Upside potential and most

VaRR cases both SJC probability coeffi cients are similar in magnitude as well as higher than the SKR and

ETR counterparts. This means that the former PMs exhibit higher upper tail dependence respecting the

SR than the latter. Thirdly, according to both Clayton and Gumbel copulas, it can be shown that both

SKR and ETR exhibit statistically significant and lower values for both λL and λU than the other PMs.
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This evidence is in accordance with the previous results under SJC. Summing up, these findings support the

superior performance of both SKR and ETR.

In order to reinforce the previous results, we estimate the time-varying SJC copula for the different PMs

with respect the SR portfolio under weekly rebalancing with the RRT scheme. Following Patton (2006), the

dynamics of both λL and λU under the conditional SJC copula are specified as

λL,t = Λ(0,1)

(
ωL + βLλL,t−1 + αL

1

q

∑q
j=1 |u1,t−j − u2,t−j |

)
, (3)

λU,t = Λ(0,1)

(
ωU + βUλU,t−1 + αU

1

q

∑q
j=1 |u1,t−j − u2,t−j |

)
, (4)

where Λ(0,1) (x) = (1 + e−x)
−1 is the logistic transformation that keeps λL,t and λU,t within (0, 1). According

to the Akaike information criterion —not exhibited here—, the time-varying SJC estimations (see Figures 3

and 4) provide better fit than their corresponding time-invariant versions (see Table 3), except for Omega,

VaRR (95,5) and VaRR (80,20) portfolios. Note that the averages of plot series in Figures 3 and 4 (red and

blue horizontal lines, respectively) are rather close to the unconditional SJC estimates of λL and λU in Table

3. This new evidence corroborates the results previously found under time-invariant SJC modeling.

5 Conclusions

We have applied conditional copula methods to study the behavior of portfolio returns constructed with

different PMs and compare with the benchmark SR portfolio. The portfolio return series we use are obtained

in León and Ñíguez (2020). We assume different (conditional) copula models for the bivariate distributions

of the PM return series. We estimate the univariate series by using the GJR-SNP model.

Our results show that under the Gaussian copula, both ETR and SKR portfolios exhibit remarkably

low correlations respecting the SR portfolio. This means that these two portfolios are different respecting

the SR one. We also find that copulas which focus on either the upper tail (Gumbel) or the lower tail

(Clayton) render significant differences. In short, our copula analysis is useful to understand what kind of

equity-screening strategy based on its corresponding PM performs better in relation to the SR portfolio.

Finally, an interesting avenue for further research is the construction of a copula-aggregate PM by means

of a generalization of the method proposed by Jouini and Clemen (1996) and developed by Hwang and

Salmon (2002). In this setting, the aggregate high-dimensional PM would gather each single expert opinion

represented by their PM.
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Appendix

Note that the name of each data series (a total of thirteen) comes from the PM used to rank the individual

stocks from the S&P 100 index by only selecting the best ten stocks (j = 1, ..., 10) according to the highest PM

values out of 90 stocks (after some restrictions) under a weekly rebalancing period and the RRT weighting

scheme: wj,t =
(
µ+j,t/σ

2
j,t

)
/
∑10
j=1

(
µ+j,t/σ

2
j,t

)
, where µ+j,t = max(µj,t, 0) with µj,t and σ2j,t denoting the

conditional mean and variance. The PMs based on partial moments, quantiles and tail measures are closed-

form expressions by using the conditional density of the individual stock returns. For more details, see León

and Ñiguez (2020).

From now on, we denote any individual stock return as rt. We start with the conditional Sharpe ratio

defined as SRt (θ) = µt−θ
σt
, where θ is the return threshold (e.g., risk-free rate, zero return,...). Second, the PM

that aims to explicitly adjust for skewness and kurtosis by using the simple skewness-kurtosis ratio: SKRt =
sr,t
kr,t
. Third, PMs based on the conditional upper/lower partial moments. The lower and upper partial

moments of order m and threshold θ are defined, respectively, as LPMt(θ,m) =
∫ θ
−∞(θ− rt)mf(rt |It−1 )drt

and UPMt(θ,m) =
∫ θ
−∞(rt − θ)mf(rt |It−1 )drt, where f(rt |It−1 ) is the conditional density of returns. The

Sortino ratio is obtained as Sortinot (θ) = µt−θ√
LPMt(θ,2)

. The following two PMs come from the Farinelli

and Tibiletti family defined as FTt (θ, q,m) =
q
√
UPMt(θ,q)

m
√
LPMt(θ,m)

, with q > 0 and m > 0. The higher the value

for q, the greater the investor’s preference for expected gain and the higher the value for m the greater the

investor’s dislike of expected losses. The Omega ratio and the Upside potential ratio are defined, respectively,

as FTt (θ, 1, 1) and FTt (θ, 1, 2). We have set θ = 0 for all the previous PMs.

Fourth, a class of PMs similar to the FT replaces partial moments with reward and risk measures based on

quantiles or tail measures. The VaR which is the ratio of the upper and lower quantiles given the stock return

distribution: V aRRt (α) =
∣∣∣V aRt(1−α)
V aRt(α)

∣∣∣, where V aRt (α) and V aRt (1− α) are, respectively, the conditional

lower and upper quantiles of rt with α set equal to 1%, 5%, 10% and 20%. The expected tail ratio defined

as ETRt (α) =
∣∣∣Et−1(rt|rt≥V aRt(1−α) )
Et−1(rt|rt≤V aRt(α) )

∣∣∣, where the numerator (denominator) is the reward (risk) measure
corresponding to the right-tail (left-tail) of the return distribution. These PMs are denoted, for instance, as

VaRR(95,5) and ETR(95,5) meaning that 1−α = 95% (upper quantile for VaRR or right tail for ETR) and

α = 5% (lower quantile for VaRR or left tail for ETR).
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Tables

Table 1: C-SNP-GJR model estimation results

α0 β α+1 α−1 µ ν1 ν2

SR
0.029∗∗∗

(0.007)

0.870∗∗∗

(0.015)

0.036∗∗∗

(0.013)

0.185∗∗∗

(0.023)

0.040∗∗

(0.020)

0.577∗∗∗

(0.036)

0.300∗∗∗

(0.033)

SKR
0.022∗∗∗

(0.005)

0.894∗∗∗

(0.012)

0.023∗

(0.012)

0.152∗∗∗

(0.019)

0.055∗∗∗

(0.019)

0.564∗∗∗

(0.044)

0.257∗∗

(0.036)

Sortino
0.028∗∗∗

(0.006)

0.866∗∗∗

(0.015)

0.044∗∗∗

(0.012)

0.188∗∗∗

(0.023)

0.042∗∗

(0.020)

0.590∗∗∗

(0.035)

0.311∗∗∗

(0.033)

Omega
0.029∗∗∗

(0.007)

0.869∗∗∗

(0.015)

0.040∗∗∗

(0.012)

0.184∗∗∗

(0.023)

0.042∗∗

(0.020)

0.587
∗∗∗

(0.036)

0.306∗∗∗

(0.034)

Upside P
0.019∗∗∗

(0.005)

0.893∗∗∗

(0.013)

0.033∗∗∗

(0.011)

0.159∗∗∗

(0.020)

0.045∗∗

(0.020)

0.585∗∗∗

(0.036)

0.304∗∗∗

(0.033)

VaRR(99,1)
0.006∗∗∗

(0.003)

0.925∗∗∗

(0.007)

0.047∗∗∗

(0.010)

0.103∗∗∗

(0.012)

0.053∗∗∗

(0.019)

0.588∗∗∗

(0.032)

0.299∗∗∗

(0.032)

VaRR(95,5)
0.020∗∗∗

(0.005)

0.898∗∗∗

(0.013)

0.032∗∗∗

(0.011)

0.148∗∗∗

(0.019)

0.049∗∗

(0.020)

0.587∗∗∗

(0.036)

0.300∗∗∗

(0.035)

VaRR(90,10)
0.025∗∗∗

(0.006)

0.877∗∗∗

(0.015)

0.044∗∗∗

(0.013)

0.172∗∗∗

(0.021)

0.044∗∗

(0.020)

0.567∗∗∗

(0.035)

0.294∗∗∗

(0.033)

VaRR(80,20)
0.035∗∗∗

(0.007)

0.851∗∗∗

(0.017)

0.054∗∗∗

(0.015)

0.199∗∗∗

(0.025)

0.033∗

(0.020)

0.580∗∗∗

(0.036)

0.306∗∗∗

(0.033)

ETR(99,1)
0.018∗∗∗

(0.004)

0.889∗∗∗

(0.013)

0.033∗∗

(0.014)

0.171∗∗∗

(0.021)

0.047∗

(0.019)

0.570∗∗∗

(0.038)

0.288∗∗∗

(0.033)

ETR(95,5)
0.040∗∗∗

(0.008)

0.855∗∗∗

(0.018)

0.019

(0.013)

0.208∗∗∗

(0.029)

0.042∗

(0.019)

0.544∗∗∗

(0.035)

0.283∗∗∗

(0.030)

ETR(90,10)
0.044∗∗∗

(0.008)

0.844∗∗∗

(0.017)

0.033∗∗

(0.013)

0.209∗∗∗

(0.029)

0.036∗

(0.020)

0.499∗∗∗

(0.044)

0.259∗∗∗

(0.032)

ETR(80,20)
0.031∗∗∗

(0.006)

0.860∗∗∗

(0.016)

0.003

(0.012)

0.213∗∗∗

(0.026)

0.031∗

(0.017)

0.488∗∗∗

(0.061)

0.213∗∗∗

(0.040)

Model: rt = µ+ εt, εt = σt (θ) zt, σ2t = α0 + βσ2t−1 + α+1 (ε
+
t−1)

2 + α−1 (ε
−
t−1)

2, zt
iid∼ SNP (0, 1;v), v = (v1,v2) .

This table presents ML estimates of the C-SNP-GJR parameters for the portfolio returns obtained under alternative
PMs (T = 1, 980 obs.). Heteroscedasticity-consistent standard errors are in parentheses below the parameter
estimates. (∗∗∗) indicates significance at 1% level; (∗∗) indicates significance at 5% level and (∗) indicates significance
at 10% level.
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Table 2: Estimates for copula models (PM-SR)

PM λU (SJC) λL (SJC) λL (Clayton) λU (Gumbel)

SKR 0.38∗∗ 0.65∗∗ 0.69∗∗ 0.59∗∗

Sortino 0.72 0.72 0.98∗∗ 0.97∗∗

Omega 0.71 0.78 0.98∗∗ 0.93∗∗

Upside P 0.73∗∗ 0.74∗∗ 0.95∗∗ 0.93∗∗

VaRR (99,1) 0.58∗∗ 0.76∗∗ 0.81∗∗ 0.74∗∗

VaRR (95,5) 0.74 0.78 0.92∗∗ 0.88∗∗

VaRR (90,10) 0.74∗∗ 0.77 0.95∗∗ 0.93∗∗

VaRR (80,20) 0.73∗∗ 0.78∗∗ 0.96∗∗ 0.94∗∗

ETR (99,1) 0.37∗∗ 0.65∗∗ 0.69∗∗ 0.59∗∗

ETR (95,5) 0.39∗∗ 0.65∗∗ 0.68∗∗ 0.59∗∗

ETR (90,10) 0.38∗∗ 0.67∗∗ 0.70∗∗ 0.59∗∗

ETR (80,20) 0.34∗∗ 0.61∗∗ 0.64∗∗ 0.55∗∗

This table presents probability estimates of the parameters λU and λL (upper and lower tail dependence, respectively)
for the time-invariant SJC, Gumbel and Clayton copulas to model the bivariate PM-SR. (∗∗) indicates significance
at the 5% level for the implied parameters (γG for Gumbel, γC for Clayton and both λU and λL for SJC).
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Figures
Figure 1: Spread series from different PMs with respect to SR

Boxplots of spread series (cumulative returns) from alternative PMs.

Cumulative return spread time series.
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1 Introduction

Evaluating models performance presents often pitfalls in practice even if theoretic principles are followed.

Specifically, when models performance is rather similar, conclusions on statistical differences, relying on

Diebold and Mariano (1995) type of tests, can be defective as they may hinge on the subsample type or size

used. See also, for instance, Fissler, Ziegel and Gneiting (2016) for expected shortfall (ES) and Value-at-Risk

(VaR) point forecast evaluation; Amisano and Giacomini (2007) for weighting score rules for probabilistic

forecast evaluation.

As an alternative, we propose here copula methods to evaluate models’ performance differences. In

particular, we use conditional copula for studying the tail dependence patterns of portfolio return series

obtained through equity-screening based on performance measures (PMs). This approach is useful to identify

differences in performance related to the tails of a distribution. We analyze the relationship between the

portfolio return distributions obtained under alternative conditional PMs with regard to the benchmarking

conditional Sharpe ratio (SR), see Sharpe (1994). For example, if two conditional PMs lead to similar

(different) stock screenings, then the corresponding bivariate return distribution would exhibit a very high

(low) dependence according to copula methods. We adopt different tail dependence patterns according to

the following copula models: Gaussian; symmetrized Joe-Clayton (SJC); Gumbel and Clayton.

The conditional PMs are closed-form expressions based on the semi-nonparametric (SNP) distribution

of Gallant and Nychka (1987) and obtained in León and Ñíguez (2020). Indeed, our portfolio returns series

data come from PMs based on asymmetric reward/risk measures with respect to those from the SR. The

alternative conditional PMs considered are the following: (a) The skewness and kurtosis ratio (SKR), see

Watanabe (2006). (b) PMs based on partial moments, such as (i) the Farinelli-Tibiletti (FT) ratio, which

nests the popular Omega and Upside potential ratios, see Farinelli and Tibiletti (2008), and (ii) the Sortino

ratio, see Sortino and Van der Meer (1991). (c) Quantile-based PMs, such as the Rachev or expected tail

ratio (ETR), and the Value-at-Risk ratio (VaRR); see Biglova, Ortobelli, Rachev and Stoyanov (2004) and

Caporin and Lisi (2011), respectively.

The remainder of the paper proceeds as follows. Section 2 describes the empirical application on portfolio

composition through equity screening under alternative PMs. Section 3 presents the copula methods applied

to evaluate tail dependence and models’ performance differences. Section 4 provides a summary of the

conclusions. Finally, the appendix shows a brief description about the alternative PMs.

2 Modeling Portfolio returns

2.1 Database description

We use a total of thirteen daily portfolio return series borrowed from León and Ñíguez (2020). These

portfolios were constructed from selecting stocks that were constituents of the S&P 100 index in October

2017. The data series correspond to the period from December 8, 2009 to October 18, 2017, a total of

T = 1, 980 daily percentage log-return observations. Each portfolio return series is obtained according to an

equity-screening procedure based on a particular PM, which is described in the Appendix, under a weekly
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rebalancing horizon and the reward-to-risk (RRT) weighting scheme; see Kirby and Ostdiek (2012).1 We

are interested in the PM portfolio return behavior respecting the SR one. Figure 1 (upper panel) provides a

boxplot comparison of spread series from the alternative PMs for cumulative returns. The spread is obtained

as the difference between a specific PM and the SR cumulative return series. We have a total of 12 series,

each denoted with the selected PM. Note that the ETR(99,1) exhibits highest gains respecting the SR. The

second portfolio with better performance would be VaR(99,1). Figure 1 (lower panel) shows the plots of

cumulative return spread series from some selected portfolios.

2.2 The GJR-SNP model

First, we estimate the different PM return series according to the conditional variance model suggested

by Glosten et al. (1993), and denoted as the GJR model, with constant mean and the SNP distribution

for the innovations or standardized returns, see León et al. (2009). Let rt be the portfolio return process

characterized by the sequence of conditional densities f (rt |It−1; Υ ), where It−1 denotes the information

set available prior to the realization of rt, Υ = (µ,θ,v) is the vector of unknown parameters with µ as

the constant (C) mean of rt, θ is the subset characterizing the conditional variance of rt, and v = (v1,v2)

characterize the shape of the standardized SNP distribution for the innovations, zt
iid∼ SNP (0, 1,v). Thus,

the asset return model is rt = µ+ εt with εt = σtzt such that σ2t = E
[
ε2t |It−1

]
is the GJR model:

σ2t = α0 + βσ2t−1 + α+1
(
ε+t−1

)2
+ α−1

(
ε−t−1

)2
, (1)

such that α0 > 0, β ≥ 0, α+1 ≥ 0, α−1 ≥ 0, and consider ε+t = max (εt, 0), ε−t = min (εt, 0). Henceforth,

the above process for rt is referred to as C-GJR-SNP. We estimate this model for each return series by

maximum likelihood (ML). The parameter estimates, exhibited in Table 1, show that all return series

present significant skewness and kurtosis; their conditional variances are highly persistent and respond

asymmetrically to positive and negative shocks.

3 Conditional dynamic correlations

Next, we proceed to analyze the behavior of the daily conditional correlations between the PM portfolio

returns and the SR ones. We apply the conditional Gaussian copula, see Patton (2006). The copula

dependency parameter (or conditional correlation in this particular case), ρt, is driven by an ARMA(1,q)-

type process:

ρt = Λ(−1,1)

(
γ0 + γ1ρt−1 + γ2

1

q

∑q
j=1 Φ−1 (u1,t−j) Φ−1 (u2,t−j)

)
, (2)

where Λ(−1,1) (x) = (1− e−x) (1 + e−x)
−1 is the logistic transformation that keeps ρt within (−1, 1), and

ui,t = Fi (ri,t |It−1 ) i = 1, 2 such that Fi (· |It−1 ) denotes the conditional distribution for the C-GJR-SNP

model for the return ri,t. We set q = 8 in equation (2) which is a common value adopted in some studies as

e.g. Reboredo (2011). The parameters γj in (2) are also estimated by ML where the inputs are the estimates

1 It is available upon request some results under alternative weighting strategies based on equally weighted, global minimum

variance and volatility timing portfolios.
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of ui,t, denoted as ûi,t. In short, the parameters of our bivariate distribution are estimated in two stages.

In a first stage, we estimate all parameters implied in the conditional marginal distributions for ri,t and in

a second stage those for the copula model. The same procedure is applied in the next section.

Figure 2 exhibits the time series of (2) for the different PMs. Note that the daily conditional correlations

are very high for Sortino, Omega, Upside Potential and most PMs based on VaRR. Finally, those portfolios

based on ETR and SKR exhibit remarkably low correlations respecting the SR portfolio, which enhance the

difference between the latter and the former PMs. These results are also in line with those about equity

screening by León et al. (2019). Because of these findings, in the following section we explore the behavior

of the upper/lower tail of the bivariate distribution of SR and every other PM portfolio so as to highlight

possible differences in simultaneous occurrence of large/small PM portfolio returns.

4 Tail dependence analysis

In this section, we focus on the tail dependence measuring the probability that two variables are either in the

lower or in the upper joint tails. Specifically, we study the propensity of two portfolio returns, from a given

PM and SR strategies, to upward or downward comovements. This behavior is explained through the upper

and lower tail dependence parameters denoted by λU ∈ [0, 1] and λL ∈ [0, 1], respectively. Larger values

of λU (λL) indicate greater trend of the portfolio returns to cluster in the upper (lower) tail of a bivariate

distribution. In such a case, the returns are said to be upper (lower) tail dependent. More precisely, λU (λL)

measures the probability that a random variable —defined as a PM portfolio return—is above (below) a high

(low) quantile, given that a second random variable —defined as the SR portfolio return—is above (below) a

high (low) quantile. This dependence structure is modeled through copula functions.

Note that the Gaussian copula does neither capture upper nor lower dependence where the extreme tails

of the distribution of the variables are independent, i.e. λU = λL = 0. Thus, we implement alternative

copula models allowing for both/either upper or lower tail dependence. Namely, among the wide range of

copula functions, we use the SJC, Gumbel and Clayton copulas. The SJC has both upper and lower tail

dependence parameters, whilst Gumbel (Clayton) gathers only upper (lower) tail dependence. The SJC is

defined directly in terms of the above probabilities. Nonetheless, both Gumbel and Clayton copulas are

defined in terms of the parameters γG > 0 and γC > 1, respectively. Hence, the corresponding probabilities

are given by λU = 2 − 2(1/γG), λL = 0 for the Gumbel copula and, λU = 0, λL = 2−(1/γC) for the Clayton

copula, see Patton (2006).

Table 2 reports the probability estimates of the previous time-invariant copula models. We obtain the

following conclusions. Firstly, for the SJC copula it is found a statistically significant and higher asymmetry

value on the lower than on the upper tail, mainly for both SKR and ETR. Note that the estimates of λL

double those of λU for the latter two strategies. Secondly, for Sortino, Omega, Upside potential and most

VaRR cases both SJC probability coeffi cients are similar in magnitude as well as higher than the SKR and

ETR counterparts. This means that the former PMs exhibit higher upper tail dependence respecting the

SR than the latter. Thirdly, according to both Clayton and Gumbel copulas, it can be shown that both

SKR and ETR exhibit statistically significant and lower values for both λL and λU than the other PMs.
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This evidence is in accordance with the previous results under SJC. Summing up, these findings support the

superior performance of both SKR and ETR.

In order to reinforce the previous results, we estimate the time-varying SJC copula for the different PMs

with respect the SR portfolio under weekly rebalancing with the RRT scheme. Following Patton (2006), the

dynamics of both λL and λU under the conditional SJC copula are specified as

λL,t = Λ(0,1)

(
ωL + βLλL,t−1 + αL

1

q

∑q
j=1 |u1,t−j − u2,t−j |

)
, (3)

λU,t = Λ(0,1)

(
ωU + βUλU,t−1 + αU

1

q

∑q
j=1 |u1,t−j − u2,t−j |

)
, (4)

where Λ(0,1) (x) = (1 + e−x)
−1 is the logistic transformation that keeps λL,t and λU,t within (0, 1). According

to the Akaike information criterion —not exhibited here—, the time-varying SJC estimations (see Figures 3

and 4) provide better fit than their corresponding time-invariant versions (see Table 3), except for Omega,

VaRR (95,5) and VaRR (80,20) portfolios. Note that the averages of plot series in Figures 3 and 4 (red and

blue horizontal lines, respectively) are rather close to the unconditional SJC estimates of λL and λU in Table

3. This new evidence corroborates the results previously found under time-invariant SJC modeling.

5 Conclusions

We have applied conditional copula methods to study the behavior of portfolio returns constructed with

different PMs and compare with the benchmark SR portfolio. The portfolio return series we use are obtained

in León and Ñíguez (2020). We assume different (conditional) copula models for the bivariate distributions

of the PM return series. We estimate the univariate series by using the GJR-SNP model.

Our results show that under the Gaussian copula, both ETR and SKR portfolios exhibit remarkably

low correlations respecting the SR portfolio. This means that these two portfolios are different respecting

the SR one. We also find that copulas which focus on either the upper tail (Gumbel) or the lower tail

(Clayton) render significant differences. In short, our copula analysis is useful to understand what kind of

equity-screening strategy based on its corresponding PM performs better in relation to the SR portfolio.

Finally, an interesting avenue for further research is the construction of a copula-aggregate PM by means

of a generalization of the method proposed by Jouini and Clemen (1996) and developed by Hwang and

Salmon (2002). In this setting, the aggregate high-dimensional PM would gather each single expert opinion

represented by their PM.
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Appendix

Note that the name of each data series (a total of thirteen) comes from the PM used to rank the individual

stocks from the S&P 100 index by only selecting the best ten stocks (j = 1, ..., 10) according to the highest PM

values out of 90 stocks (after some restrictions) under a weekly rebalancing period and the RRT weighting

scheme: wj,t =
(
µ+j,t/σ

2
j,t

)
/
∑10
j=1

(
µ+j,t/σ

2
j,t

)
, where µ+j,t = max(µj,t, 0) with µj,t and σ2j,t denoting the

conditional mean and variance. The PMs based on partial moments, quantiles and tail measures are closed-

form expressions by using the conditional density of the individual stock returns. For more details, see León

and Ñiguez (2020).

From now on, we denote any individual stock return as rt. We start with the conditional Sharpe ratio

defined as SRt (θ) = µt−θ
σt
, where θ is the return threshold (e.g., risk-free rate, zero return,...). Second, the PM

that aims to explicitly adjust for skewness and kurtosis by using the simple skewness-kurtosis ratio: SKRt =
sr,t
kr,t
. Third, PMs based on the conditional upper/lower partial moments. The lower and upper partial

moments of order m and threshold θ are defined, respectively, as LPMt(θ,m) =
∫ θ
−∞(θ− rt)mf(rt |It−1 )drt

and UPMt(θ,m) =
∫ θ
−∞(rt − θ)mf(rt |It−1 )drt, where f(rt |It−1 ) is the conditional density of returns. The

Sortino ratio is obtained as Sortinot (θ) = µt−θ√
LPMt(θ,2)

. The following two PMs come from the Farinelli

and Tibiletti family defined as FTt (θ, q,m) =
q
√
UPMt(θ,q)

m
√
LPMt(θ,m)

, with q > 0 and m > 0. The higher the value

for q, the greater the investor’s preference for expected gain and the higher the value for m the greater the

investor’s dislike of expected losses. The Omega ratio and the Upside potential ratio are defined, respectively,

as FTt (θ, 1, 1) and FTt (θ, 1, 2). We have set θ = 0 for all the previous PMs.

Fourth, a class of PMs similar to the FT replaces partial moments with reward and risk measures based on

quantiles or tail measures. The VaR which is the ratio of the upper and lower quantiles given the stock return

distribution: V aRRt (α) =
∣∣∣V aRt(1−α)
V aRt(α)

∣∣∣, where V aRt (α) and V aRt (1− α) are, respectively, the conditional

lower and upper quantiles of rt with α set equal to 1%, 5%, 10% and 20%. The expected tail ratio defined

as ETRt (α) =
∣∣∣Et−1(rt|rt≥V aRt(1−α) )
Et−1(rt|rt≤V aRt(α) )

∣∣∣, where the numerator (denominator) is the reward (risk) measure
corresponding to the right-tail (left-tail) of the return distribution. These PMs are denoted, for instance, as

VaRR(95,5) and ETR(95,5) meaning that 1−α = 95% (upper quantile for VaRR or right tail for ETR) and

α = 5% (lower quantile for VaRR or left tail for ETR).
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Tables

Table 1: C-SNP-GJR model estimation results

α0 β α+1 α−1 µ ν1 ν2

SR
0.029∗∗∗

(0.007)

0.870∗∗∗

(0.015)

0.036∗∗∗

(0.013)

0.185∗∗∗

(0.023)

0.040∗∗

(0.020)

0.577∗∗∗

(0.036)

0.300∗∗∗

(0.033)

SKR
0.022∗∗∗

(0.005)

0.894∗∗∗

(0.012)

0.023∗

(0.012)

0.152∗∗∗

(0.019)

0.055∗∗∗

(0.019)

0.564∗∗∗

(0.044)

0.257∗∗

(0.036)

Sortino
0.028∗∗∗

(0.006)

0.866∗∗∗

(0.015)

0.044∗∗∗

(0.012)

0.188∗∗∗

(0.023)

0.042∗∗

(0.020)

0.590∗∗∗

(0.035)

0.311∗∗∗

(0.033)

Omega
0.029∗∗∗

(0.007)

0.869∗∗∗

(0.015)

0.040∗∗∗

(0.012)

0.184∗∗∗

(0.023)

0.042∗∗

(0.020)

0.587
∗∗∗

(0.036)

0.306∗∗∗

(0.034)

Upside P
0.019∗∗∗

(0.005)

0.893∗∗∗

(0.013)

0.033∗∗∗

(0.011)

0.159∗∗∗

(0.020)

0.045∗∗

(0.020)

0.585∗∗∗

(0.036)

0.304∗∗∗

(0.033)

VaRR(99,1)
0.006∗∗∗

(0.003)

0.925∗∗∗

(0.007)

0.047∗∗∗

(0.010)

0.103∗∗∗

(0.012)

0.053∗∗∗

(0.019)

0.588∗∗∗

(0.032)

0.299∗∗∗

(0.032)

VaRR(95,5)
0.020∗∗∗

(0.005)

0.898∗∗∗

(0.013)

0.032∗∗∗

(0.011)

0.148∗∗∗

(0.019)

0.049∗∗

(0.020)

0.587∗∗∗

(0.036)

0.300∗∗∗

(0.035)

VaRR(90,10)
0.025∗∗∗

(0.006)

0.877∗∗∗

(0.015)

0.044∗∗∗

(0.013)

0.172∗∗∗

(0.021)

0.044∗∗

(0.020)

0.567∗∗∗

(0.035)

0.294∗∗∗

(0.033)

VaRR(80,20)
0.035∗∗∗

(0.007)

0.851∗∗∗

(0.017)

0.054∗∗∗

(0.015)

0.199∗∗∗

(0.025)

0.033∗

(0.020)

0.580∗∗∗

(0.036)

0.306∗∗∗

(0.033)

ETR(99,1)
0.018∗∗∗

(0.004)

0.889∗∗∗

(0.013)

0.033∗∗

(0.014)

0.171∗∗∗

(0.021)

0.047∗

(0.019)

0.570∗∗∗

(0.038)

0.288∗∗∗

(0.033)

ETR(95,5)
0.040∗∗∗

(0.008)

0.855∗∗∗

(0.018)

0.019

(0.013)

0.208∗∗∗

(0.029)

0.042∗

(0.019)

0.544∗∗∗

(0.035)

0.283∗∗∗

(0.030)

ETR(90,10)
0.044∗∗∗

(0.008)

0.844∗∗∗

(0.017)

0.033∗∗

(0.013)

0.209∗∗∗

(0.029)

0.036∗

(0.020)

0.499∗∗∗

(0.044)

0.259∗∗∗

(0.032)

ETR(80,20)
0.031∗∗∗

(0.006)

0.860∗∗∗

(0.016)

0.003

(0.012)

0.213∗∗∗

(0.026)

0.031∗

(0.017)

0.488∗∗∗

(0.061)

0.213∗∗∗

(0.040)

Model: rt = µ+ εt, εt = σt (θ) zt, σ2t = α0 + βσ2t−1 + α+1 (ε
+
t−1)

2 + α−1 (ε
−
t−1)

2, zt
iid∼ SNP (0, 1;v), v = (v1,v2) .

This table presents ML estimates of the C-SNP-GJR parameters for the portfolio returns obtained under alternative
PMs (T = 1, 980 obs.). Heteroscedasticity-consistent standard errors are in parentheses below the parameter
estimates. (∗∗∗) indicates significance at 1% level; (∗∗) indicates significance at 5% level and (∗) indicates significance
at 10% level.
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Table 2: Estimates for copula models (PM-SR)

PM λU (SJC) λL (SJC) λL (Clayton) λU (Gumbel)

SKR 0.38∗∗ 0.65∗∗ 0.69∗∗ 0.59∗∗

Sortino 0.72 0.72 0.98∗∗ 0.97∗∗

Omega 0.71 0.78 0.98∗∗ 0.93∗∗

Upside P 0.73∗∗ 0.74∗∗ 0.95∗∗ 0.93∗∗

VaRR (99,1) 0.58∗∗ 0.76∗∗ 0.81∗∗ 0.74∗∗

VaRR (95,5) 0.74 0.78 0.92∗∗ 0.88∗∗

VaRR (90,10) 0.74∗∗ 0.77 0.95∗∗ 0.93∗∗

VaRR (80,20) 0.73∗∗ 0.78∗∗ 0.96∗∗ 0.94∗∗

ETR (99,1) 0.37∗∗ 0.65∗∗ 0.69∗∗ 0.59∗∗

ETR (95,5) 0.39∗∗ 0.65∗∗ 0.68∗∗ 0.59∗∗

ETR (90,10) 0.38∗∗ 0.67∗∗ 0.70∗∗ 0.59∗∗

ETR (80,20) 0.34∗∗ 0.61∗∗ 0.64∗∗ 0.55∗∗

This table presents probability estimates of the parameters λU and λL (upper and lower tail dependence, respectively)
for the time-invariant SJC, Gumbel and Clayton copulas to model the bivariate PM-SR. (∗∗) indicates significance
at the 5% level for the implied parameters (γG for Gumbel, γC for Clayton and both λU and λL for SJC).
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Figures
Figure 1: Spread series from different PMs with respect to SR

Boxplots of spread series (cumulative returns) from alternative PMs.

Cumulative return spread time series.

9



F
ig
ur
e
2:
C
on
di
ti
on
al
G
au
ss
ia
n
co
pu
la
co
rr
el
at
io
n
b
et
w
ee
n
P
M
an
d
SR

P
lo
ts
of
da
ily
co
rr
el
at
io
n
b
et
w
ee
n
P
M
an
d
SR

fr
om

co
nd
it
io
na
l
G
au
ss
ia
n
co
pu
la
.

10



F
ig
ur
e
3:
SJ
C
ti
m
e-
va
ry
in
g
lo
w
er
ta
il
de
p
en
de
nc
e

P
lo
ts
of
ti
m
e-
va
ry
in
g
lo
w
er
ta
il
de
p
en
de
nc
e,
λ
L
,t
,
fo
r
P
M
an
d
SR

fr
om

SJ
C
co
pu
la
.
T
he
re
d
lin
e
re
pr
es
en
ts
th
e
sa
m
pl
e
m
ea
n
of
th
e
λ
L
,t
ti
m
e
se
ri
es
.

11



F
ig
ur
e
4:
SJ
C
ti
m
e-
va
ry
in
g
u
p
p
er
ta
il
de
p
en
de
nc
e

P
lo
ts
of
ti
m
e-
va
ry
in
g
up
p
er
ta
il
de
p
en
de
nc
e,
λ
U
,t
,
fo
r
P
M
an
d
SR

fr
om

SJ
C
co
pu
la
.
T
he
bl
ue
lin
e
re
pr
es
en
ts
th
e
sa
m
pl
e
m
ea
n
of
th
e
λ
U
,t
ti
m
e
se
ri
es
.

12



References

[1] Amisano, G., & Giacomini, R., 2007. Comparing density forecasts via weighted likelihood ratio tests.
Journal of Business & Economic Statistics 25 (2),0. 177-19

[2] Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S., 2004. Different approaches to risk estimation in
portfolio theory. Journal of Portfolio Management 31 (1), 103-112.

[3] Caporin, M., Lisi, F., 2011. Comparing and selecting performance measures using rank correlations.
The Open-Access, Open-Assessment E-Journal 5, 1-34.

[4] Diebold, F.M., Mariano, R., 1995. Comparing predictive accuracy. Journal of Business & Economic
Statistics, 13 (3), 253-263.

[5] Farinelli, S., Tibiletti, L., 2008. Sharpe thinking in asset ranking with one-sided measures. European
Journal of Operational Research 185, 1542-1547.

[6] Fissler, T., Ziegel, J., Gneiting, T., 2016. Expected shortfall is jointly elicitable with value-at-risk:
implications for backtesting. Risk January, www.risk.net/2439862.

[7] Gallant, A.R., Nychka, D.W., 1987. Semi-nonparametric maximum likelihood estimation. Econometrica
55, 363-390

[8] Glosten, R.T., Jagannathan, R., Runkle, D., 1993. On the relation between the expected value and the
volatility of the nominal excess return on stocks. Journal of Finance 48 (5), 1779-1801.

[9] Hwang, S., Salmon, M., 2002. An analysis of performance measures using copulae. In Performance
measurement in finance, Butterworth-Heinemann, 160-197.

[10] Jouini, M. N., Clemen, R. T., 1996. Copula models for aggregating expert opinions. Operations Research
44 (3), 444-457.

[11] Kirby, C., Ostdiek, B., 2012. It’s all in the timing: Simple active portfolio strategies that outperform
naive diversification. Journal of Financial and Quantitative Analysis 47, 437-467.

[12] León, A., Mencía, J., Sentana, E., 2009. Parametric properties of semi-nonparametric distribution, with
applications to option valuation. Journal of Business & Economic Statistics 27 (2), 176-192.

[13] León, A., Navarro, L., Nieto, B., 2019. Screening rules and portfolio performance. North American
Journal of Economics and Finance 48, 642-662.

[14] León, A., Ñíguez, T.M., 2020. Modeling asset returns under time-varying semi-nonparametric
distributions. Journal of Banking & Finance 118, 105870.

[15] Oh, D.H., Patton, A.J., 2017. Modeling dependence in high dimensions with factor copulas. Journal of
Business & Economic Statistics 35 (1), 139-154.

[16] Patton, A., 2006. Modeling asymmetric exchange rate dependence. International Economic Review 47,
527-556.

[17] Reboredo, J.M., 2011. How do oil price co-move? A copula approach. Energy Economics 33, 948-955.

[18] Sharpe, W.F., 1994. The Sharpe ratio. Journal of Portfolio Management 21, 49-58.

[19] Sortino, F.A., van der Meer, R., 1991. Downside risk. Journal of Portfolio Management 17 (4), 27-31.

[20] Sortino, F.A., van der Meer, R., Platinga, A., 1999. The Dutch triangle. Journal of Portfolio
Management 26, 50-57.

[21] Watanabe, Y., 2006. Is Sharpe ratio still effective? Journal of Portfolio Measurement 11 (1), 55-66.

13


	WP_WBS_Copula
	WBS_2020_003 Front Cover_TN
	2020/003
	VISION STRATEGY OPPORTUNITY

	ManuscriptLong

	ManuscriptLong



