
Sharing in the Rain: Secure and Efficient Data
Sharing for the Cloud

Antonis Michalas
Cyber Security Group,

Department of Computer Science
University of Westminster, UK
a.michalas@westminster.ac.uk

Abstract—Cloud storage has rapidly become a cornerstone of
many businesses and has moved from an early adopters stage to
an early majority, where we typically see explosive deployments.
As companies rush to join the cloud revolution, it has become
vital to create the necessary tools that will effectively protect
users’ data from unauthorized access. Nevertheless, sharing data
between multiple users’ under the same domain in a secure and
efficient way is not trivial. In this paper, we propose Sharing in
the Rain – a protocol that allows cloud users’ to securely share
their data based on predefined policies. The proposed protocol is
based on Attribute-Based Encryption (ABE) and allows users’ to
encrypt data based on certain policies and attributes. Moreover,
we use a Key-Policy Attribute-Based technique through which
access revocation is optimized. More precisely, we show how to
securely and efficiently remove access to a file, for a certain user
that is misbehaving or is no longer part of a user group, without
having to decrypt and re-encrypt the original data with a new
key or a new policy.

Index Terms—Security; Cloud Computing; Storage Protection;
Access Control; Policies; Attribute-Based Encryption;

I . I N T R O D U C T I O N

During the last few years cloud computing has met a great
development and it is consider as one of the latest major
evolution in computing. This is evident by the fact that key
industrial players, such as Google, IBM and Microsoft, have
invested a lot into the cloud space with main aim to create
innovative applications with tangible positive impact on the
day-to-day users’ experience. Nowadays, cloud-based services
exist along a spectrum from open public to closed private.
Furthermore, it has been observed that they have a great
resonance and impact to the productivity of single users’ and
it tends to become an integral part of our everyday life.

In the fast paced business world of today, cloud computing
undoubtedly offers a wide range of advantages to both large
companies and single users’. Cloud-based services are ideal
for businesses with growing or fluctuating bandwidth demands
since it is easy to scale up or down cloud resources based
the actual demand at each time. As a result, cloud offers
a level of flexibility and agility that can give businesses a
real advantage over competitors. In addition to that, by using
a properly configured cloud environment that will meet the
needs of an organization can have a grade, positive, influence
in cutting out the high cost of both hardware and software.
Moreover, one of the greatest advantages and most appealing
feature of cloud computing is the increased collaboration that

offers between users’ of the same or even different organizations.
More precisely, cloud users’ are able to work in teams and
access, edit or share documents in real time from almost
anywhere. This can have impressive results since it dramatically
increases the productivity and further promote the real time
collaboration even between users’ in different continents.

As companies rush to join the cloud revolution it has become
vital to have an understanding of how it works. Being able to
solve issues if a problem does arise is a major asset for any
potential employee. Besides the benefits of cloud computing
there are also certain risks that companies that move to the
cloud need to take into consideration. Because of the nature
of cloud computing where users’ store their data in remote
locations, security is of paramount importance and is considered
as the most critical risk that needs to be tackled. Ensuring that
stored data are protected at all times in order to avoid outages
and protect data from breaches and threats is a non trivial
problem and lot of research [1, 2, 3, 4] has been done towards
this direction. Building the right security protocols that will
effectively protect private information from unauthorized access
is key to a successful cloud implementation. Even though, there
are many security gaps that needs to be properly addressed,
cloud computing has all the necessary features in order to offer
strong security and privacy-preserving mechanisms to both end
users’ and large organizations.

While lot of research has been done in securing cloud
environments, storing sensitive data securely and launching
hosts that are considered as trusted the problem of secure
and efficiently share of data between multiple users’ has been
poorly addressed. More precisely, most of the existing solutions
simply rely on encrypting data with a secret key and store them
in the cloud in an encrypted form. However, this narrows down
the vast capabilities of cloud computing since it makes data
sharing rather inefficient. More precisely, the actual problem is
identified when the owner of a file wants to revoke access
to another, possibly malicious user’. Most of the existing
approaches requires data owner to first share the secret key that
has been used to encrypt the corresponding file with all users’
that wishes to share the information. As a result, revoking
access in the future requires from the data owner to decrypt
the corresponding file and re-encrypt it with a fresh key that
is not know and will not be shared with the malicious user’.
This process is considered as inefficient and time consuming.



Having identified this, and taking into account that facilitating
the sharing of information, projects, processes and resources
with external parties, customers and employees, means that
productivity and innovation get welcome boosts on a regular
basis we propose a protocol that allows users’ to share encrypted
data in an efficient way based on an Attribute-Based Encryption
technique [5, 6]. By doing this, we manage to fulfil one of
the basic objectives for adopting cloud – that of increased
collaboration between external partners.

A. Contribution

In this paper, we describe several contributions aimed
at enhancing cloud infrastructure with additional security
mechanisms. We hope these mechanisms will help address
some of the issues that prevent security-sensitive users from
benefiting from the functionality and economies of scale offered
by cloud computing. More precisely, we describe a protocol for
secure and efficient sharing of files between multiple users’ of
a cloud platform. Moreover, the proposed protocol shows how
to construct a framework for secure file sharing by using the
benefits of Revocable Attribute-Based Encryption. Furthermore,
we define explicitly the entities that should be involved in such
a scheme and we give valuable insights to not only to cloud
providers who wish to incorporate our protocol in order to
provide enhanced security to their clients but also to protocol
designers who wish to build even more efficient cloud sharing
schemes.

B. Organization

The remainder of this paper is organized as follows: In
Section II we present the most important works that have been
published and addressing the problem of secure data sharing in
the cloud. In Section III we present the main entities that will
participate in our system model and we proceed by defining the
problem statement while in Section IV we introduce the basic
notation that will be used throughout the paper as well as the
threat model that we will consider. In Section V we describe
a formal construction of the protocol while in Section VI we
conclude the paper and we also present some future steps
regarding the implementation and evaluation of the proposed
architecture.

I I . R E L AT E D W O R K

In this section we present the related works that mainly focus
on the problem of secure data sharing in a cloud environment.

In [7, 8] authors presented a framework for data and operation
security in Infrastructure-as-a-Service (IaaS) clouds, consisting
of protocols for a trusted launch of virtual machines and domain-
based storage protection. Its security guarantees are supported
by an extensive theoretical analysis with proofs about protocol
resistance against attacks in the defined threat model. The
protocols allow trust to be established by remotely attesting
host platform configuration prior to launching guest virtual
machines and ensure confidentiality of data in remote storage,
with encryption keys maintained outside of the IaaS domain.
In addition to that, authors provide functionality for sharing

data between different domains. To this end, they present
an XML-based language framework which enables clients of
IaaS clouds to securely share data and clearly define access
rights granted to peers. The paper also presents experimental
results that demonstrate the validity and efficiency of the
proposed protocols. The experimental results are based on
an implementation of DBSP as an extension of OpenStack, a
popular open-source cloud-computing platform. Even though
the sharing functionality proposed in DBSP is based on standard
cryptographic primitives, which makes it rather efficient, it is
also considered as basic. In addition to that, the main drawback
is the fact that DBSP is using a symmetric key to encrypt an
entire disk. As a result, to give access to a user’, data owner
must reveal the secret key. As a result, revoking access to
misbehaving users’ opens up a new set of challenges since it
will require to decrypt the entire disk and then re-encrypt the
drive with a fresh key. This also implies that data owner will
have to share again the fresh key with the legitimate users’.

Santos et al. [9] proposed Excalibur, a system using trusted
computing mechanisms to allow decrypting client data exclu-
sively on nodes that satisfy a tenant-specified policy. Excalibur
introduces a new trusted computing abstraction, policy-sealed
data to address the fact that TPM abstractions are designed to
protect data and secrets on a standalone machine, at the same
time over-exposing the cloud infrastructure by revealing the
identity and software fingerprint of individual cloud hosts. The
core of Excalibur is ‘the monitor’, which is a part of the cloud
provider, which organises computations across a series of hosts
and provides guarantees to tenants. Tenants first decide a policy
and receive evidence regarding the status of the monitor along
with a public encryption key, and then encrypt their data and
policy using ciphertext-policy attribute-based encryption [6].
To decrypt, the stored data hosts receive the decryption key
from the monitor who ensures that the corresponding host has
a valid status and satisfies the policy specified by the client
at encryption time. The main drawback of this work is that
the protocol does not offer revocation functionality. Sharing
in the Rain is overcoming this limitation by using a revocable
attribute-based encryption scheme.

In [10] authors presented a forward-looking design for
secure storage and file sharing in cloud environments. The
scheme was based on a Symmetric Searchable Encryption (SSE)
scheme [11] that allows patients of an electronic healthcare
system to securely store encrypted versions of their medical
data and search directly on them without having to decrypt
them first. Even though the scheme offers some kind of secure
sharing it is not that flexible and efficient since it does not
rely on policies. Furthermore, even though authors provide a
discussion regarding access revocation they do not provide a
concrete and efficient solution. Hence, the protocol is considered
as inefficient for sharing large amount of data between multiple
users’.

Authors in [12] proposed an efficient access control scheme
that allows users’ to dynamic update a policy. More precisely,
the policy update is outsourced to the cloud server while at the
same time the server does not learn any private information



regarding the processed data. In addition to that, the scheme
is based on ABE and assumes a semi-trusted and not fully
trusted cloud service provider. Furthermore, the proposed
scheme supports different types of access policies (e.g., Boolean
Formulas, LSSS Structure and Access Tree).

I I I . S Y S T E M M O D E L A N D P R O B L E M S TAT E M E N T

In this section, we introduce the system model that we con-
sider by explicitly describing the main entities that participate
in our protocol. Furthermore, we strictly define the problem
that we try to tackle.

Cloud Service Provider (CSP): One of the common
models of a cloud computing platform is Infrastructure-as-
a-Service (IaaS). In its simplest form, such a platform consists
of cloud hosts which operate virtual machine guests and
communicate through a network. Often a cloud middleware
manages the cloud hosts, virtual machine guests, network
communication, storage resources, a public key infrastructure
and other resources. Cloud middleware creates the cloud
infrastructure abstraction by weaving the available resources
into a single platform. In our system model we consider a cloud
computing environment based on a trusted IaaS provider like
the one described in [8]. The IaaS platform consists of cloud
hosts which operate virtual machine guests and communicate
through a network. In addition to that, we assume a Platform-
as-a-Service (PaaS) provider, like the one described in [1],
that is built on top of the IaaS platform and can host multiple
outsourced databases. Furthermore, the cloud service provider
is responsible for storing the data of users’ and also providing
data access.

Registration Authority (RA): RA is responsible for the
registration of users. Additionally, RA has a public/private key
pair denoted as pkRA/skRA. Apart from that, RA is responsible
for generating parameters that will be used for the proper
function of the application (e.g. reveal the identity of a
misbehaving user). RA can run as a separate third party but
can be also implemented as part of the cloud platform we
described earlier.

User (u): In our scenario a user interacts with the CSP in
order to mange certain files that has access to. The operations
that a user can perform are the following: a) register to the
service, b) generate encryption keys to safely protect her data,
c) store data in the cloud, d) share data with other users’ by
creating certain policies using a Key Policy Attribute-Based
Encryption scheme. Furthermore, each user’ has a unique
identifier ui. A user ui might be also referred as data owner
when she is the one who generated a certain file. Each user’
ui has a private/public key pair (pki/ski). The private key is
kept secret, while the public key is shared with the rest of
the community. These keys will be used to secure message
exchanges in the community, hence the communication lines
between parties are assumed to be secure. It is also assumed
that users knows the public keys of RA and the hosts operated
by the CSP. In addition to that, each ui that serves as data

owner has a master key MSKi that will be used to generate
secret keys based on certain policies and attributes.

Problem Statement: Let U = {u1, . . . , un} be the set of all
users that are registered through a registration authority (RA)
and CSP the cloud service provider that stores users’ data.
Lets assume that a user ui stores a set of m different data/files
to the CSP. We denote this set of files as Di =

{
di1, . . . d

i
m

}
.

The problem here is to find a way to achieve the following:
1) Keep the content of each dij ∈ Di private against both

internal and external attacks;
2) User ui should be able to securely share a file dij with

another user based on a certain policy;
3) A data owner ui should be able to efficiently revoke access

to a user uc for a file that has shared with her. This should
not require the data owner to decrypt and re-encrypt the
file with a fresh key that will no longer be available to
uc;

I V. N O TAT I O N A N D T H R E AT M O D E L

In this section, we introduce the notations that we use
throughout the rest of the paper as well as the threat model
that we consider.

A. Notation

In order to provide an efficient and realistic solution to the
problem described in Section III, we need to build a protocol
through which newly encrypted data will not be decryptable
by a user’s key if that user’s access has been revoked. To this
end, we will be using a key-policy attribute-based encryption
(KP-ABE) scheme. In a KP-ABE scheme every secret key
is generated with a policy P and every ciphertext is binded
to a set of attributes U . Then, decryption is only possible if
P (U) = True. From now on we will refer to the set of all
available attributes as Ω = {a1, . . . , an}, while the set of all
available policies will be denoted as P = {P1, . . . , Pm}.

We now proceed with the definition of a revocable KP-ABE
scheme as described in [13].

Definition 1 (Revocable Key-Policy ABE): A revocable KP-
ABE scheme is a tuple of the following five algorithms:

1. Setup is a probabilistic algorithm that takes as input a secu-
rity parameter λ and outputs a public key pk and a master
key MSK. We denote this by (pk,MSK)← Setup(1λ).

2. Gen is a probabilistic algorithm that takes as input a
master key, a policy P ∈ P and the unique identifier of
a user and outputs a secret key which is bind both to
the corresponding policy and user’. We denote this by
(skP,ID)← Gen(MSK, P, ID).

3. Enc is a probabilistic algorithm that takes as input a
public key, a message m, a set of attributes S ∈ Ω and a
timestamp t. After a proper run, the algorithm outputs a ci-
phertext cS,t which is bind both to the set of attributes and
the time. We denote this by (cS,t)← Enc(pk,m,S, t).

4. KeyUpdate is a probabilistic algorithm that takes as input
a master key, a revocation list rl and a timestamp t and



TABLE I
N O TAT I O N I N D E X

Symbol Description

CSP Cloud Service Provider

RA Registration Authority

ui A user with unique identifier i

m An arbitrary message

Enc Encryption algorithm

Dec Decryption algorithm

K Symmetric key

pki/ski Public/private key pair of user i

MSKi A master secret key of data owner i

a Attribute

P Policy

rl Revocation List

outputs a key update information for time t. We denote
this by (Kt)← KeyUpdate(MSK, rl, t).

5. Dec is a deterministic algorithm that takes as input a secret
key, a key update Kt′ and a ciphertext and outputs the
original message m iff the set of attributes S that are bind
to the ciphertext satisfies the policy P , t′ ≥ t and the ID
of the corresponding user was not revoked at time t. We
denote this by Dec(skP,ID,Kt′ , cS,t)→ m.

A summary of the notation introduced so far is presented in
Table I.

B. Threat Model
Our threat model is similar with the one described in [7],

which is based on the Dolev-Yao adversarial model [14] and
further assumes that privileged access rights can used by a
remote adversary ADV to leak confidential information. ADV ,
e.g. a corrupted system administrator, can obtain remote access
to any host maintained by the IaaS provider, but cannot access
the volatile memory of guest VMs residing on the compute
hosts of the IaaS provider.

Hardware Integrity: We assume that the cloud provider
has taken all the necessary technical and non-technical measures
in order to protect the underling hardware from tampering.

Physical Security: We assume physical security of the
data centres where the IaaS is deployed. This assumption
holds both when the IaaS provider owns and manages the
data center (as in the case of Amazon Web Services, Google
Compute Engine, Microsoft Azure, etc.) and when the provider
utilizes third party capacity, since physical security can be
observed, enforced and verified through known best practices
by audit organizations. This assumption is important to build
higher-level hardware and software security guarantees for
the components of the IaaS. We assume the record is kept
on protected storage with read-only access and the adversary
cannot tamper with it.

Network Infrastructure: The IaaS provider has physical
and administrative control of the network. ADV is in full
control of the network configuration, can overhear, create, replay
and destroy all the exchanged messages between the CSP and
their resources (virtual machines, database components etc) as
well as with other entities that participate in our system model
(i.e. the registration authority).

Cryptographic Security: We assume encryption schemes
are semantically secure and the ADV cannot obtain the plain
text of encrypted messages. In addition to that, we explicitly
assume that the ADV cannot forge the revocation list and
cannot decrypt a ciphertext without knowing the corresponding
secret key. Furthermore, we assume that the probability ofADV
guessing a generated random number is negligible. Finally, we
explicitly exclude denial-of-service attacks [15, 16, 17, 18]
from our adversarial model and we focus on ADV that aims
to compromise the confidentiality of data by forging existing
access policies generated by the corresponding data owners.

V. S H A R I N G I N T H E R A I N

In this section, we present Sharing in the Rain (RitS) that
constitutes the core of this paper’s contribution. Before we
proceed with the formal construction of the protocol, we provide
a high level description that gives the reader a good overview
of the functionality that is offered by our protocol as well as a
typical use-case scenario.

A user ui registers to the cloud service by contacting the
registration authority. By doing this, ui receives a credential
through which she can prove that is a legitimate/registered user
later on when she interacts with the CSP, other users’ or any
other entity that might be part of the system model (e.g. a
third party that is collaborating with the CSP). Now that ui has
registered, she can start uploading files to the CSP. However,
to do that in a secure way the files needs to be transmitted and
stored in an encrypted form in order to avoid both internal and
external attacks. To this end, ui encrypts each file that wishes
to store in the cloud by using a set of attributes (apart from
the set of attributes also a public key and other parameters
are used as we will see in the next paragraph). The generated
ciphertext is sent to the CSP who cannot decrypt it since it does
not have knowledge of a valid private key – hence the content
of the file remains private even if the CSP acts maliciously.
Now that ui has stored a file in the cloud storage, she wishes
to share it with a different user uj . To do this, ui, who is the
data owner, generates a unique private key for uj and send it
to her. This key is binded to a certain policy that is defined by
the data owner and allows uj to decrypt the corresponding file
only if the attribute set that the ciphertext is bind with satisfies
the policy. Apart from successfully sharing files, one of our
goals is to efficiently revoke access for a user. Having this in
mind, we assume that ui wishes to revoke access for the users
uj . To do so, ui will only have to run an algorithm that will
actually revoke access for the unique key that was generated
for user uj . Apart from that, ui will not have to decrypt and
then re-encrypt the file with a fresh key since the key that is
hold by uj will not be a valid decryption key.



A. Protocol Construction

Now we can proceed with the formal description of our
protocol RitS in which we will show a formal construction of
all the necessary algorithms with four main participating entities:
Cloud Service Provider, Users’ and Registration Authority. RitS
mainly comprises a public-key encryption scheme and a key-
police attribute-based encryption scheme.

RitS.Setup : Each entity obtains a public/private key pair
and publishes its public key while it keeps the private key
secret. Below we provide the list of key pairs used in the
following protocol:

• (pkCSP, skCSP) – public/private key pair for the cloud
service provider;

• (pkRA, skRA) – public/private key pair for the Registration
Authority;

• (pki, ski) – public/private key pair for a user with ID i;

RitS.Registration : The registration phase takes part between
a user ui that wishes to register and the registration authority
who is responsible for evaluating registration requests for users’.
During this phase a user that wishes to register contacts RA
by sending a registration request and the following protocol
takes place between RA and the user:

Definition 2 (RitS.Registration): A registration scheme,
denoted by RitS.Registration, is defined by two algorithms
(RegRequest,RegOutput) such that:

1. RegRequest is a probabilistic algorithm that takes as
input pkRA and pki and outputs a registration request.
(EncpkRA(pki), H(pki))← RegRequest(pkRA, pki).

2. RegOutput is a deterministic algorithm that takes as input
a RegRequest and outputs a credential if the request is
valid and ⊥ otherwise. If RegRequest is successfully
verified then RegOutput outputs a credential for user ui
encrypted with her public key (Encpki(credi)). Otherwise,
RegOutput returns ⊥ which means that user sent an
invalid RegRequest.

RitS.Store : After the successful registration, ui is now
able to store data to the cloud storage. During this phase
the communication takes place between the user’ and the CSP.

Definition 3 (RitS.Store): A file storage scheme, denoted
by RitS.Store, is defined by a tuple of three algorithms
(StoreRequest,StoreToken,StoreFile) such that:

1. StoreRequest takes as input pkCSP and credi and outputs
a store request. This is executed by a registered user
ui who wishes to store a file in the cloud. We denoted
this (EncpkCSP(credi))← RegRequest(pkCSP, credi). The
output is sent by ui to the CSP.

2. StoreToken is a probabilistic algorithm that takes as input
a StoreRequest and outputs a token if the input is valid
or ⊥ otherwise. If StoreRequest is successfully verified
then StoreToken outputs a token for ui encrypted with
her public key (Encpki(τ)). Otherwise, StoreToken returns
⊥.

3. StoreFile is a probabilistic algorithm that takes as input a
StoreToken, a public key, a file to be encrypted, a set of at-
tributes and a timestamp and outputs an encrypted version
of the file which is binded with the set of attributes. We de-
note this by: c

dij
S,t ← StoreFile(StoreToken, pki, d

i
j ,S, t).

The generated ciphertext is binded with the set of at-
tributes from S and is sent by ui to the CSP. More
precisely, ui sends the following message to the CSP:〈
c
dij
S,t, H(c

dij
S,t),EncCSP(τ)

〉
If, StoreToken is equal to

⊥, StoreFile also returns ⊥.

RitS.Share : Now that ui has stored an encrypted file in the
cloud is ready to share its content with other registered users’.
To do so, ui who is the data owner of file dij will have to
create a unique key for each user uj that wishes to share the
file with.

Definition 4 (RitS.Share): A file storage scheme, de-
noted by RitS.Store, is defined by a two algorithms
(ShareKeyGen,ShareDec) such that:

1. ShareKeyGen is a probabilistic algorithm that
takes as input a master key MSKi, a policy Pj ,
a user ID uj and the public key of uj and
outputs a secret key skP,j. We denote this by:
(Encpkj(skP,j), H(skPj))← ShareKeyGen(MSKi, P, uj , pkj).

2. ShareDec is a deterministic algorithm that takes as input
a private key skP,j, a key update Kt′ and an encrypted
file cS,t and outputs a message m. We denote this by:
ShareDec(skP,j,Kt′ , cS,t)→ m.

RitS.Revoke : The last phase of our protocol allows a data
owner to revoke access to a user that has shared a file with.

Definition 5 (RitS.Revoke): A file storage scheme, denoted
by RitS.Revoke, is defined by the following algorithm Revoke:

1. Revoke takes as input a master key MSKi, a revocation list
rl and a timestamp t and outputs a key update information.
We denote this by: (Kt)← Revoke(MSKi, rl, t).

RitS.Revoke is run by the data owner and by generating
this key she adds the secret keys of user uj to be revoked in
the revocation list. As a result, the the secret key skP,j that
was shared earlier with uj will no longer be valid since the
attribute set S that is binded with the encrypted file will no
longer satisfy the policy P that is binded with skP,j. Hence,
uj can no longer access the file dij and ui will not have to
decrypt and re-encrypt the file with a fresh key.

V I . C O N C L U S I O N

In this paper, we proposed a protocol for secure and efficient
data sharing in a cloud environment. The proposed protocol was
based on Key-Policy Attribute-Encryption and allowed cloud
users’ to encrypt files based on certain policies and attributes.
Furthermore, the protocol allows to securely and efficiently
remove access to a file, for a certain user that is misbehaving
or is no longer part of a user group, without having to decrypt
and re-encrypt the original data.

As future steps, we plan to implement our protocol in order
to measure its performance and prove its effectiveness in a real



cloud environment. Furthermore, we plan to explore the incor-
poration of our protocol with mobile sensing applications and
more precisely with privacy preserving reputation systems for
cloud-based participatory sensing applications. The envisioned
system will be based on [19, 20, 21, 22] and will effectively
maintain the privacy and anonymity of users’ [23, 24, 25].

R E F E R E N C E S

[1] Yiannis Verginadis et al. “PaaSword: A Holistic Data Privacy
and Security by Design Framework for Cloud Services”. In:
Proceedings of the 5th International Conference on Cloud
Computing and Services Science. 2015, pp. 206–213. I S B N:
978-989-758-104-5. D O I: 10.5220/0005489302060213.

[2] N. Paladi and A. Michalas. ““One of our hosts in another
country”: Challenges of data geolocation in cloud storage”. In:
Wireless Communications, Vehicular Technology, Information
Theory and Aerospace Electronic Systems (VITAE), 2014 4th
International Conference on. 2014, pp. 1–6.

[3] Antonis Michalas, Nicolae Paladi, and Christian Gehrmann.
“Security aspects of e-Health systems migration to the cloud”.
In: e-Health Networking, Applications and Services (Health-
com), 2014 IEEE 16th International Conference on. IEEE.
2014, pp. 212–218.

[4] A. Michalas and M. Bakopoulos. “SecGOD Google Docs: Now
i feel safer!” In: Internet Technology And Secured Transactions,
2012 International Conference for. 2012, pp. 589–595.

[5] Amit Sahai and Brent Waters. “Fuzzy Identity-based En-
cryption”. In: Proceedings of the 24th Annual International
Conference on Theory and Applications of Cryptographic
Techniques. EUROCRYPT’05. Aarhus, Denmark: Springer-
Verlag, 2005, pp. 457–473. I S B N: 3-540-25910-4, 978-3-540-
25910-7. D O I: 10.1007/11426639 27. U R L: http://dx.doi.org/
10.1007/11426639 27.

[6] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-
Policy Attribute-Based Encryption”. In: Proceedings of the
2007 IEEE Symposium on Security and Privacy. SP ’07. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 321–334.
I S B N: 0-7695-2848-1. D O I: 10 . 1109 / SP. 2007 . 11. U R L:
http://dx.doi.org/10.1109/SP.2007.11.

[7] N. Paladi, C. Gehrmann, and A. Michalas. “Providing User
Security Guarantees in Public Infrastructure Clouds”. In: IEEE
Transactions on Cloud Computing PP.99 (2016), pp. 1–1. I S S N:
2168-7161. D O I: 10.1109/TCC.2016.2525991.

[8] Nicolae Paladi, Antonis Michalas, and Christian Gehrmann.
“Domain Based Storage Protection with Secure Access Control
for the Cloud”. In: Proceedings of the 2014 International
Workshop on Security in Cloud Computing. ASIACCS ’14.
Kyoto, Japan: ACM, 2014. I S B N: 978-1-4503-2805-0.

[9] Nuno Santos et al. “Policy-Sealed Data: A New Abstraction
for Building Trusted Cloud Services”. In: Presented as part
of the 21st USENIX Security Symposium (USENIX Security
12). Bellevue, WA: USENIX, 2012, pp. 175–188. I S B N: 978-
931971-95-9. U R L: https : / / www. usenix . org / conference /
usenixsecurity12/technical-sessions/presentation/santos.

[10] A. Michalas and R. Dowsley. “Towards Trusted eHealth
Services in the Cloud”. In: 2015 IEEE/ACM 8th International
Conference on Utility and Cloud Computing (UCC). 2015,
pp. 618–623. D O I: 10.1109/UCC.2015.108.

[11] Rafael Dowsley, Antonis Michalas, and Matthias Nagel. A
report on design and implementation of protected searchable
data in IaaS. Tech. rep. Swedish Institute of Computer Science
(SICS), 2016.

[12] K. Yang et al. “Enabling efficient access control with dynamic
policy updating for big data in the cloud”. In: IEEE INFOCOM
2014 - IEEE Conference on Computer Communications. 2014,
pp. 2013–2021. D O I: 10.1109/INFOCOM.2014.6848142.

[13] Amit Sahai and Hakan Seyalioglu. “Dynamic credentials and
ciphertext delegation for attribute-based encryption”. In: in
Proceedings of the 32nd Annual International Cryptology
Conference: Advances in Cryptology - CRYPTO2012. Springer,
2012, pp. 199–217.

[14] Danny Dolev and Andrew C Yao. “On the security of public
key protocols”. In: Information Theory, IEEE Transactions on
29.2 (1983).

[15] Antonis Michalas et al. “New client puzzle approach for
dos resistance in ad hoc networks”. In: Information Theory
and Information Security (ICITIS), 2010 IEEE International
Conference. IEEE. 2010, pp. 568–573.

[16] Antonis Michalas, Nikos Komninos, and Neeli R Prasad.
“Mitigate DoS and DDoS attack in mobile ad hoc networks”. In:
International Journal of Digital Crime and Forensics (IJDCF)
3.1 (2011), pp. 14–36.

[17] A. Michalas, N. Komninos, and N.R. Prasad. “Multiplayer
game for DDoS attacks resilience in ad hoc networks”. In:
Wireless Communication, Vehicular Technology, Information
Theory and Aerospace Electronic Systems Technology (Wireless
VITAE), 2011 2nd International Conference on. 2011, pp. 1–5.
D O I: 10.1109/WIRELESSVITAE.2011.5940931.

[18] Antonis Michalas, Nikos Komninos, and Neeli R Prasad.
“Cryptographic Puzzles and Game Theory against DoS and
DDoS attacks in Networks”. In: International Journal of
Computer Research 19.1 (2012), p. 79.

[19] T. Dimitriou and A. Michalas. “Multi-Party Trust Computation
in Decentralized Environments”. In: New Technologies, Mobil-
ity and Security (NTMS), 2012 5th International Conference
on. 2012, pp. 1–5.

[20] T. Dimitriou and A. Michalas. “Multi-party trust computation
in decentralized environments in the presence of malicious
adversaries”. In: Ad Hoc Networks 15 (2014), pp. 53 –66.

[21] Antonis Michalas et al. “Vulnerabilities of Decentralized Ad-
ditive Reputation Systems Regarding the Privacy of Individual
Votes”. English. In: Wireless Personal Communications 66.3
(2012), pp. 559–575. I S S N: 0929-6212.

[22] A. Michalas et al. “Privacy-preserving scheme for mobile ad
hoc networks”. In: Computers and Communications (ISCC),
2011 IEEE Symposium on. 2011, pp. 752–757. D O I: 10.1109/
ISCC.2011.5983930.

[23] Antonis Michalas and Thanassis Giannetsos. “The Data
of Things: Strategies, Patterns and Practice of Cloud-based
Participatory Sensing”. In: Proceedings of the 1st International
Conference on Innovations in InfoBusineess and Technology.
Colombo, Sri Lanka, 2016.

[24] Antonis Michalas and Nikos Komninos. “The lord of the sense:
A privacy preserving reputation system for participatory sensing
applications”. In: Computers and Communication (ISCC), 2014
IEEE Symposium. IEEE. 2014, pp. 1–6.

[25] A. Michalas et al. “Secure and trusted communication in
emergency situations”. In: Sarnoff Symposium (SARNOFF),
2012 35th IEEE. 2012, pp. 1–5. D O I: 10.1109/SARNOF.2012.
6222751.


