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Abstract—Collecting data via a questionnaire and analyzing 

them while preserving respondents’ privacy may increase the 
number of respondents and the truthfulness of their responses. It 
may also reduce the systematic differences between respondents 
and non-respondents. In this paper, we propose a privacy-
preserving method for collecting and analyzing survey responses 
using secure multi-party computation (SMC). The method is 
secure under the semi-honest adversarial model. 

The proposed method computes a wide variety of statistics. 
Total and stratified statistical counts are computed using the 
secure protocols developed in this paper. Then, additional 
statistics, such as a contingency table, a chi-square test, an odds 
ratio, and logistic regression, are computed within the R 
statistical environment using the statistical counts as building 
blocks. 

The method was evaluated on a questionnaire dataset of 3,158 
respondents sampled for a medical study and simulated 
questionnaire datasets of up to 50,000 respondents. The 
computation time for the statistical analyses linearly scales as the 
number of respondents increases. The results show that the 
method is efficient and scalable for practical use. It can also be 
used for other applications in which categorical data are 
collected.  

Index Terms—Bloom Filter, Privacy, Questionnaire, Statistical 
Analysis, Secure Multi-Party Computation, Secret Sharing 

I. INTRODUCTION 

Surveys are a commonly used tool in many research areas. 
For example, public health researchers use surveys to study 
the health conditions of a given population, as well as to 
measure public opinion regarding the healthcare services. In 
addition to the health data collected at health institutions, 
individuals collect data, such as health and physical activity 
data, using mobile applications and sensors. These data have 

high potential for public health and clinical research [1]. 
In this paper, we consider collecting data via a 

questionnaire as an example of research data collected from 
individuals. The reliability of the statistical analyses of 
questionnaire data depends on the availability of a sufficient 
number of participants. The analyses also depend on the 
representativeness of the participants and the truthfulness of 
the data provided by the participants. However, disclosure of 
sensitive or private information to a third party may 
discourage participation and reduce the response rate. 
Nonresponse may induce nonresponse bias as a result of 
systematic differences between individuals who participate 
and individuals who do not [2]. Privacy risks may also compel 
participants to provide inaccurate responses. Therefore, 
privacy preserving data collection and analyses may promote 
participation and increase the accuracy of the data [3].  

A simple method for collecting data via a questionnaire 
involves a trusted third-party (TTP) that collects the data from 
participants and de-identifies the collected dataset before 
disclosing the data to the data analyst (researcher). 
SurveyMonkey [4] and questback [5] use the same method to 
provide anonymized questionnaire data. The privacy 
protection depends on the de-identification technique and the 
security of the TTP. Any failure in the TTP incurs high 
privacy risks.  

Secure multi-party computation (SMC) deals with the 
problem of a set of parties who wish to compute a certain 
function on their private data without revealing any private 
information apart from the output of the computation [6]–[8]. 
However, only a few SMC protocols have been developed for 
collecting and computing of categorical variables, which are 
the common type of data collected with a questionnaire [9]–
[11]. These protocols have limitations for practical uses, such 
as privacy and scalability as the number of participating 
parties increases. 

With the purpose of providing a practical method, in this 
paper we propose a privacy-preserving method for collecting 
and analyzing questionnaire data based on secret sharing [12] 
and Bloom filter [13]. The method contains SMC protocols for 
computing total and stratified statistical counts. Then, 
additional statistics, such as a contingency table, a chi-square 
test, an odds ratio, and logistic regression, are locally 
computed within the R statistical environment [14] using 
statistical counts as the building blocks. Moreover, we show 
that the method is secure under the semi-honest adversary 
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model [15], where the adversary follows a protocol but may 
try to learn private information from the messages exchanged 
during the protocol execution. Theoretical and experimental 
evaluations demonstrated that the method is suitable for 
practical use. 

II. USE CASE 

The use case in this paper is the PAtients’ TrAjectories 
(PAsTAs) project. The project aimed to study the relationship 
between healthcare services consumption and the satisfaction 
of patients with chronic conditions with the coordination of 
the healthcare services they had received. The study was 
approved by the Regional Committee for Medical and Health 
Research Ethics in central Norway (2011/2047). 

The project selected a random sample of 12,502 patients 
with chronic conditions using health data collected by general 
practitioners, hospitals, and municipalities in central Norway. 
The patients were 18 years and older and used at least one 
somatic healthcare service in 2012 and 2013. 

A questionnaire was sent to the selected patients, and 3,158 
(25.3%) patients completed it. The questionnaire variables 
used to evaluate the method developed in this paper are (1) 
nominal variables, such as education, health status, and 
whether the respondents live alone, and (2) ordinal variables 
(on a Likert scale), such as satisfaction with the coordination 
of care. In addition, we used gender and age group data 
extracted from the respondents’ healthcare service providers, 
which are nominal and interval variables, respectively. See 
Appendix A for details. 

III. PROBLEM DEFINITION 

Assume a cohort of 𝑁  individuals who completed 
questionnaire 𝒬  for a particular study. The participants are 
denoted by 𝒫 = 𝑝!, 𝑝!,… , 𝑝! ,  where 𝑝!  denotes an 
individual identified with a unique identifier 1  𝑖. The 
questionnaire consists of 𝑛  questions denoted by 𝒬 =
{𝑄!,𝑄!,… ,𝑄!} , where 𝑄!  has 𝐾  distinct possible answers 
denoted by 𝑄! = {𝑎!

! , 𝑎!
! ,… , 𝑎!

! } . The answers may have 
nominal, ordinal, or interval values. 𝑄!  can be a multiple-
response question. However, for the sake of simplicity of 
presentation, we describe the method proposed in this paper 
assuming 𝑄!  has a single response denoted by 𝑎!

! , where 
𝑙 ∈    {1,2,… ,𝐾}. 

The problem addressed in this paper is to design a method 
for collecting questionnaire responses and analyzing the 
responses while protecting the respondents’ privacy. 

                                                             
1 The unique identifier does not have to be a regional or 

national unique identifier. It is sufficient that the identifier is 
unique within a survey. The unique identifier can be generated 
using different techniques depending on the survey design. For 
example, in the context of the use case presented in this paper, 
the researchers can generate identifiers to the recruited 
patients and send the identifier together with the invitation to 
the survey.  

IV. BACKGROUND 

In this section, we present the building blocks for the 
method proposed in this paper. 

A. Secret sharing scheme 
Secret sharing is a commonly used building block in SMC. 

The most common secret sharing scheme includes additive 
and Shamir’s secret sharing schemes. In general, it is a method 
by which a secret value is split into 𝐿 shares. Additive secret 
sharing scheme requires all shares to reconstruct the secret 
value, whereas Shamir’s secret sharing requires a threshold 
number of shares [12]. 

The shares of a secret value 𝑠 ∈ ℤ!!  are denoted as 
𝑠 = (𝑠!, 𝑠!,… , 𝑠!) , where ℤ!!  is a finite ring of 𝑝 -bit 

integers, and 𝑠 = 𝑠!!
!!!   𝑚𝑜𝑑  2!. For example, in additive 

secret sharing, the shares are computed by selecting 𝐿 − 1 
random values 𝑠! ∈ ℤ!! , where 𝑖 ∈ {1,2,… , 𝐿 − 1}, and 𝑠!  is 
computed as 𝑠! = 𝑠 − 𝑠!!!!

!!!   𝑚𝑜𝑑  2! [12]. 
Additive and Shamir’s secret sharing are linear secret 

sharing schemes. Therefore, they have homomorphic property 
for addition, subtraction, and multiplication by a public 
constant value [16]. Let us assume two secret values 𝑥 and 𝑦 
and their secret shared values are denoted by 
𝑥 = (𝑥!, 𝑥!,… , 𝑥!)  and 𝑦 = (𝑦!, 𝑦!,… , 𝑦!) , respectively. 

The addition of 𝑥  and 𝑦  can be computed on their secret 
shared values by adding each pair of shares, 𝑥 + 𝑦 = (𝑥! +
  𝑦!, 𝑥! + 𝑦!,… , 𝑥! + 𝑦!). Secret share subtraction between 𝑥 
and 𝑦 is also computed similarly. The output shares 𝑥 + 𝑦  
are independent of the input shares. Therefore, revealing 
𝑥 + 𝑦  to a third party does not disclose any information 

about 𝑥 and 𝑦. 
Linear secret sharing schemes are not multiplicatively 

homomorphic [16]. Therefore, complex protocols are 
developed for secret share multiplication [17]. We denote the 
secret share multiplication of 𝑥 and 𝑦 by 𝑥 ∗ 𝑦 . 

B. Bloom filter 
The Bloom filter (𝐵𝐹) is an efficient data structure that 

encodes a set 𝒳 of 𝑛 elements [13]. 𝐵𝐹 is an array that is 𝑚 
long, and each array position is a one-bit counter. We denote 
this array as 𝐵𝐹 = {𝑐!, 𝑐!,… , 𝑐!}. It supports the insertion and 
membership query of an element 𝑥 ∈ 𝒳 . Each operation 
requires  𝑂(1) time. 

The insertion and membership query of 𝑥  is performed 
using 𝑘 hash functions 𝐻!(. ), where 1 ≤ 𝑖 ≤ 𝑘. First, the hash 
of 𝑥 is computed, using each hash function 𝐻! 𝑥 . Second, 
modulo 𝑚  of each hash value is computed, 𝑏! 𝑥 =
𝐻! 𝑥   𝑚𝑜𝑑  𝑚 , to get 𝑘  array positions of 𝐵𝐹 , 𝑏! 𝑥 ∈
0,𝑚 − 1 . Then, 𝑥  is inserted into 𝐵𝐹  by setting all the 

counters at positions 𝑏!(𝑥) of the array to 1. Similarly, 𝑥 is 
concluded to be a non-member of 𝐵𝐹 if at least one counter at 
one of the positions 𝑏!(𝑥) of the array is 0.  

A membership query result can be a false positive due to a 
hash collision that occurs when all the array positions of 𝐵𝐹 
associated with 𝑥 have been set to 1 as a result of the insertion 
of other elements. After 𝑛 elements are inserted into 𝐵𝐹 using 



 

 3 

the optimal number of hash functions, the probability that a 
membership query returns a false positive is 
𝑃  (𝑓𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)   ≈ (0.6185)! ! [18].  

V. RELATED WORK 

In this section, we review secure methods for computing 
categorical data collected by individuals, which is also the 
focus of this paper. We also review secure methods for 
computing data distributed across data custodians using the 
same computation model as in this paper. The review focuses 
on methods that are secure against the semi-honest adversarial 
model. 

Bogetoft et al. [19] presented a method for a secure double 
auction based on Shamir’s secret sharing scheme [20] with 
three semi-honest third parties that collect and analyze the 
secret shares of bidders’ bids. Several similar methods have 
been proposed for a wide variety of statistical computations, 
such as SHAREMIND [21], SEPIA [22], and Chida et al.’s 
[9] methods. The methods have a similar computation model 
with different secret sharing schemes and numbers of semi-
honest third parties. The methods proposed by Bogetoft at al. 
[19], Bogdanov et al. [21], and Burkhart et al. [22] are for 
computing numerical variables, whereas the method proposed 
in [9] contains protocols for computing both numerical and 
categorical variables.  

The protocol implemented in [9] for computing categorical 
data is based on a random shuffle protocol [23] in which the 
semi-honest third parties randomly shuffle the secret shares of 
the required variables. Then, the data analyst collects and 
processes the result to find the number of individuals in each 
category.  

Drosatos et al. [10] proposed a method for distributed 
statistical computation of biomedical sensor data using Paillier 
Homomorphic encryption [24] where a personal software 
agent aggregates individuals’ data through the exchange of 
encrypted data in a ring or tree topology. The proposed 
method supports computation of categorical and numeric 
variables. 

Chen et al. [11] proposed a method for statistical count of 
categorical data distributed across individuals, and the 
computation results satisfy the differential privacy model [25]. 
In this method, the individuals send their responses and 
random noises encrypted using bit encryption [26] and the 
analyst’s public key to a semi-honest third party. The third 
party also blindly inserts bit-encrypted noises and sends them 
to the data analyst. Then, the data analyst decrypts and finds 
the statistical count. 

The methods proposed in [10], [11] require the devices used 
by the participating individuals to be online during the 
computation. However, the same set of individuals may not be 
online during consecutive computations on mobile devices due 
to limited computation resources and network connection. 
Thus, consecutive statistical computations may not give 
comparable results. Depending on the selection policy for 
participants, it may take a long time until all the selected 
individuals go online. The method proposed in [10] also 

requires communication between the participants’ devices. As 
a result, both methods have a long runtime that limits the 
scalability of the method to a large number of participants. 

VI. MATERIALS AND METHODS 

In this section, we present the requirements of the method 
developed in this paper as well as the design, threat model, 
and sub-protocols. 

A. Requirements 
Based on our experience, the following requirements are 

specified for a method that collects and analyzes questionnaire 
data while protecting respondents’ privacy. 

R1 Security: The method should be secure against realistic 
adversarial attacks, and the security should be proved using a 
formal security analysis. The basic security properties are the 
following: 

Privacy: No party should learn private information about 
the respondents based on their participation in a survey. It 
should be possible to query only the statistics in the 
questionnaire data. 

Correctness: The statistical results must be accurate or have 
acceptable level of accuracy. 

R2 Efficiency and scalability: We assumed that the 
respondents complete a questionnaire online on mobile or 
stationary devices under their control. From now on, we refer 
to these devices as clients. These clients have heterogeneous 
computation resources. For example, the mobile devices may 
have constraints on computation resources (e.g., CPU and 
battery life) and network connectivity. Therefore, the method 
should tolerate clients that may shut down and go offline 
anytime. In addition, the clients’ local computation 
requirement should be efficient so that even clients with 
limited computational power are able to complete the entire 
process. 

SMC protocols that involve bi-directional communication 
between clients may not be completed or may require a long 
computation time if at least one of the clients is offline. Since 
a large number of respondents are often required in public 
health surveys, the computation time may increase 
significantly with the number of clients. Therefore, SMC 
protocols should scale with a large number of clients. 

In addition, direct communication between clients requires 
knowledge of each other. This raises privacy concerns when 
participating in a survey reveals sensitive information based 
on the membership of the participants in the survey, which is 
called membership disclosure. Of course, anonymous 
communication protocols [27] can be used to maintain 
participants’ anonymity, but these protocols add extra 
communication rounds to a computation. 

R3 Usability: Data analysts use certain familiar statistical 
computation tools, such as R. Therefore, the method should 
allow analysts to work with familiar tools.   

B. Secret shared Bloom filter 
Once a respondent 𝑝!  completes the questionnaire, her 

response for each question 𝑄! is coded as 𝑎!
!. The codes for all 
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responses are inserted into a Bloom filter denoted as 𝐵𝐹! . 
Then, each counter value of 𝐵𝐹! = {𝑐!, 𝑐!,… , 𝑐!}  is secret 
shared as shown in Fig. 1. The secret share of counter 𝑐! of 
𝐵𝐹!  is denoted as 𝑐! = (𝑐!! , 𝑐!! ,… , 𝑐!!) , where 𝑘 ∈ [1,𝑚] . 
The secret share of 𝐵𝐹!  is denoted as 
𝐵𝐹! = (𝐵𝐹!! ,𝐵𝐹!! ,… ,𝐵𝐹!!), and each share is denoted by 
𝐵𝐹!! = {𝑐!!, 𝑐!!,… , 𝑐!!} , where 𝑐!!  contains a share of the 
counter 𝑐! of 𝐵𝐹!.  

C. Architectural design 
The architectural design of the method proposed in this 

paper is shown in Fig. 2. It contains three components: 𝑁 
clients, 𝐿 data miners, and the R statistical environment. Each 
client runs on the respondent’s device used to complete the 
questionnaire. A data miner is a third party that satisfies the 
threat model described in section VI-D. A data analyst works 
within the R statistical environment to analyze the 
questionnaire data. 

Each client encodes a respondent’s responses as secret 
shared Bloom filters and distributes them to the data miners 
together with the respondent’s unique identifier. The data 
miners store the secret shared Bloom filters locally. They are 
blind to the respondents’ answers; however, they jointly 
compute the secure protocols proposed in section VI-E to 
answer a data analyst’s statistical query. 

The data analyst uses the R package developed in this paper 
to make statistical queries against the secret shared Bloom 
filters. We refer to these queries as private queries, because 
the queries are computed on individual-level responses. In 
contrast, public queries are locally computed within R on the 
results of private queries. 

D. Threat model and assumptions 
We assumed that respondents create valid secret share 

Bloom filters. However, for some surveys, malicious 
respondents may create corrupted secret shared Bloom filters 
to alter the accuracy of the surveys’ statistical outputs. 
Therefore, in Appendix B, we discuss how a malicious 
respondent could try to alter statistical outputs, and propose a 
secure and very efficient protocol for verifying whether a 
respondent’s secret shared Bloom filters are legitimate. 

We considered a semi-honest (honest-but-curious) 
adversarial model in which the data miners follow a protocol 
specification using the correct secret shared Bloom filters. 
However, the data miners might try to use the messages 
exchanged in the protocol to learn private information.  

We assumed that there exists a secret share multiplication 
protocol that is secure under the semi-honest adversarial 
model. We also assumed that the protocol is universally 
composable [28] in which multiple executions of the protocol 
remain secure. 

We assumed that communications between two entities that 
participate in a protocol are secure. Therefore, an adversary 
cannot read messages sent between two entities and the 
integrity of the messages is verified.  

During the execution of the secure protocols, we assumed 
that the communications between the data miners are 

asynchronous. Therefore, sending and receiving a message 
may take an arbitrary amount of time. However, we assumed 
that there is no message loss as fault tolerance is beyond the 
scope of the paper.  

E. Secure multi-party computation protocols 
In this section, we presented the sub-protocols we 

developed for analyzing the respondents’ answers, while 
preserving the respondents’ privacy. 
1) Secure protocols for the logical operators 

Let us consider the counters 𝑐! and 𝑐!!! of 𝐵𝐹!, which have 
binary (1 or 0) values. Their secret shares 𝑐!  and 𝑐!!! , 
respectively, are distributed across the data miners. Let us also 
assume that a secret share of 1 is distributed across the data 
miners. In this section, we describe protocols for computing 
the logical operators, such as AND, OR, and NOT, of the 
secret shared values. The result of the protocols after 
computing the logical operators is a secret share of 1 
distributed across the data miners when the expression is true, 
and 0 otherwise. 

The logical AND of 𝑐! and 𝑐!!! can be computed on their 
secret shared values using a secret share multiplication 
protocol.  

The logical OR of 𝑐!  and 𝑐!!!  can be described as 
(𝑐! + 𝑐!!!)   −   (𝑐! ∗ 𝑐!!!) . Thus, the data miners jointly 
compute the logical OR on their secret shared values using a 
combination of the secret share addition, multiplication, and 
subtraction protocols.  

The logical NOT of 𝑐! can be described as (1 − 𝑐!). Thus, 
the data miners compute the logical NOT on the secret share 
value of 𝑐!  and 1 using only the secret share subtraction 
protocol. 
2) Secure count protocol 

Let us consider question 𝑄!  of the questionnaire and its 
answer 𝑎!

!. The objective of the secure count protocol is to 
find a secret shared value 𝑛  of the number of respondents 
who chose 𝑎!

! . For example, the query can be finding the 
number of female respondents. 

The responses of all survey participants are distributed 
across the data miners as a secret shared Bloom filter 𝐵𝐹! , 
𝑖 ∈ {1,2,… ,𝑁}. The counter positions of 𝑎!

! in 𝐵𝐹! is denoted 
as 𝑏! 𝑎!

! ∈ 0,𝑚 − 1 , where ℎ ∈ {1,2,… , 𝑘}  and 𝑘  is the 
number of hash functions.  

For each counter position 𝑏! 𝑎!
! , the data miners execute 

the secret share addition protocol of the counter values for all 
participants’ secret shared Bloom filters. We denote the result 
as 𝑐! , which is a secret shared value distributed across the 
data miners. The results of the entire counter positions are 
denoted as 𝑐 = { 𝑐! , 𝑐! ,… 𝑐! }. The minimum value of 
𝑐  is equal to 𝑛  [29].  

3) Secure membership query protocol 
The objective of the protocol is to find a secret shared value 
𝑟!,!
!  that is equal to 1, if 𝑎!

!  is a member of 𝐵𝐹!  (in other 
words, the respondent 𝑝! answered 𝑎!

!), and 0 otherwise. For 
example, the protocol can be used to identify whether 𝑝! is a 
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female. However, the result is secret shared between the data 
miners so that no one learns any information about the gender 
of 𝑝!. 
𝑎!
! is considered a non-member of 𝐵𝐹! if at least one of the 

positions 𝑏!(𝑎!
!) is 0. Therefore, as presented in Algorithm 1, 

the logical AND between the counter values at positions 
𝑏! 𝑎!

!  of 𝐵𝐹!  is equal to 𝑟!,!
! .  

Algorithm 1: SecureMembershipQuery ( 𝐵𝐹! , 𝑎!
!) 

Input: The counter positions {𝑏!, 𝑏!,… , 𝑏!} of 𝑎!
! in 𝐵𝐹!  

Output: Secret shared value 𝑟!,!
!  of 1 if 𝑎!

! exists in 𝐵𝐹!, and 0 
otherwise. 
 
//the data miners run the secure logical AND protocol 
𝑟!,!
! = 𝑐(!!) ∗ 𝑐(!!)          

for ℎ = 3 to 𝑘 do 
       //the data miners run the secure logical AND protocol 
       𝑟!,!

! = 𝑟!,!
! ∗ 𝑐(!!)          

end 
The protocol is extended to perform a secure non-

membership query of whether 𝑝!  did not answer 𝑎!
! . This 

query is computed using the logical NOT protocol on the 
result of the membership query 𝑟!,!

! . 
The protocols for logical operators can be used to join the 

results of multiple membership queries with logical operators, 
such as AND and OR. For example, we may want to query 
whether 𝑝!  is female AND >   65 years old. No one learns 
about the result, as it is secret shared. 

Let us consider answers 𝑎!
!  and 𝑎!

!!!  to questions 𝑄!  and 
𝑄!!!, respectively. The membership queries of 𝑎!

! and 𝑎!
!!! in 

𝐵𝐹!  are denoted as 𝑟!,!
!  and 𝑟!,!

!!! , respectively. For 
example, a query about whether 𝑝! answered 𝑎!

! and 𝑎!
!!! can 

be computed by executing the logical AND protocol on 𝑟!,!
!  

and 𝑟!,!
!!! .  

In general, any query criteria can be build by concatenating 
the logical operators, and the secret share of the result of a 
query on the responses of 𝑝! is denoted as 𝑟! . 
4) Secure conditional count protocol 

The objective of the secure conditional count protocol is to 
find a secret shared value 𝑛  of the number of individuals 
who satisfy a conditional query criteria, without revealing an 
individual’s query results. An example query can be the 
number of respondents who are female AND >   65 years old.  

The protocol computes as follows. First, for each 
respondent 𝑝!, the data miners execute the query using the 
secure membership query protocol. Second, they compute 
secret share addition protocol of the query result 𝑟! , where 
𝑖 ∈ {1,2,… ,𝑁}, for all respondents, which gives the secret 
shared value 𝑛 .  

VII. STATISTICAL COMPUTATIONS 

The appropriate statistical analyses for questionnaire data 
depend on the objectives of the survey and the types of 

variables used in the questionnaire, such as nominal, ordinal, 
and interval. 

As described in section VI-E-2 and VI-E-4, the results of 
the secure count and secure conditional count protocols are 
secret shared between the data miners. Then, the data miners 
send their shares to the R package that constructs the count 
values. These results are total and stratified statistical counts, 
respectively. As described next, a wide variety of statistical 
analyses can be computed using the statistical counts as 
building blocks.  

The frequency table of a variable can be created by 
querying the total statistical count of each category of the 
variable. For an interval variable, it is possible to compute 
statistics, such as average, variance, and standard deviation, 
based on the frequency table. 

A contingency table (cross-tabulation) of two or more 
categorical variables can be constructed by computing 
stratified statistical counts of each combination of the answers 
of the variables. Table I shows a 2 × 4 contingency table of 
age group and gender, where cell 𝑛!,!  is the number of 
respondents who chose the values of row 𝑖 and column 𝑗.  

Statistics, such as a chi-square test and an odds ratio, can be 
computed on contingency tables. Logistic regression can also 
be computed on a multi-way contingency table for a binary or 
dichotomous outcome variable, which has two categories. 
Similarly, multinomial logistic regression can be computed for 
an outcome variable that has more than two categories.  

VIII. RESULTS 

A. Security analysis 
In this section, we prove the security for the protocols based 

on the threat model and the assumptions described in section 
VI.D. 

Theorem 1 The secure count protocol is secure for semi-
honest data miners. 

Proof: The security proof of the protocol is simple 
following the security of the secret sharing scheme. 

The protocol uses the homomorphic addition property of 
linear secret sharing schemes. Therefore, the protocol is 
secure, as the secret sharing scheme is secure. In the case of 
the additive secret sharing scheme, the protocol is secure with 
a collusion of up to 𝐿 − 1 dishonest data miners. 

Theorem 2 The secure conditional count protocol is secure 
for semi-honest data miners. 

Proof: The security proof of the protocol is simple 
following the universal composability theorem. 

The notion of universal composability allows us to reduce 
the security proof of the protocol to the security proof of its 
sub-protocols. Multiple executions of a universally 
composable protocol remain secure [28]. The protocol uses 
homomorphic addition and subtraction properties of a linear 
secret sharing scheme and a multiplication protocol. 
Therefore, the secure membership query protocol and the 
protocols for the logical operators are secure for a universally 
composable secret share multiplication protocol. 
Consequently, the secure conditional count protocol is secure, 
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and it provides the same security guarantee as the 
multiplication protocol. 

As a result, the protocols successfully protect the 
respondents’ privacy. Therefore, the method satisfies 
requirement R1 (Security).  

B. Implementation 
We implemented a prototype of the proposed method in 

Java. The method is agnostic to a linear secret sharing scheme 
and a secret share multiplication protocol. However, the 
prototype was implemented using the additive secret sharing 
scheme and the multiplication protocol proposed in [17]. The 
multiplication protocol was designed for three data miners. It 
has been shown that the protocol is universally composable 
under the semi-honest adversarial model. Consequently, all 
experiments performed in this paper used three data miners.  

As we did not run a survey, the questionnaire data used in 
the experiments were stored in a csv file, where each record is 
an individual’s questionnaire response. Therefore, to emulate 
the client application, we created a simple client that encoded 
each record of a csv file as secret shared Bloom filters of a 
respondent and distributed the secret shared Bloom filters to 
the data miners. 

The format of a secret shared Bloom filter varies with the 
survey design, such as the questionnaire and the expected 
number of participants. Thus, a data miner could simply store 
a secret shared Bloom filter in a relational database as a text. 
However, it will require the data miners to process the whole 
secret shared Bloom filter, although a given query is computed 
only on the counter values at specific counter positions. 
Therefore, our implementation of data miners used Redis as a 
database and the Jedis client for persisting and querying secret 
shared Bloom filters [30]. The array of a secret shared Bloom 
filter was stored as a list using the respondent identifier as a 
key.  

We developed an R package (SecureStat) that contains 
functions, such as sec.count() and  sec.conditional.count(), 
for the secure statistical count and conditional count queries. 
We assumed that data analysts are familiar with the R 
statistical environment and perform further statistical 
computations of the results of secure counts using existing R 
packages. 

We used the JavaScript Object Notation (JSON) format for 
message communication. The JSON messages were sent 
through the Extensible Messaging and Presence Protocol 
(XMPP) [31]. Each entity used an XMPP client to connect to a 
local XMPP server. Then, a message between two entities was 
sent through a server-to-server connection. All messages were 
compressed using the Lz4 [32] lossless compression algorithm 
to reduce the overall size. After transmission, each message 
was decompressed before actual use. 

C. Analytical evaluation  
A protocol is efficient if it is able to compute with good 

performance, which is often expressed by the communication 
(i.e., communication rounds and size of messages) and 
computation complexity. Scalability is measured in terms of 

the change in efficiency as the number of participants 
increases. 

The secure count protocol does not require communication 
between the data miners. The local computation performed by 
a data miner is simple arithmetic that is linear with the number 
of survey respondents (𝑁), number of hash functions (𝑘), and 
the number of bits 𝑝 of the secret shares.  

The conditional count protocol uses a secure multiplication 
protocol that requires communication between the data 
miners. The size of the messages is linear with the values of 
𝑁, 𝑘, and 𝑝. For query criteria that contain 𝑣 variables, the 
number of multiplications is equal to (𝑘 ∗ 𝑣) − 1. The value of 
𝑘 can be minimized by increasing the expected number of 
elements 𝑛 of the Bloom filter for the same false positive 
probability. As a result, the number of multiplications 
significantly reduces. 

The client encodes a respondent’s answers as a Bloom filter 
and then secret shares each array position of the Bloom filter, 
which is computationally very efficient. The size of the 
message a client sends to data miners is linear with the Bloom 
filter parameters. The number of messages sent by a client is 
equal to the number of data miners, which is very few.  

D. Experimental evaluation 
We deployed the prototype in a local area network 

connected through a Gigabit switch. The data miners were 
deployed on three machines equipped with Intel i3-5010U 
dual core 2.10GHz CPUs, 8GB RAM, and Windows 10 Pro. 
The client and the R statistical environment were deployed on 
an Intel dual core i7 2.9 GHz CPU, 8GB RAM and Mac 
10.10.5. 

We ran experiments to evaluate the runtime of the protocol 
to compute a statistical count and a 3 × 6 contingency table. 
Each experiment was run 20 times, and the average runtime 
was recorded. The parameters used for the experiments are 
presented in Appendix C. 

We ran the first experiments on the questionnaire data of 
3,158 respondents described in section II. The runtime of a 
statistical count completed within 0.4 seconds. A query of a 3 
× 6 contingency table was completed within 5.437 seconds. 

To evaluate the scalability of the proposed method, the 
second experiment was run on simulated questionnaire data of 
50,000 respondents. Fig. 3 and Fig. 4 illustrate the total 
runtime of a statistical count and a 3 × 6 contingency table 
query, respectively, as the number of respondents increases. 

We also ran experiments to evaluate of the size of message 
and the computation times of a client as the number of 
questions on the questionnaire increases. Table II shows the 
size of the message a client sends to data miners. Fig. 5 shows 
the client’s computation time. 

IX. DISCUSSION 

We designed and evaluated a secure method for collecting 
and analyzing questionnaire data. The proposed method 
protects respondents’ privacy under the semi-honest 
adversarial model, and the computation results were correct. 
Therefore, the method satisfies requirement R1. 
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Unlike the methods proposed in [10], [11], the computation 
model of the method does not require a client to be online 
after the respondent completes the questionnaire and the 
responses are distributed to the data miners as secret shared 
Bloom filters. When a client goes offline or shuts down before 
completing the questionnaire or distributing the secret shared 
Bloom filters, the task can be completed anytime within the 
survey’s data collection period or the individual will be 
considered a non-respondent. In addition, our method does not 
require peer-to-peer communication between clients in 
contrast to the method proposed in [10]. 

The experimental results showed that the proposed 
protocols for statistical analyses are efficient, and they linearly 
scale with the addition of respondents. The runtime of the 
protocols are significantly faster than the protocols proposed 
in [10], [11]. The runtime of our protocols are comparable to 
the protocols implemented in [9], but our protocol for creating 
a contingency has security advantage as discussed later. 

In addition, in our method, the computation complexity of a 
client is very minimal that makes it suitable for usage on 
mobile devices. Therefore, requirement R2 is satisfied.  

An R package was developed for the secure statistical count 
and conditional count queries of the secret shared data 
distributed across data miners. Various statistics are computed 
within R using the statistical count as a building block. 
Requirement R3 was satisfied as the method allows a data 
analyst to work within a familiar environment. In addition, the 
use of R as a front-end tool avoided the need to implement 
advanced statistics. 

The paper discussed the proposed method in terms of 
questionnaire data. However, the method can be used for other 
data sources, such as mobile application and medical sensor 
data, where the types of variables are nominal, interval, and 
ordinal.  

The client application can be implemented as a web 
application and/or a mobile application. Bogdanov et al. [33] 
discussed the state of the art for web technologies for privacy-
preserving computations. 

The method proposed in the paper is secure for any entities 
selected as data miners as long as they satisfy the threat 
model. Data miners cannot be able to obtain an individual’s 
personal information, even if they try to do so. However, 
practical uses of the method require public awareness of how 
the method works and how much privacy protection is 
provided. The use of public entities trusted by the community, 
such as healthcare institutions, patient organizations, and 
privacy advocates, as data miners may also increase public 
trust. 

The business process of running a survey using this 
privacy-preserving method will not be much different from 
existing online survey systems. The proposed method starts 
with a survey design that includes the preparation of a 
questionnaire and coding the questions (see Appendix A for 
the questionnaire used in the experiments). The survey design 
also includes setting the appropriate parameters (see Appendix 
C for the parameters used in the experiments). Participants are 
invited and data are collected after the survey is designed. 

During the data collection phase, data analysts may be 
interested only in querying the number of respondents. 
However, after the data collection phase is completed, data 
analysts run statistical analyses. 

The security analysis proved that the protocols proposed in 
this paper are secure. In general, SMC protocols compute 
without revealing any information apart from the computation 
results. However, the computation results might lead to 
inferential disclosure given prior knowledge and repeated 
queries. In the following sections we present techniques that 
can be used in our method to avoid or minimize inferential 
disclosure. However, the methods presented in [9], [10] lacks 
inferential disclosure techniques. 

Query restriction techniques are developed in the statistical 
database research area to limit inferential disclosure, where 
queries that can lead to a compromise are denied [34]. For 
example, SHRINE, a distributed health research network, 
limits the smallest value of a statistical count query result to 
ten [35]. In our method, a secret share less than protocol [17] 
can be used to evaluate whether results of secure count and 
secure conditional count protocols is less than the threshold 𝑡, 
which gives a secret share of 1 if the count is less than 𝑡, and 0 
otherwise. Therefore, it is possible to extend our method to 
make sure that statistical counts of less than 𝑡 are not returned 
to a data analyst.  

Perturbation techniques were also developed to limit 
inferential disclosure techniques, by adding noise into the 
query results in a way that protects individuals’ privacy [34]. 
The method proposed in [11] uses the differential privacy 
model [25] for inferential disclosure limitation. For our 
experiments, we chose a small false positive probability that 
led to computation of the exact statistical results. However, it 
is possible to use the false positive probability of the Bloom 
filter, which is selected during the survey design phase, as a 
parameter to insert noise into the statistical results. 

In the current implementation of the secure questionnaire 
method, statistical counts are returned to a data analyst who 
performs additional analysis on the statistical count results. 
However, as the results of the secure count and secure 
conditional count protocols are secret shared, advanced 
statistical computations can be implemented without revealing 
the intermediate results. Therefore, inferential disclosures can 
be minimized or avoided. 

X. CONCLUSION 

The privacy-preserving method proposed in this paper is 
efficient and scalable for practical use. The method may 
increase the number of survey respondents and the accuracy of 
their responses. The method may also minimize or avoid the 
non-respondent bias that occurs as a result of differences 
between survey respondents and non-respondents. However, 
further research is required to measure the effects of this 
method on a survey compared to existing anonymous survey 
method. 

Currently, the prototype was evaluated between data miners 
connected through a local area network. We plan to evaluate 
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this method with data miners connected through the Internet. 
In addition, we plan to enhance the prototype with the 
techniques discussed in Section IX for avoiding statistical 
disclosures. 

APPENDIX A 

In this appendix, we present the subset of the questionnaire 
of the PAsTAs project that was used to evaluate the method 
presented in this paper. The questionnaire was originally in 
Norwegian. However, we present an English translation of the 
questions. In addition, the questions are coded according to the 
notations described in section III. 
𝑄!. What is your gender? 

𝑄!. What is your age? 

𝑄!. What is the highest education you have completed? 
       𝑎!!. Primary education 
       𝑎!!. Lower secondary education 
       𝑎!!. Upper secondary education 
       𝑎!!. Less than 4 years college/university education  
       𝑎!!. Four years or more college/university education  
𝑄!. In general, would you say your health is 
       𝑎!!. Excellent 
       𝑎!!. Very good 
       𝑎!!. Good 
       𝑎!!. Fair 
       𝑎!!. Poor 
𝑄!. Do you live together with someone? 

𝑄!. Think of the health services you have received in 2012 
and 2013 and indicate your level of agreement with the 
following statement: 
Overall, I am satisfied with the healthcare services I have 
received. 
      𝑎!!. Completely disagree 
      𝑎!!. Somewhat disagree 
      𝑎!!. Neutral 
      𝑎!!. Somewhat agree 
      𝑎!!. Completely agree 
      𝑎!!. Not applicable 

APPENDIX B 

A malicious respondent may try to affect the accuracy of a 
survey’s statistical analysis results although it is not possible 
to get any other benefit (e.g., cannot learn other respondents’ 
private information). The array positions of a Bloom filter are 
set to 1 based on a respondent’s answers, and 0 otherwise. 
However, a respondent may create a corrupted Bloom filter 
with all the array positions set to 1. Consequently, the secret 
shared Bloom filters generated from the Bloom filter become 
corrupted. Such corruption of a malicious respondent 

increases the result of a statistical count by only one, which is 
not significant in most applications.  

A statistical count of the questionnaire data will be 
significantly distorted if the array positions of the Bloom filter 
are set to large values. A zero-knowledge range proof [36] can 
be used to protect against such attacks as a verifier will be able 
to confirm that each array position of a respondent’s Bloom 
filter is either 0 or 1. However, zero-knowledge proofs are 
computationally expensive. 

As an alternative, we propose a simple and efficient 
protocol for identifying the corrupted Bloom filter of a 
malicious respondent and consequently remove his secret 
shared Bloom filters from the survey. For a given survey 
design it is possible to estimate the maximum number of array 
positions of a Bloom filter that can be set to 1, and we denote 
it as 𝑀. 

For each secret shared Bloom filter 𝐵𝐹! , the data miners 
execute the secret share addition of all counter values, which 
approximates a secret share of the number of array positions 
that have value 1 denoted as 𝑀! . The data miners exchange 
the shares of 𝑀!  to reconstruct 𝑀!. Finally, each data miner 
locally evaluates whether 𝑀! ≤ 𝑀 and verifies that the secret 
shared Bloom filter is legitimate. 

APPENDIX C 

Kirsch et al. [37] demonstrated that any 𝐵𝐹  can be 
effectively implemented with only two hash functions 𝐻!(𝑥) 
and 𝐻!(𝑥). The 𝑘 counter positions of the 𝑘 hash functions are 
simulated with the form 𝑏!(𝑥) = (𝐻! 𝑥 + 𝑖𝐻!(𝑥))  𝑚𝑜𝑑  𝑚 
without affecting the false positive probability. A hash 
function 𝐻(. ) and two secret keys 𝑘! and 𝑘! can be used to 
instantiate the hash values of the two hash functions as 
follows, 𝐻!(𝑥) = 𝐻(𝑘! ∥ 𝑥)  and 𝐻!(𝑥) = 𝐻(𝑘! ∥ 𝑥) . The 
hash function can be a non-cryptographic hash function, which 
is more efficient than cryptographic hash functions. For all the 
experiments in this paper we used MurmurHash 2, which is a 
non-cryptographic hash function. 

For all the experiments, we chose the number of hash 
functions 𝑘 = 1  and false positive probability 
𝑃   𝑓𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 0.01. The expected number of elements 
is equal to the number of questions of questionnaire 𝑛. Then, 
we chose a Bloom filter size 𝑚 that provides the false positive 
probability of 𝑃   𝑓𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 0.01  for a given 𝑛  and 
𝑘 = 1. 

We also used secret sharing with a finite ring of integers 
ℤ!!, where 𝑝 = 16. Therefore, the result of a statistical count 
query is a 16-bit integer. The upper bound of the result of a 
statistical count query is equal to the number of survey 
participants 𝑁. Therefore, the number of bits 𝑝 should be able 
to represent 𝑁. Let us consider 𝑁 = 50,000 and question Q6 
of the questionnaire presented in Appendix A. In an ideal 
scenario, all respondents were satisfied with the healthcare 
services they had received and responded: “Completely 
agree.” Consequently, a statistical count of the number of 
respondents who “Completely” satisfied with the healthcare 
services they had received is 50,000, which requires 16-bit. 

𝑎!!. Female  𝑎!!. Male 

𝑎!!. <18 𝑎!!. Between 18 and 45 
𝑎!!. Between 46 and 65 𝑎!!. >65 

𝑎!!. Yes  𝑎!!. No 
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Fig. 1. Secret share of Bloom filter 𝐵𝐹!  that encodes the responses of respondent 𝑝!  

 
 

 
Fig. 2. Architectural design of the privacy-preserving questionnaire method 

 

 
Fig. 3. The total runtime of a statistical count query as the number of respondents increases 
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Fig. 4. The total runtime of a 3 × 6 contingency table query as the number of respondents increases 

 

 
Fig. 5. The computation time of a client as the number of questions of the questionnaire increases 

 
TABLE I  

A CONTINGENCY TABLE OF GENDER AND AGE GROUP 
 

Gender 
Age Group 

< 18 18 − 45 46 − 65 > 65 

Male 𝑛!,! 𝑛!,! 𝑛!,! 𝑛!,! 

Female 𝑛!,! 𝑛!,! 𝑛!,! 𝑛!,! 

 
TABLE II  

THE SIZE OF THE MESSAGE A CLIENT SENDS TO A DATA MINER AS THE NUMBER OF QUESTIONS INCREASES 
Number of 
questions 

20 40 60 80 100 

Message size 
(KB) 

4.77 9.22 13.69 18.15 22.62 

 
 


