
1

Providing User Security Guarantees in Public
Infrastructure Clouds

Nicolae Paladi, Christian Gehrmann, and Antonis Michalas

Abstract—The infrastructure cloud (IaaS) service model offers improved resource flexibility and availability, where tenants – insulated
from the minutiae of hardware maintenance – rent computing resources to deploy and operate complex systems. Large-scale services
running on IaaS platforms demonstrate the viability of this model; nevertheless, many organizations operating on sensitive data avoid
migrating operations to IaaS platforms due to security concerns. In this paper, we describe a framework for data and operation security
in IaaS, consisting of protocols for a trusted launch of virtual machines and domain-based storage protection. We continue with an
extensive theoretical analysis with proofs about protocol resistance against attacks in the defined threat model. The protocols allow
trust to be established by remotely attesting host platform configuration prior to launching guest virtual machines and ensure
confidentiality of data in remote storage, with encryption keys maintained outside of the IaaS domain. Presented experimental results
demonstrate the validity and efficiency of the proposed protocols. The framework prototype was implemented on a test bed operating a
public electronic health record system, showing that the proposed protocols can be integrated into existing cloud environments.

Index Terms—Security; Cloud Computing; Storage Protection; Trusted Computing

F

1 INTRODUCTION

Cloud computing has progressed from a bold vision to mas-
sive deployments in various application domains. However,
the complexity of technology underlying cloud computing
introduces novel security risks and challenges. Threats and
mitigation techniques for the IaaS model have been under
intensive scrutiny in recent years [1], [2], [3], [4], while
the industry has invested in enhanced security solutions
and issued best practice recommendations [5]. From an
end-user point of view the security of cloud infrastructure
implies unquestionable trust in the cloud provider, in some
cases corroborated by reports of external auditors. While
providers may offer security enhancements such as protec-
tion of data at rest, end-users have limited or no control
over such mechanisms. There is a clear need for usable and
cost-effective cloud platform security mechanisms suitable
for organizations that rely on cloud infrastructure.

One such mechanism is platform integrity verification
for compute hosts that support the virtualized cloud infras-
tructure. Several large cloud vendors have signaled practical
implementations of this mechanism, primarily to protect
the cloud infrastructure from insider threats and advanced
persistent threats. We see two major improvement vectors
regarding these implementations. First, details of such pro-
prietary solutions are not disclosed and can thus not be im-
plemented and improved by other cloud platforms. Second,
to the best of our knowledge, none of the solutions provides
cloud tenants a proof regarding the integrity of compute
hosts supporting their slice of the cloud infrastructure. To
address this, we propose a set of protocols for trusted launch
of virtual machines (VM) in IaaS, which provide tenants
with a proof that the requested VM instances were launched
on a host with an expected software stack.

Another relevant security mechanism is encryption of
virtual disk volumes, implemented and enforced at compute

host level. While support data encryption at rest is offered
by several cloud providers and can be configured by tenants
in their VM instances, functionality and migration capabil-
ities of such solutions are severely restricted. In most cases
cloud providers maintain and manage the keys necessary
for encryption and decryption of data at rest. This further
convolutes the already complex data migration procedure
between different cloud providers, disadvantaging tenants
through a new variation of vendor lock-in. Tenants can
choose to encrypt data on the operating system (OS) level
within their VM environments and manage the encryption
keys themselves. However, this approach suffers from sev-
eral drawbacks: first, the underlying compute host will still
have access encryption keys whenever the VM performs
cryptographic operations; second, this shifts towards the
tenant the burden of maintaining the encryption software
in all their VM instances and increases the attack surface;
third, this requires injecting, migrating and later securely
withdrawing encryption keys to each of the VM instances
with access to the encrypted data, increasing the probability
than an attacker eventually obtains the keys. In this paper
we present DBSP (domain-based storage protection), a vir-
tual disk encryption mechanism where encryption of data is
done directly on the compute host, while the key material
necessary for re-generating encryption keys is stored in
the volume metadata. This approach allows easy migration
of encrypted data volumes and withdraws the control of
the cloud provider over disk encryption keys. In addition,
DBSP significantly reduces the risk of exposing encryption
keys and keeps a low maintenance overhead for the tenant
– in the same time providing additional control over the
choice of the compute host based on its software stack.

We focus on the Infrastructure-as-a-Service model – in a
simplified form, it exposes to its tenants a coherent platform
supported by compute hosts which operate VM guests that
communicate through a virtual network. The system model



2

chosen for this paper is based on requirements identified
while migrating a currently deployed, distributed electronic
health record (EHR) system to an IaaS platform [6].

1.1 Contribution
We extend previous work applying Trusted Computing to
strengthen IaaS security, allowing tenants to place hard
security requirements on the infrastructure and maintain
exclusive control of the security critical assets. We propose
a security framework consisting of three buiding blocks:

• Protocols for trusted launch of VM instances in IaaS;
• Key management and encryption enforcement func-

tions for VMs, providing transparent encryption of
persistent data storage in the cloud;

• Key management and security policy enforcement by
a Trusted Third Party (TTP);

We describe several contributions that enhance cloud
infrastructure with additional security mechanisms:

1. We describe a trusted VM launch (TL) protocol which
allows tenants – referred to as domain managers – to
launch VM instances exclusively on hosts with an at-
tested platform configuration and reliably verify this.

2. We introduce a domain-based storage protection proto-
col to allow domain managers store encrypted data vol-
umes partitioned according to administrative domains.

3. We introduce a list of attacks applicable to IaaS environ-
ments and use them to develop protocols with desired
security properties, perform their security analysis and
prove their resistance against the attacks.

4. We describe the implementation of the proposed pro-
tocols on an open-source cloud platform and present
extensive experimental results that demonstrate their
practicality and efficiency.

1.2 Organization
The rest of this paper is organized as follows. In Section 2
we describe relevant related work on trusted virtual machine
launch and cloud storage protection. In Section 3 we intro-
duce the system model, as well as the threat model and
problem statement. In Section 4 we introduce the protocol
components, and the TL and DBSP protocols as formal
constructions. In Section 5, we provide a security analysis
and prove the resistance of the protocols against the defined
attacks, while implementation and performance evaluation
results are described in Section 6. We discuss the protocol
application domain in Section 7 and conclude in Section 8.

2 RELATED WORK

We start with a review of related work on trusted VM
launch, followed by storage protection in IaaS.

2.1 Trusted Launch
Santos et al. [1] proposed a “Trusted Cloud Compute Plat-
form” (TCCP) to ensure VMs are running on a trusted
hardware and software stack on a remote and initially
untrusted host. To enable this, a trusted coordinator stores
the list of attested hosts that run a “trusted virtual machine
monitor” which can securely run the client’s VM. Trusted
hosts maintain in memory an individual trusted key used

for identification each time a client launches a VM. The
paper presents a good initial set of ideas for trusted VM
launch and migration, in particular the use of a trusted
coordinator. A limitation of this solution is that the trusted
coordinator maintains information about all hosts deployed
on the IaaS platform, making it a valuable target to an
adversary who attempts to expose the public IaaS provider
to privacy attacks.

A decentralized approach to integrity attestation is
adopted by Schiffman et al. [2] to address the limited trans-
parency of IaaS platforms and scalability limits imposed by
third party integrity attestation mechanisms. The authors
describe a trusted architecture where tenants verify the
integrity of IaaS hosts through a trusted cloud verifier proxy
placed in the cloud provider domain. Tenants evaluate the
cloud verifier integrity, which in turn attests the hosts.
Once the VM image has been verified by the host and
countersigned by the cloud verifier, the tenant can allow the
launch. The protocol increases the complexity for tenants
both by introducing the evaluation of integrity attestation
reports of the cloud verifier and host and by adding steps to
the trusted VM launch, where the tenant must act based
on the data returned from the cloud verifier. Our proto-
col maintains the VM launch traceability and transparency
without relying on a proxy verifier residing in the IaaS.
Furthermore, the TL protocol does not require additional
tenant interaction to launch the VM on a trusted host,
beyond the initial launch arguments.

Platform attestation prior to VM launch is also applied
in [7], which introduces two protocols – “TPM-based certi-
fication of a Remote Resource” (TCRR) and “VerifyMyVM”.
With TCRR a tenant can verify the integrity of a remote
host and establish a trusted channel for further commu-
nication. In “VerifyMyVM”, the hypervisor running on an
attested host uses an emulated TPM to verify on-demand
the integrity of running VMs. Our approach is in many
aspects similar to the one in [7] in particular with regard
to host attestation prior to VM instance launch. However,
the approach in [7] requires the user to always encrypt the
VM image before instantiation, thus complicating image
management. This prevents tenants from using commodity
VM images offered by the cloud provider for trusted VM
launches. We overcome this limitation and generalize the
solution by adding a verification token, created by the
tenant and injected on the file system of the VM instance
only if it is launched on an attested cloud host.

In [8], the authors described a protocol for trusted VM
launch on public IaaS using trusted computing techniques.
To ensure that the requested VM instance is launched on
a host with attested integrity, the tenant encrypts the VM
image (along with all injected data) with a symmetric key
sealed to a particular configuration of the host reflected in
the values of the platform configuration registers (PCR) of
the TPM placed on the host. The proposed solution is suit-
able in trusted VM launch scenarios for enterprise tenants as
it requires that the VM image is pre-packaged and encrypted
by the client prior to IaaS launch. However, similar to [7],
this prevents tenants from using commodity VM images
offered by the cloud provider to launch VM instances on
trusted cloud hosts. Furthermore, we believe that reducing
the number of steps required from the tenant can facilitate



3

the adoption of the trusted IaaS model. We extend some
of the ideas proposed in [8], address the above limitations
– such as additional actions required from tenants – and
also address the requirements towards the launched VM
instance and required changes to cloud platforms.

2.2 Secure Storage
Cooper et al. described in in [9] a secure platform architec-
ture based on a secure root of trust for grid environments –
precursors of cloud computing. Trusted Computing is used
as a method for dynamic trust establishment within the grid,
allowing clients to verify that their data wil be protected
against malicious host attacks. The authors address the ma-
licious host problem in grid environments, with three main
risk factors: trust establishment, code isolation and grid
middleware. The solution established a minimal trusted
computing base (TCB) by introducing a security manager
isolated by the hypervisor from grid services (which are in
turn performed within VM instances). The secure architec-
ture is supported by protocols for data integrity protection,
confidentiality protection and grid job attestation. In turn,
these rely of client attestation of the host running the respec-
tive jobs, followed by interaction with the security manager
to fulfill the goals of the respective protocols. We follow a
similar approach in terms of interacting with a minimal TCB
for protocol purposes following host attestation. However,
in order to adapt to the cloud computing model we delegate
the task of host attestation to an external TTP as well as
use TPM functionality to ensure that sensitive cryptographic
material can only be accessed on a particular attested host.

In [10], the authors proposed an approach to protect
access to outsourced data in an owner-write-users-read
case, assuming an “honest but curious service provider”.
Encryption is done over (abstract) blocks of data, with a
different key per block. The authors suggest a key derivation
hierarchy based on a public hash function, using the hash
function result as the encryption key. The scheme allows to
selectively grant data access, uses over-encryption to revoke
access rights and supports block deletion, update, insertion
and appending. It adopts a lazy revocation model, allow-
ing to indefinitely maintain access to data reachable prior
to revocation (regardless of whether it has been accessed
before access revocation). While this solution is similar to
our model with regard to information blocks and encryp-
tion with different symmetric keys, we propose an active
revocation model, where the keys are cached for a limited
time and cannot be retrieved once the access is revoked.

The “Data-Protection-as-a-Service” (DPaaS) platform
[11] balances the requirements for confidentiality and pri-
vacy with usability, availability and maintainability. DPaaS
focuses on shareable logical data units, confined in isolated
partitions (e.g. VMs of language-based features such as Caja,
Javascript) or containers, called Secure Execution Environ-
ments (SEE). Data units are encrypted with symmetric keys
and can be stored on untrusted hardware, while containers
communicate through authenticated channels. The authors
stress the verifiability of DPaaS using trusted computing
and the use of the dynamic root of trust to guarantee that
computation is performed on a “secure” platform. The au-
thors posit that DPaaS fulfills confidentiality and privacy re-
quirements and facilitates maintenance, logging and audit;

provider migration is one of the aspects highlighted, but not
addressed in [11]. Our solution resembles DPaaS in the use
of SEE based on software attestation mechanisms offered
by the TPM, and in the reliance on full disk encryption to
protect data at rest and support for flexible access control
management of the data blocks. However, the architecture
outlined in [11] does not address bootstrapping the platform
(e.g. the VM launch) and provides few details about the
key management mechanism for the secure data store. We
address the above shortcomings, by describing in detail
and evaluating protocols to create and share confidentiality-
protected data blocks. We describe cloud storage secu-
rity mechanisms that allow easy data migration between
providers without affecting its confidentiality.

Graf et al. [12] presented an IaaS storage protection
scheme addressing access control. The authors analyse ac-
cess rights management of shared versioned encrypted data
on cloud infrastructure for a restricted group and propose a
scalable and flexible key management scheme. Access rights
are represented as a graph, making a distinction between
data encryption keys and encrypted updates on the keys
and enabling flexible join/leave client operations, similar to
properties presented by the protocols in this paper. Despite
its advantages, the requirement for client-side encryption
limits the applicability of the scheme in [12] and introduces
important functional limitations on indexing and search. In
our model, all cryptographic operations are performed on
trusted IaaS compute hosts, which are able to allocate more
computational resources than client devices.

Santos et al. [13] proposed Excalibur, a system using
trusted computing mechanisms to allow decrypting client
data exclusively on nodes that satisfy a tenant-specified
policy. Excalibur introduces a new trusted computing ab-
straction, policy-sealed data to address the fact that TPM
abstractions are designed to protect data and secrets on a
standalone machine, at the same time over-exposing the
cloud infrastructure by revealing the identity and software
fingerprint of individual cloud hosts. The authors extended
TCCP [1] to address the limitations of binary-based attes-
tation and data sealing by using property-based attesta-
tion [14]. The core of Excalibur is ‘the monitor’, which is a
part of the cloud provider, which organises computations
across a series of hosts and provides guarantees to tenants.
Tenants first decide a policy and receive evidence regarding
the status of the monitor along with a public encryption
key, and then encrypt their data and policy using ciphertext-
policy attribute-based encryption [15]. To decrypt, the stored
data hosts receive the decryption key from the monitor
who ensures that the corresponding host has a valid sta-
tus and satisfies the policy specified by the client at en-
cryption time. Our solution is similar to the one in [13],
with some important differences: 1) In contrast with [13]
our protocols were implemented as a code extension for
Openstack. Furthermore, the presented measurements were
made after we deployed the protocols for a part of the
Swedish electronic health records management system in
an infrastructure cloud. Thus, our measures are considered
as realistic since the experiments were done under a real
electronic healthcare system; 2) Excalibur is totally missing
a security analysis. Instead authors only present the results
of ProVerif (an automated tool) regarding the correctness



4

of their protocol. In addition to that, through our security
analysis we introduced a new list of attacks that can be
applied to such systems. This is something that is totally
missing from related works such as [13] and it can be
considered as a great contribution to protocol designers
since can avoid common pitfalls and design even better
protocols in the future;

In [16] the authors presented a forward-looking design
of a cryptographic cloud storage built on an untrusted IaaS
infrastructure. The approach aims to provide confidentiality
and integrity, while retaining the benefits of cloud storage
– availability, reliability, efficient retrieval and data sharing
– and ensuring security through cryptographic guarantees
rather than administrative controls. The solution requires
four client-side components: data processor, data verifier, cre-
dential generator, token generator. Important building blocks
of the solution are: Symmetric searchable encryption (SSE),
appropriate in settings where the data consumer is also the
one who generates it (efficient for single writer-single reader
(SWSR) models); Asymmetric searchable encryption (ASE), ap-
propriate for many writer single reader (MWSR) models,
offers weaker security guarantees as the server can mount
a dictionary attack against the token and learn the search
terms of the client; Efficient ASE, appropriate in MWSR
scenarios where the search terms are hard to guess, offers
efficient search but is vulnerable to dictionary attacks; Multi-
user SSE, appropriate for single writer/many reader set-
tings, allows the owner to – besides encrypting indexes and
generating tokens – revoke user search privileges over data;
Attribute based encryption, introduced in [17], provides users
with a decryption key with certain associated attributes,
such that a message can be encrypted using a certain key
and a policy. In such a scheme, the message can only be
decrypted only if the policy matches the key used to encrypt
it; finally, proofs of storage allow a client to verify that data
integrity has not been violated by the server.

The concepts presented in [16] are promising – espe-
cially considering recent progress in searchable encryption
schemes [18]. Indeed, integrating searchable and attribute-
based encryption mechanisms into secure storage solutions
is an important direction in our future work. However,
practical application of searchable encryption and attribute-
based encryption requires additional research.

Earlier work in [19], [20] described interoperable solu-
tions towards trusted VM launch and storage protection in
IaaS. We extend them to create an integrated framework that
builds a trust chain from the domain manager to the VM
instances and data in their administrative domain, and pro-
vide additional details, proofs and performance evaluation.

3 SYSTEM MODEL AND PRELIMINARIES

In this section we describe the system and threat model, as
well as present the problem statement.

3.1 System Model

We assume an IaaS system model (e.g. OpenStack, a popular
open-source cloud platform) as in [21]: providers expose a
quota of network, computation and storage resources to its
tenants – referred to as domain managers (Figure 1). Domain

managers utilize the quota to launch and operate VM guests.
Let DM = {DM1, . . . , DMn} be the set of all domain man-
agers in our IaaS. Then, VMi =

{
vmi

1, . . . , vm
i
n

}
is the

set of all VMs owned by each domain manager DMi. VM
guests operated by DM are grouped into domains (similar
to projects in OpenStack) which comprise cloud resources
corresponding to a particular organization or administrative
unit. DM create, modify, destroy domains and manage
access permissions of VMs to data stored in the domains.
We refer to Di =

{
Di

1, . . . , D
i
n

}
as the set of all domains

created by a domain manager DMi.

Scheduler Host

Storage hostStorage host Storage host

Storage abstraction agent

VM 1VM 1
VM

small
VM

small

Compute Host

Infrastructure Cloud Provider

VM 1

VM
medium

VMi VMj

SRi
1 SRi

2 SRj
1

Dj
1Di

1

Compute HostCH
CHi

CHj

Image repository

Network host

Indentity management

Trusted Third Party

SC

TPM

Domain Manager

DM

SC

TPM

Fig. 1. High level view of the IaaS model introduced in Section 3.

Requests for operations on VMs (launch, migration, ter-
mination, etc.) received by the IaaS are managed by a sched-
uler that allocates (reallocates, deallocates) resources from
the pool of available compute hosts according to a resource
management algorithm. We assume in this work compute
hosts that are physical – rather than virtual – servers. We de-
note the set of all compute hosts as CH = {CH1, . . . , CHn}.
We denote a VM instance vmi

l running on a compute host
CHi by vmi

l 7→ CHi and its unique identifier by idvmi
l .

The Security Profile (SP ) , defined in [19], is a function of
the verified and measured deployment of a trusted comput-
ing base – a collection of software components measurable
during a platform boot. Measurements are maintained in
protected storage, usually located on the same platform.
We expand this concept in Section 4. Several functionally
equivalent configurations may each have a different security
profile. We denote the set of all compute hosts that share the
same security profile SPi as CHSPi . VMs intercommunicate
through a virtual network overlay, a “software defined
network” (SDN). A domain manager can create arbitrary
network topologies in the same domain to interconnect the
VMs without affecting network topologies in other domains.

I/O virtualization enables device aggregation and allows
to combine several physical devices into a single logical de-
vice (with better properties), presented to a VM [22]. Cloud
platforms use this to aggregate disparate storage devices
into highly available logical devices with arbitrary storage
capacity (e.g. volumes in OpenStack). VMs are presented
with a logical device through a single access interface, while
replication, fault-tolerance and storage aggregation are hid-
den in the lower abstraction layers. We refer to this logical
device as storage resource (SR); as a storage unit, an SR can
be any unit supported by the disk encryption subsystem.

3.2 Threat Model
We share the threat model with [1], [19], [20], [8], which is
based on the Dolev-Yao adversarial model [23] and further



5

assumes that privileged access rights can used by a remote
adversaryADV to leak confidential information.ADV , e.g.
a corrupted system administrator, can obtain remote access
to any host maintained by the IaaS provider, but cannot
access the volatile memory of guest VMs residing on the
compute hosts of the IaaS provider. This property is based
on the closed-box execution environment for guest VMs, as
outlined in Terra [24] and further developed in [25], [26].

Hardware Integrity: Media revelations have raised
the issue of hardware tampering en route to deployment
sites [27], [28]. We assume that the cloud provider has taken
necessary technical and non-technical measures to prevent
such hardware tampering.

Physical Security: We assume physical security of
the data centres where the IaaS is deployed. This as-
sumption holds both when the IaaS provider owns and
manages the data center (as in the case of Amazon Web
Services, Google Compute Engine, Microsoft Azure, etc.)
and when the provider utilizes third party capacity, since
physical security can be observed, enforced and verified
through known best practices by audit organizations. This
assumption is important to build higher-level hardware and
software security guarantees for the components of the IaaS.

Low-Level Software Stack: We assume that at in-
stallation time, the IaaS provider reliably records integrity
measurements of the low-level software stack: the Core Root
of Trust for measurement; BIOS and host extensions; host
platform configuration; Option ROM code, configuration
and data; Initial Platform Loader code and configuration;
state transitions and wake events, and a minimal hypervisor.
We assume the record is kept on protected storage with
read-only access and the adversary cannot tamper with it.

Network Infrastructure: The IaaS provider has phys-
ical and administrative control of the network. ADV is in
full control of the network configuration, can overhear, cre-
ate, replay and destroy all messages communicated between
DM and their resources (VMs, virtual routers, storage ab-
straction components) and may attempt to gain access to
other domains or learn confidential information.

Cryptographic Security: We assume encryption
schemes are semantically secure and theADV cannot obtain
the plain text of encrypted messages. We also assume the
signature scheme is unforgeable, i.e. the ADV cannot forge
the signature of DMi and that the MAC algorithm correctly
verifies message integrity and authenticity. We assume that
the ADV , with a high probability, cannot predict the output
of a pseudorandom function. We explicitly exclude denial-
of-service attacks [29] and focus on ADV that aim to com-
promise the confidentiality of data in IaaS.

3.3 Problem Statement

The introduced ADV has far-reaching capabilities to com-
promise IaaS host integrity and confidentiality. We define a
set of attacks available to ADV in the above threat model.

Given that ADV has full control over the network com-
munication within the IaaS, one of the available attacks is
to inject a malicious program or back door into the VM
image, prior to instantiation. Once the VM is launched and
starts processing potentially sensitive information, the mali-
cious program can leak data to an arbitrary remote location

without the suspicion of the domain manager. In this case,
the VM instance will not be a legitimate instance and in
particular not the instance the domain manager intended to
launch. We call this type of attack a VM Substitution Attack:
Definition 1 (Successful VM Substitution Attack). Assume

a domain manager, DMi, intends to launch a particular
virtual machine vmi

l on an arbitrary compute host in the
set CHSPi

. An adversary, ADV , succeeds to perform a
VM substitution attack if she can find a pair (CH, vm) :
CH ∈ CHSPi

, vm ∈ VM, vm 6= vmi
l, vm 7→ CH ,

where vm will be accepted by DMi as vmi
l .

A more complex attack involves reading or modifying the
information processed by the VM directly, from the logs
and data stored on CH or from the representation of the
guest VMs’ drives on the CH file system. This might be
non-trivial or impossible with strong security mechanisms
deployed on the host; however, ADV may attempt to cir-
cumvent this through a so-called CH Substitution Attack – by
launching the guest VM on a compromised CH .
Definition 2 (Successful CH Substitution Attack). Assume

DMi wishes to launch a VM vmi
l on a compute host

in the set CHSPi
. An adversary, ADV , succeeds with

a CH substitution attack iff ∃ vmi
l 7→ CHj , CHj ∈

CHSPj
, SPj 6= SPi: vmi

l will be accepted by DMi.

Depending on the technical expertise of DMi, ADV may
still take the risk of deploying a concealed – but feature-
rich – malicious program in the guest VM and leave a fall
back option in case the malicious program is removed or
prevented from functioning as intended. ADV may choose
a combined VM and CH substitution attack, which allows a
modified VM to be launched on a compromised host and
present it to DMi as the intended VM:
Definition 3 (Successful Combined VM and CH

Substitution Attack). Assume a domain manager,
DMi, wishes to launch a virtual machine vmi

l

on a compute host in the set CHSPi
. An adver-

sary, ADV , succeeds to perform a combined CH
and VM substitution attack if she can find a
pair (CH, vm), CH ∈ CHSPj

, SPj 6= SPi, vm ∈ VM,
vm 6= vmi

l, vm 7→ CH , where vm will be accepted by
DMi as vmi

l .

Denote by Di
vm the set of storage domains that vm ∈ VM,

vm 7→ CHi can access. We define a successful storage compute
host substitution attack as follows1:
Definition 4 (Successful Storage CH Substitution Attack).

A DMi wishes to launch or has launched an arbitrary
virtual machine vmi

l on a compute host in the set CHSPi
.

An adversary ADV succeeds with a storage CH substi-
tution attack if she manages to launch vmi

l 7→ CHj ,
CHj ∈ CHSPj , SPj 6= SPi and Di

vmi
l
∩ Dj

vmi
l
6= ∅.

If access to the data storage resource is given to all VMs
launched by DMi, ADV may attempt to gain access by

1In this definition we exclude the possibility of legal domain shar-
ing which would be a natural requirement for most systems. However,
with our suggested definition, the legal sharing case can be covered
by extending the domain manager role such that it is allowed not to
a distinct entity but a role that is possibly shared between domain
managers that belong to different organizations.



6

launching a VM that appears to have been launched byDMi.
Then, ADV would be able to leak data from the domain
owned by DMi to other domains. This infrastructure-level
attack would not be detected by DMi and requires careful
consideration. A formal definition of the attack1 follows.
Definition 5 (Successful Domain Violation Attack). Assume

DMi has created the domains in the set Di. An ad-
versary ADV succeeds to perform a domain violation
attack if she manages to launch an arbitrary VM, vmj

m

on an arbitrary host CHj , i.e. vmj
m 7→ CHj , where

Dj

vmj
m
∩ Di 6= ∅.

4 PROTOCOL DESCRIPTION

We now describe two protocols that constitute the core of
this paper’s contribution. These protocols are successively
applied to deploy a cloud infrastructure providing addi-
tional user guarantees of cloud host integrity and storage se-
curity. For protocol purposes, each domain manager, secure
component and trusted third party has a public/private key
pair (pk/sk). The private key is kept secret, while the public
key is shared with the community. We assume that during
the initialization phase, each entity obtains a certificate
via a trusted certification authority. We first describe the
cryptographic primitives used in the proposed protocols,
followed by definitions of the main protocol components.

4.1 Cryptographic Primitives
The set of all binary strings of length n is denoted by {0, 1}n,
and the set of all finite binary strings as {0, 1}∗. Given a
set U , we refer to the ith element as vi. Additionally, we
use the following notations for cryptographic operations
throughout the paper:

• For an arbitrary message m ∈ {0, 1}∗, we denote
by c = Enc (K,m) a symmetric encryption of m
using the secret key K ∈ {0, 1}∗. The correspond-
ing symmetric decryption operation is denoted by
m = Dec(K, c) = Dec(K,Enc(K,m)).

• We denote by pk/sk a public/private key pair for a
public key encryption scheme. Encryption of mes-
sage m under the public key pk is denoted by
c = Encpk (m)2 and the corresponding decryption
operation by m = Decsk(c) = Decsk(Encpk(m)).

• A digital signature over a message m is denoted
by σ = Signsk(m). The corresponding verifica-
tion operation for a digital signature is denoted by
b = Verifypk(m,σ), where b = 1 if the signature is
valid and b = 0 otherwise.

• A Message Authentication Code (MAC) using a
secret key K over a message m is denoted by
µ = MAC(K,m).

• We denote by τ = RAND(n) a random binary se-
quence of length n, where RAND(n) represents a
random function that takes a binary length argument
n as input and gives a random binary sequence of
this length in return3.

2Alternative notations used for clarity are {m}pk or 〈m〉pk.
3We assume that a true random function in our constructions

is replaced by a pseudorandom function the input-output behaviour
of which is “computationally indistinguishable” from that of a true
random function.

4.2 Protocol Components

Disk encryption subsystem: a software or hardware
component for data I/O encryption on storage devices, ca-
pable to encrypt storage units such as hard drives, software
RAID volumes, partitions, files, etc. We assume a software-
based subsystem, such as dm-crypt, a disk encryption sub-
system using the Linux kernel Crypto API.

Trusted Platform Module (TPM): a hardware
cryptographic co-processor following specifications of the
Trusted Computing Group (TCG) [30]; we assume CH are
equipped with a TPM v1.2. The tamper-evident property
facilitates monitoring CH integrity and strengthens the as-
sumption of physical security. An active TPM records the
platform boot time software state and stores it as a list
of hashes in platform configuration registers (PCRs). TPM
v1.2 has 16 PCRs reserved for static measurements (PCR0
- PCR15), cleared upon a hard reboot. Additional runtime
resettable registers (PCR16-PCR23) are available for dynamic
measurements. Endorsement keys are an asymmetric key pair
stored inside the TPM in the trusted platform supply chain,
used to create an endorsement credential signed by the TPM
vendor to certify the TPM specification compliance. A mes-
sage encrypted (“bound”) using a TPM’s public key is de-
cryptable only with the private key of the same TPM. Sealing
is a special case of binding – bound messages are only
decryptable in the platform state defined by PCR values.
Platform attestation allows a remote party to authenticate
a target platform and obtain a guarantee that it – up to
a certain level in the boot chain – runs software that is
identical to the expected one. To do this, an attester requests
– accompanied by a nonce – the target platform to produce
an attestation quote and the measurement aggregate, or
Integrity Measurement List (IML). The TPM generates the
attestation quote – a signed structure that includes the IML
and the received nonce – and returns the quote and the
IML itself. The attestation quote is signed with the TPMs
Attestation Identity Key (AIK). The exact IML contents are
implementation-specific, but should contain enough data
to allow the verifier to establish the target platform [31]
integrity. We refer to [30] for a description of the TPM, and
to [7], [19], [20] for protocols that use TPM functionality.

Trusted Third Party (TTP): an entity trusted by
the other components. TTP verifies the TPM endorsement
credentials on hosts operated by the cloud provider and
enrolls the respective TPMs’ AIKs by issuing a signed AIK
certificate. We assume that TTP has access to an access
control list (ACL) describing access and ownership relations
between DM and D. Furtermore, TTP communicates with
CH to exchange integrity attestation data, authentication
tokens and cryptographic keys. TTP can attest platform
integrity based on the integrity attestation quotes and the
valid AIK certificate from a TPM, and seal data to a trusted
host configuration. Finally, TTP can verify the authenticity
of DM and perform necessary cryptographic operations.
In this paper, we treat the TTP as a “black box” with a
limited, well-defined functionality, and omit its internals.
Availability of the TTP is essential in the cloud scenario – we
refer the reader to the rich body of work on fault tolerance
for approaches to building highly available systems.



7

Secure Component (SC): this is a verifiable execu-
tion module performing confidentiality and integrity pro-
tection operations on VM guest data. SC is present on all
CH and is responsible for enforcing the protocol; it acts as
a mediator between the DM and the TTP and forwards the
requests from DM to either the TTP or the disk encryption
subsystem. SC must be placed in an isolated execution
environment, as in the approaches presented in [25], [26].

4.3 Trusted Launch Construction
We now present our construction for the TL, with four par-
ticipating entities: domain manager, secure component, trusted
third party and cloud provider (with the ‘scheduler’ as part
of it). TL comprises a public-key encryption scheme, a
signature scheme and a token generator. Figure 2 shows the
protocol message flow (some details omitted for clarity).

TL.Setup : Each entity obtains a public/private key pair
and publishes its public key. Below we provide the list of
key pairs used in the following protocol:

• (pkDMi , skDMi ) – public/private key pair for DMi;
• (pkTTP, skTTP) – public/private key pair for TTP;
• (pkTPM, skTPM) – TPM bind key pair;
• (pkAIK, skAIK) – TPM attestation identity key pair;

TL.Token : To launch a new VM instance vmi
l , DMi

generates a token by executing τ = RAND(n) and
calculates the hash (H1) of the VM image (vmi

l) in-
tended for launch, the hash (H2) of pkDMi , and the re-
quired security profile SPi. Finally, Di

vmi
l

describes the
set of domains that vmi

l with the identifier idvmi
l shall

have access to; the six elements are concatenated into:
m1 =

{
τ ‖H1 ‖H2 ‖SPi‖idvmi

l‖Di
vmi

l

}
. DMi encrypts m1

with pkTTP by running c1 = EncpkTTP (m1).
Next, DMi generates a random nonce r and sends the

following arguments to initiate a trusted VM launch proce-
dure: 〈c1, SPi, pkDMi , r〉, where c1 is the encrypted message
generated in TL.Token, SPi is the requested security profile
and pkDMi is the public key of DMi. The message is signed
with skDMi , producing σDMi

. Upon reception, the scheduler
assigns the VM launch to an appropriate host with a security
profile SPi, e.g. host CHi. In all further steps, the nonce
r and the signature of the message are used to verify the
freshness of the received messages.

Upon reception, SC verifies message integrity and
TL.Token freshness by checking respectively the signature
σDMi

and nonce r. When SC first receives a TL.Request mes-
sage, it uses the local TPM to generate a new pair of TPM-
based public/private bind keys, (pkTPM, skTPM), which can
be reused for future launch requests, to avoid the costly key
generation procedure. Keys can be periodically regenerated
according to a cloud provider-defined policy. To prove that
the bind keys are non-migratable, PCR-locked, public/pri-
vate TPM keys, SC retrieves the TPM_CERTIFY_INFO struc-
ture, signed with the TPM attestation identity key pkAIK [30]
using the TPM_CERTIFY_KEY TPM command; we denote
this signed structure by σTCI. TPM_CERTIFY_INFO contains
the bind key hash and the PCR value required to use the
key; PCR values must not necessarily be in a trusted state to
create a trusted bind key pair. This mechanism is explained
in further detail in [19].

Next, SC sends an attestation request (TL.AttestRequest)
to the TTP, containing the encrypted message (c1) generated
by DMi in TL.Token, the nonce r and the attestation data
(AttestData), used by the TTP to evaluate the security profile
of CHi and generate the corresponding TPM bind keys.
SC also requests the TPM to sign the message with skAIK,
producing σAIK . AttestData includes the following:

- the public TPM bind key pkTPM;
- the TPM_CERTIFY_INFO structure;
- σTCI : signature ofTPM_CERTIFY_INFO using skAIK;
- IML, the integrity measurement list;
- the TCI-certificate;

Upon reception, TTP verifies the integrity and freshness of
TL.AttestRequest, checking respectively the signature σAIK

and nonce r. Next, TTP verifies – according to its ACL – the
set Di

vmi
l

to ensure that DMi is authorised to allow access
to the requested domains for vmi

l and decrypts the message
m1 := DecskTTP (c1), decomposing it into τ, H1, H2, SPi.
Finally, TTP runs an attestation scheme to validate the
received attestation information and generate a new attes-
tation token.

Definition 6 (Attestation Scheme). An attestation scheme,
denoted by TL.Attestation, is defined by two algorithms
(AttestVerify,AttestToken) such that:

1. AttestVerify is a deterministic algorithm that takes
as input the encrypted message from the requesting
DMi and attestation data, 〈c1, AttestData〉, and out-
puts a result bit b. If the attestation result is posi-
tive, b = 1; otherwise, b = 0. We denote this by
b := AttestVerify(c1, σAIK , AttestData).

2. AttestToken is a probabilistic algorithm that pro-
duces a TPM-sealed attestation token. The input of
the algorithm is the result of AttestVerify, the mes-
sage m to be sealed and the CH AttestData. If
AttestVerify evaluates to b = 1, the algorithm out-
puts an encrypted message c2. We write this as
c2 ← AttestToken(b,m,AttestData). Otherwise, if
AttestVerify evaluates to b = 0, AttestToken returns ⊥.

In the attestation step, TTP first runs AttestVerify
to determine the trustworthiness of the target CHi. In
AttestVerify, TTP verifies the signature σTCI and σAIK

against a valid AIK certificate contained in AttestData
and examines the entries provided in the IML. AttestVerify
returns b = 0 and TTP exits the protocol if the entries differ
from values expected for the security profile SPi. Other-
wise, AttestVerify returns b = 1 and TTP runs AttestToken
to generate a new encrypted attestation token for CHi.
Having verified that the entries in IML conform to the
security profile SPi, TTP generates a symmetric domain
encryption key, DKi, to protect the communication be-
tween the SC and TTP in future exchanges. Finally, TTP
seals m2 =

{
τ‖H1‖H2‖DKi‖idvmi

l

}
to the trusted plat-

form configuration of CHi, using the key pkTPM received
through the attestation request. The encrypted message
(c2 ← AttestToken(b,m2, AttestData), r), along with a
signature (σTTP ) produced using skTTP is returned to SC.

Upon reception, SC checks the message integrity and
freshness before unsealing it using the corresponding TPM
bind key skTPM. The encrypted message is unsealed to the



8

DM VM SC TTP

〈
c1 =

{
τ‖H1‖H2‖SPi‖idvmi

l‖D
i
vmi

l

}
pkTTP

, SPi, pkDMi
, r, σDMi

〉TL.RequestTL.Request

〈c1, AttestData, r, σAIK〉

TL.AttestRequestTL.AttestRequest

〈
c2 =

{
τ‖H1‖H2‖DKi‖idvmi

l

}
pkTPM

, r, σTTP

〉TL.Attestation(TL.AttestVerify,TL.AttestToken)TL.Attestation(TL.AttestVerify,TL.AttestToken)

Inject token τ

Challenge token τ

Response Token

Token InjectionToken Injection

Fig. 2. Message Flow in the Trusted VM Launch Protocol.

plain text m2 =
{
τ‖H1‖H2‖DKi‖idvmi

l

}
only if the plat-

form state of CHi has remained unchanged. SC calculates
the hash (H ′1) of the VM image supplied for launch and
verifies that its identifier matches the expected identifier
idvmi

l ; SC also calculates the hash of pkDMi received from
the cloud provider, denoted by H ′2. Finally, SC verifies that
H1 = H ′1 and only in that case injects τ into the VM
image. Likewise, SC verifies that the public key registered
by DMi with the cloud provider in step TL.Setup has not
been altered, i.e.H2 = H ′2 and only in that case injects pkDMi

into the VM image prior to launching it.
In the last protocol step, DMi verifies that vmi

l has been
launched on a trusted platform with security profile SPi,
while vmi

l verifies the authenticity of DMi. This is done
by establishing a secure pre-shared key TLS session [32]
between vmi

l and DMi using τ as the pre-shared secret.

4.4 Domain-Based Storage Protection Construction

We now continue with a description of the DBSP protocol.
Along with three of the entities already active in the TL

protocol – domain manager, secure component, the trusted third
party – DBSP employs a fourth one: the storage resource. In
this case, DMi interacts with the other protocol components
through a VM instance vmi

l running on CHi. We assume
that vmi

l has been launched following the TL protocol. The
DBSP protocol includes a public and a private encryption
scheme, a pseudorandom function for domain key genera-
tion, a signature scheme and a random generator. Figure 3
presents the DBSP protocol mesage flow.

DBSP.Setup: We assume that in TL.Setup, each entity
has obtained a public/private key pair and published pk.

Assume DMi requests access for a certain VM vmi
l to a

storage resource SRi in the domainDi
k ∈ Di

vmi
l
. The request

is intercepted by the SC, which proceeds to retrieve from
TTP a symmetric encryption key for the domain Di

k.
DBSP.DomKeyReq: SC sends to TTP a request to gen-

erate keys for the domain Di
k. The request contains the

target storage resource SRi, hash H2 of pkDMi , the nonce
r and metaik, containing the unique domain identifier and
the security profile required to access the domain Di

k, i.e.,
metaik =

{
Di

k, SPi

}
pkTTP

; SC uses the symmetric key DKi

received during TL.Attestation to protect message confiden-
tiality, and the local TPM to sign the message with skAIK,
producing σAIK (see DBSP.DomKeyReq in Figure 3).

Upon the reception of DBSP.DomKeyReq, TTP verifies
the freshness and integrity of the request and proceeds
to the next protocol step, DBSP.DomKeyGen, only if this
verification succeeds.

DBSP.DomKeyGen: A probabilistic algorithm enabling
TTP to generate a symmetric encryption key (Ki

k) and
integrity key (IKi

k) for a domain Di
k. TTP generates a

nonce using a random message mi ∈ {0, 1}n by executing
ni = RAND (mi). Next, TTP uses a PRF to generate the keys
for domain Di

k, by evaluating the following:

Ki
k = PRF

(
KTTP , D

i
k‖SPi‖ni

)
,

IKi
k = PRF

(
KTTP , D

i
k‖ni

)
,

where KTTP is a master key that does not leave the security



9

SR SC TTP

〈{
SRi, H2,metaik, AttestData, r

}
DKi

, σAIK

〉DBSP.DomKeyReqDBSP.DomKeyReq Request to generate keys for the domain Di
k

〈{
c3, c4, µik,meta

i
k, r
}
, σTTP

〉DBSP.DomKeyGenDBSP.DomKeyGen Verifies the state of CH & generates Ki
k, IKi

k

〈
metaik, c4, µ

i
k

〉
to the header of the domain

WriteDBSPHeader to Storage Resource

Unlock Volume by releasing Ki
k

Fig. 3. Message Flow in the Domain-Based Storage Protection Protocol.

perimeter of TTP, Ki
k is a symmetric encryption key to

confidentiality protect the data and IKi
k a symmetric key

to verify the integrity of the stored data.
TTP seals Ki

k and IKi
k to the trusted configuration of

CHi by calculating c3 = EncpkTPM
(
Ki

k‖IKi
k

)
. TTP encrypts

the generated nonce ni and the provided security profile
SPi by evaluating c4 = EncKTTP

(ni‖SPi) to later use it
for verification. Next, TTP generates a message authenti-
cation code µ by evaluating µi

k = MAC(KTTP , ni‖SPi).
The domain key generation algorithm is denoted by(
c3, c4, µ

i
k

)
← DBSP.DomKeyGen(ni,KTTP , skTPM).

Having generated the domain key, TTP responds to the
DBSP.DomKeyReq by sending

{
c3, c4, µ

i
k,meta

i
k, r
}

with
the signature σTTP . Upon reception, SC first verifies mes-
sage integrity and freshness, and calls the local TPM to
unseal c3, producing Ki

k‖IKi
k if and only if CHi remains

in the earlier trusted state. Next, SC stores metaik, c4 and
µi
k in the domain header and uses Ki

k, IK
i
k as inputs to

the disk encryption subsystem on CHi, which decrypts and
verifies the data integrity of the mounted volume hosting
Di

k before providing plain text access to vmi
l .

To recreate the encryption and integrity keys for the do-
main Di

k, SC sends a request similar to DBSP.DomKeyReq,
adding to the message the values c4 and µi

k, which are
stored in the domain header. Upon reception, TTP veri-
fies the integrity of the received value c4 by calculating
µi
k = MAC(KTTP , ni‖SPi). If the integrity verification of
c4 is positive, TTP decrypts it to ni‖SPi = DecskTTP (c4) and
calculates the domain key as in DBSP.DomKeyGen, using
the existing token ni instead of generating a new one4.

5 SECURITY ANALYSIS

We now analyse the TL and DBSP protocols in the presence
of an adversary. We prove the security of both schemes

4Key retrieval is currently not covered in the security analysis due
to space limitations

through a theoretical analysis, showing that our protocols
are resistant to the attacks presented in Section 3.3.

Proposition 1 (VM Substitution Soundness). The TL proto-
col is sound against the VM substitution attack.

Proof : An adversary ADV trying to launch vm 6= vmi
l on

CH can only get vm accepted by DMi if the last mutual
authentication step in the trusted launch procedure is suc-
cessful. In turn, this step only succeeds if at least one of the
following two options is true:

a. The secure component SC uses a different token, τ ′ 6= τ
accepted by DMi in the final secure channel establish-
ment.

b. The secure component SC on CH uses the very same
token τ used by DMi when launching vmi

l .

Option a can only succeed if ADV can break the mutual
authentication in the secure channel setting. Given that the
selected secure channel scheme is sound and τ is sufficiently
long and selected using a sound random generation process,
theADV fails to break the last protocol step. Hence, as long
as the secure channel protocol is sound, the overall protocol
construction is also sound against this attack option.

Option b can only succeed if the adversary either man-
ages to guess a value τ ′ = τ when launching vm or manages
to either obtain τ when DMi launches vmi

l or replace the
association between τ and vmi

l with an association between
τ and vm when DMi launches vmi

l , by attacking any of
the protocol steps preceding the final mutual authentication
step. A successful attack in this case has the probability
τ ′ = τ equals to 1/2n, where n is the length of the token
value and is infeasible if n is large enough. Below, we show
why the adversary also fails with respect to the last option.

• TL.Token. Assume the adversary intercepts the
TL.Token message. Then the adversary has two op-
tions: she might either try to modify the TL.Token



10

message (option 1) with the goal to replace the as-
sociation between τ and the vmi

l with τ and vm,
or she might try obtain the secret value τ (option
2) and then launch vm with this τ value on an
arbitrary valid provider platform. We discuss both
these options below.

- TL.Token Option 1: A modification can only
be achieved by the adversary by either break-
ing the public key encryption scheme used
to produce c1 or trying to make this modifi-
cation on c1 by direct modification (without
first decrypting it) and sign the modified c1
with an own selected private key. The former
option fails due to the assumption of public
key encryption scheme soundness and the lat-
ter due to that modifying a public encrypted
structure without knowledge of the private
key is infeasible.

- TL.Token Option 2: Direct decryption of c1 fails
due to the assumption of soundness of the
public key encryption scheme used to pro-
duce c1. The only remaining alternative for
the adversary is relaying the TL.Token to a
platform CH ′ ∈ CHSPi

, which is under the
full control of the adversary. Further, ADV
follows the protocol and issues the command
TL.AttestRequest using the intercepted c1, At-
testData and σAIK . However, this fails at the
TL.Attestation step since AttestData does not
contain a valid AIK certificate unless the ad-
versary has managed to get control of a valid
platform in the provider network with a valid
certificate or she has managed to break the AIK
certification scheme. The former option vio-
lates the assumption of physical security of the
provider computing resources while the latter
option violates the assumption of a sound
public key and AIK certification schemes.

• TL.AttestRequest. The adversary could either try to
impersonate this message with the goal of obtaining
τ or the association between τ and vmi

l . This im-
personation attempt fails as the whole sent structure
is signed with the pkAIK with a secure public key
signing scheme. Furthermore, attempts to resend an
old valid TL.AtttestRequest fail as the H1 verification
that the SC receives in return fails as it does point
on the old VM. Similarly, any attempts to modify
TL.AttestRequest fail as the whole structure is signed
with a secure signature scheme.

• TL.Attestation. Any attempt by the adversary to
obtain τ would be equal to breaking the public key
encryption of TL.AttestToken. Similarly, any attempt
to modify c2 fails due to the fact that modification of
a public encrypted structure without knowledge of
the private key is unfeasible if the public key encryp-
tion scheme is sound. Any attempt by the adversary
to replace an old recorded valid TL.AttestToken mes-
sage fails as such messages do contain a VM image
hash H1 different than the one expected by the SC. �

Proposition 2 (CH Substitution Soundness). The TL proto-
col is sound against the CH substitution attack.

Proof : DMi intends to launch a virtual machine vmi
l on an

arbitrary compute host CHi with a security profile SPi. An
adversary ADV trying to launch vmi

l on CHj ∈ CHSPj
,

SPj 6= SPi, can only get vmi
l accepted by DMi if the last

mutual authentication step in the trusted launch procedure
is successful. In turn, this step can only succeed if at least
one of the following two options is true:

a. The secure component SC is using a different token,
τ ′ 6= τ that is accepted by DMi in the final secure
channel establishment.

b. The secure component SC on CHj is using the very
same token τ used by DMi when launching vmi

l .
Option a is impossible as proved in Proposition 1. Option

b can only succeed if the adversary either manages to guess
a value τ ′ = τ when launching vmi

l or manages to induce
the TTP to seal the token τ to the configuration of CHj .
Finding τ ′ = τ is infeasible for the adversary as shown in
Proposition 1. Below, we show why the adversary also fails
with respect to the second option.

Assume ADV intercepts the TL.Token message. Then it
has two options: either attempt to launch vmi

l on a compute
host CHj /∈ CHSPi

or on CHj ∈ CHSPi
.

- TL.Token CHj /∈ CHSPi
: The ADV can replace

the following information from the TL.Token mes-
sage: SPi with SPj , pkDMi with pkADV , which is
a public key generated by the ADV and σc1 with
σADV = SignskADV (c1). By doing this, she can
successfully proceed beyond the TL.AttestRequest
step since SC is not able to detect the substitution.
However, this attack fails at the TL.Attestation step
since the AttestData sent to the TTP evaluates to a
security profile SPj 6= SPi in contradiction with the
preference of DMi contained in c1.

- TL.Token CHj ∈ CHSPi
: The ADV can replace the

following information from the TL.Token message:
pkDMi with pkADV , which is a public key generated
by the ADV and σc1 with σADV = SignskADV (c1).
By doing this, he can successfully proceed beyond
the TL.AttestRequest step since SC is unable to de-
tect the substitution. However, this attack fails at
the TL.Attestation step since the pkAIK key used to
produce the signature σAIK is not among the keys
enrolled with the TTP according to Section 4.2.

The cases of TL.AttestRequest and TL.Attestation fail as
demonstrated in Proposition 1. �

Proposition 3 (Combined VM and CH Substitution Sound-
ness). The TL protocol is sound against the VM and CH
substitution attack.

Proof : The exculpability of the VM substitution attack and
the CH substitution attack implies that the TL protocol
is secure against the combined VM and CH substitution
attack. �

Proposition 4 (Storage CH Substitution Soundness). The
DBSP protocol is sound against the storage CH attack.

Proof : Adversary ADV can only succeed with a storage CH
substitution attack if she manages to launch a VM instance



11

vmi
l 7→ CHi, CHi ∈ CHSPi

on a host CHj ∈ CHSPj
,

SPj 6= SPi andDi
vmi

l
∩Dj

vmi
l
6= ∅. This can only be achieved

if she requests launch of vmi
l on a platform with profile

SPj . According to Proposition 2 and Proposition 3, such
launch requests are rejected by DMi; however, this does
not prevent the ADV from attempting these options. The
following two alternatives are available to the adversary:

a. TheADV launches vmi
l 7→ CHj on a platform under

its own control (i.e. outside the provider domain).
b. The ADV launches vmi

l 7→ CHj on a valid platform
in the provider network.

Option a: This option implies that the TL.AttestRequest
step fails as shown in the proof of Proposition 1. In this case,
the platform controlled byADV does not get the symmetric
key DKi in return to the attestation request. Without access
to DKi, the only remaining option for the adversary is to
attempt to break the final key request or the disc encryption
scheme. Thus the following options are available:

• DBSP.DomKeyReq : The first option is to intercept
a valid DBSP.DomKeyReq message for a storage
domain Di

k ∈ Di
vmi

l
and replace the intercepted sig-

nature σAIK with her own own signature, σ′AIK over
the very same encrypted request (encrypted with a
valid DKi). However, similar to the earlier attempt
to perform a TL.AttestRequest, this fails since the
ADV does not have access to a valid attestation
key. Any other attempt to send the adversary’s own
DBSP.DomKeyReq fails for the same reason.

• DBSP.DomKeyGen : The remaining option is to
observe a valid DBSP.DomKeyGen for a domain
Di

k ∈ Di
vmi

l
and attempt to access the encrypted stor-

age keys. The latter fails due to the assumption of the
TPM public key scheme soundness.

• Attack Storage Encryption Scheme: The remaining op-
tion for the ADV in this case is to directly break the
disc encryption scheme. However, this is infeasible
according to the disc encryption scheme soundness.

Option b: According to this option, the ADV tries launching
vmi

l using TL.Token on a platform with profile SPj using its
own credentials. The following impersonation alternatives
are available:

• Own token: The adversary ADV sends a TL.Token
message required by the protocol:
EncpkTTP

(
τ ‖ H1 ‖ H2 ‖ SPj ‖ idvmi

l ‖ Di
vmi

l

)
, SPj ,

pkADV , r, σADV , where H2 either is the hash of pkDMi

or the hash of pkADV . If the first option is used,
the SC obtains in return to TL.AttestRequest, i.e.
the TL.Attestation message, a sealed value with a
hash H ′2 6= H2 which causes the SC to abort the
launch. If the second option is used, the complete
launch procedure succeeds as expected. However,
when the SC later requests the key for SRi using the
DBSP.DomKeyReq message, it includes the hash H2

of the the ADV public key (pkADV ) in the encrypted
and signed request. ADV cannot change the hash
value in this request unless she breaks the signature
scheme of the request. Upon receiving the request,

TTP identifies that ADV is not allowed to access
Di

k ∈ Di
vmi

l
and does not return the storage keys in

DBSP.DomKeyGen.
• Legitimate token: In this option, the ADV observes a

valid c1 in TL.Token for another vmwith access rights
to the intended domain and uses it to launch an own
valid TL.Token message: c1, SPj , pkADV , r, σADV .
However, in this case the TL.AttestRequest fails as
the profile in c1 does not match the platform at-
tested data. Furthermore, if the SC receives a reply
to TL.AttestRequest, i.e. a TL.Attestation message, it
would receive a sealed value with a hash H ′2 6= H2,
causing the SC to abort the launch. �

Proposition 5 (Domain Violation Attack). The DBSP pro-
tocol is sound against the domain violation attack.

Proof : Similar to the proof of Proposition 4, ADV has the
following two options:

a. The ADV launches vmj
m 7→ CHj on a platform

under its control (i.e. outside the provider domain).
b. The ADV launches vmj

m 7→ CHj on a valid plat-
form in the provider network.

Option a: This option fails in analogy with the proof of
Proposition 4, as ADV fails to successfully launch vmj

m

and her remaining options are to either attack the final key
request or the disc encryption scheme, which both fail (see
proof of Proposition 4).

Option b: In analogy with the proof of Proposi-
tion 4, ADV has only two options available: a full
impersonation with an own chosen token of type
EncpkTTP

(
τ ‖H1 ‖H2 ‖SPj‖idvmj

m‖D
j

vmj
m

)
, SPj , pkADV ,

r, σADV , Dj

vmj
m
⊆ Di, or a partial impersonation reusing

an observed c1 of type c1, SPj , pkADV , r, σADV for a subset
of target storage domain. Both options fail in analogy with
the arguments presented for the proof of Proposition 4. �

6 IMPLEMENTATION AND RESULTS

We next describe the implementation of the TL and DBSP
protocols followed by experimental evaluation results.

6.1 Test bed Architecture

We describe the infrastructure of the prototype and the
architecture of a distributed EHR system installed and con-
figured over multiple VM instances running on the test bed.

6.1.1 Infrastructure Description

The test bed resides on four Dell PowerEdge R320 hosts
connected on a Cisco Catalyst 2960 switch with 801.2q
support. We used Linux CentOS, kernel version 2.6.32-
358.123.2.openstack.el6.x86 64 and the OpenStack IaaS plat-
form5 (version Icehouse) using KVM virtualization support.
The prototype IaaS includes one “controller” running essen-
tial platform services (scheduler, PKI components, SDN con-
trol plane, VM image storage, etc.) and three compute hosts
running the VM guests. The topology of the prototype SDN



12

Compute host
Local cloud platform services

nova-api nova-scheduler nova-compute

Operating
System

Hardware NIC

TCP/IP

VT-x

KVM

iSCSI-initiator

TPM

SC

libvirt-hook

dm-crypt

libvirt

QEMU

VM 1

Storage host

* Remote host attestation
* Key management

Trusted Third Part

Fig. 4. Placement of the SC in the prototype implementation.

reflects three larger domains of the application-level de-
ployment (front-end, back-end and database components)
in three virtual LAN (VLAN) networks.

The compute hosts use libvirt6 for virtualization func-
tionality. We modified libvirt 1.0.2 and used the “libvirt-
hooks” infrastructure to implement the SC for the TL and
DBSP protocols. SC unlocks the volumes on compute hosts
and interacts with the TPM and TTP (see Figure 4). It
uses a generic server architecture where the SC daemon
handles each request in a separate process. An inter process
communication (IPC) protocol defines the types of messages
processed by the SC. The IPC protocol uses sychronous
calls with several types of requests for the respective SC
operations; the response contains the exit code and response
data. A detailed architecture of SC, including the main
libraries that it relies on, is presented in Figure 5.

libvirt

nova-compute

TPM trousers

libcryptsetup dm-cryptTTP
Client

IPC
Endpoint

Metadata
Controller

SC
Core

Storage
Host

User
VM

Kernel
Code

IPC
Initiator

Trusted Third Party

Fig. 5. Close-up view of the secure component implementation architec-
ture, presented as a combination of components and existing libraries.

6.1.2 Application Description
The prototype also includes a distributed EHR system
deployed over seven VM instances. This system contains
one client VM, two front-end VMs, two back-end VMs,
a database VM and an auxiliary external database VM.
Six of the VM instances operate on Microsoft Windows
Server 2012 R2, with one VM running the client application
operates on Windows 7. The components of the EHR system
communicate using statically defined IP addresses on the
respective VLANS described in Section 6.1.1. Load balanc-
ing functionality provided by the underlying IaaS allots the
load among front-end and back-end VM pairs. The hosts
of the cluster are compatible with the TL protocol, which
allows an infrastructure administrator to perform a trusted

5OpenStack project website: https://www.openstack.org/
6Libvirt website: http://libvirt.org/

TABLE 1
Overhead for unlocking a volume with DBSP (all times in ms)

Process Event Time
QEMU Begin handle unlock request 0.083
SC Requesting key from TTP 0.609
SC Unseal key in TPM 2700.870
SC Unlocking volume with cryptsetup 11.834
QEMU End handle unlock request 26

TOTAL 2714.004

launch of VM instances on qualified hosts. Similarly, the
infrastructure administrator can apply the DBSP protocol to
protect sensitive information stored on the database servers.

6.2 Performance evaluation

0 20 40 60 80 100

VM Launch number

10000

12000

14000

16000

18000

20000

22000

D
u
ra
ti
on
,
m
s

Trusted VM launch

Vanilla VM launch

Fig. 6. Overhead induced by the TL protocol during VM instantiations.

Trusted launch: Figure 6 shows the duration of a VM
launch over 100 successful instantiations: the TL protocol
extends the duration of the VM instantiation (which does
not include the OS boot time) on average by 28%. However,
in our experiments we have used a minimalistic VM image
(13.2 MB), based on CirrOS 7, while launching larger VM
images takes significantly more time and proportionally
reduces the overhead induced by TL.

DBSP Processing time: Table 1 shows a breakdown of
the time required to process a storage unlock request, an
average of 10 executions. Processing a volume unlock re-
quest on the prototype returns in ≈2.714 seconds; however,
this operation is performed only when attaching the volume
to a VM instance and does not affect the subsequent I/O
operations on the volume. A closer view highlights the share
of the contributing components in the overall overhead
composition. Table 1 clearly shows that the TPM unseal
operation lasts on average ≈2.7 seconds, or 99.516% of the
execution time. According to Section 4.2, in this prototype
we use TPMs v1.2, since a TPM v2.0 is not available on
commodity platforms at the time of writing. Given that the
vast majority of the execution time is spent in the TPM
unseal operation, implementing the protocol with a TPM
v2.0 may yield improved results.

DBSP Encryption Overhead: Next, we examine the
processing overhead introduced by the DBSP protocol.

7CirrOS project website: https://launchpad.net/cirros

https://www.openstack.org/


13

Figure 7 presents the results of a disk performance bench-
mark obtained using IOmeter8. To measure the effect of
background disk encryption with DBSP, we attached two
virtual disks to a deployed server VM described in 6.1.2. The
storage volumes were physically located on a different host
and communicating over iSCSI. We ran a benchmark with
two parallel workers on the plaintext and DBSP-encrypted
volumes over 12 hours. Next, we disabled in the host BIOS
the AES-NI acceleration, created and attached a new volume
to the VM and reran the benchmark. This has produced
three performance data result sets: plaintext, DBSP en-
cryption and DBSP encryption with AES-NI acceleration.
Figure 7 summarises the total IO, read IO and write IO results.
It is visible that the measurements ‘4 KiB aligned (DBSP) with
AES-NI’ and ‘1 MiB (DBSP) with AES-NI’ are roughly on par
with the plaintext baseline: ‘4 KiB aligned’ and ‘1 MiB’. The
performance overhead induced by background encryption
is at 1.18% for read IO and 0.95% for write IO. We can
expect that this performance penalty will be further reduced
as the hardware support for encryption is improved. Disk
encryption without hardware acceleration (‘4 KiB aligned
(DBSP)’ and ‘1 MiB (DBSP)’) is significantly slower, as
expected, with a performance penalty of respectively 49.22%
and 42.19% (total IO). It is important to reemphasize that the
runtime performance penalty is determined exclusively by
the performance of the disk encryption subsystem. DBSP
only affects the time required to unlock the volume when it
is attached to the VM instance, as presented in Table 1.

0

20

40

60

80

100

120

140

160

180

4 KiB aligned 1 MiB 4 KiB aligned
(DBSP)

1 MiB (DBSP) 4 KiB aligned
(DBSP) w. AES-NI

1 MiB (DBSP) w.
AES-NI

Iops

Read Iops

Write Iops

Fig. 7. Benchmarks results on identical drives: plaintext, with DBSP, with
DBSP and AES-NI acceleration.

7 APPLICATION DOMAIN

The presented results are based on work in collaboration
with a regional public healthcare authority to address some
of its concerns regarding IaaS security. We have deployed
the prototype described in Section 6, further extended by
integrating a medication database, and evaluated it through
end-user validation and performance tests. Our results
demonstrate that it is both possible and practical to provide
strong platform software integrity guarantees to IaaS ten-
ants and efficiently isolate their data using established cryp-
tographic tools. Platform integrity guarantees allow tenants
to take better decisions on both workload migration to the
cloud and workload placement within IaaS. This contrasts
with the current, “flat” trust model, where all IaaS hosts
declare the same – but unverifiable for the tenant – trust level.

8IOmeter project website: http://iometer.org

An essential conclusion of this practical exercise is that
the additional cost of providing security guarantees can be
effectively offset by composing cloud services from different
competing providers, without having to delegate the trust
among these providers. Thus, in our cloud model the ten-
ant can purchase cheaper cloud disk storage without any
additional risk for data confidentiality.

Another conclusion is that while organizations operating
on sensitive data, e.g. public healthcare authorities, consider
the risks of migrating data to IaaS clouds as unacceptable,
the majority of available providers use commercial-off-the-
shelf (COTS) cloud platforms with limited capabilities to
enhance the security of their deployments, failing to meet
the customer requirements. This demonstrates the need to
incorporate integrity verification and data protection mech-
anisms into popular COTS cloud platforms by default. We
hope that these important lessons will inspire new secure,
usable and cost-effective solutions for cloud services.

On the practical side, specifically regarding the role of
the TTP, we envision two scenarios. The TTP could either be
managed by the tenant itself (for organizations with enough
resources and expertise), or by an external organization
(similar to a certificate authority). The first scenario allows
the tenant to retain the benefits of cloud services along
with additional security guarantees. Similarly, in the second
scenario, smaller actors can obtain the same benefits without
the need to invest into own attestation infrastructure. In
both scenarios, in order to protect the cloud provider the
TTP would only operate on a physical slice of the resources
(i.e. a subset of compute hosts) that correspond to the
respective tenant domains.

8 CONCLUSION

From a tenant point of view, the cloud security model
does not yet hold against threat models developed for the
traditional model where the hosts are operated and used by
the same organization. However, there is a steady progress
towards strengthening the IaaS security model. In this
work we presented a framework for trusted infrastructure
cloud deployment, with two focus points: VM deployment
on trusted compute hosts and domain-based protection of
stored data. We described in detail the design, implemen-
tation and security evaluation of protocols for trusted VM
launch and domain-based storage protection. The solutions
are based on requirements elicited by a public healthcare
authority, have been implemented in a popular open-source
IaaS platform and tested on a prototype deployment of a
distributed EHR system. In the security analysis, we intro-
duced a series of attacks and proved that the protocols hold
in the specified threat model. To obtain further confidence
in the semantic security properties of the protocols, we have
modelled and verified them with ProVerif [33]. Finally, our
performance tests have shown that the protocols introduce
a insignificant performance overhead.

This work has covered only a fraction of the IaaS attack
landscape. Important topics for future work are strength-
ening the trust model in cloud network communications,
data geolocation [34], and applying searchable encryption
schemes to create secure cloud storage mechanisms. Our re-
sults show that it is possible and practical to provide strong

http://iometer.org


14

platform software integrity guarantees for tenants and ef-
ficiently isolate their data using established cryptographic
tools. With reasonable engineering effort the framework can
be integrated into production environments to strengthen
their security properties.

REFERENCES

[1] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted
cloud computing,” in Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing, HotCloud’09, (Berkeley, CA, USA),
USENIX Association, 2009.

[2] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel,
“Seeding Clouds With Trust Anchors,” in Proceedings of the 2010
ACM Workshop on Cloud Computing Security, CCSW ’10, (New
York, NY, USA), pp. 43–46, ACM, 2010.

[3] N. Paladi, A. Michalas, and C. Gehrmann, “Domain based storage
protection with secure access control for the cloud,” in Proceedings
of the 2014 International Workshop on Security in Cloud Computing,
ASIACCS ’14, (New York, NY, USA), ACM, 2014.

[4] M. Jordon, “Cleaning up dirty disks in the cloud,” Network Secu-
rity, vol. 2012, no. 10, pp. 12–15, 2012.

[5] Cloud Security Alliance, “The notorious nine cloud computing top
threats 2013,” February 2013.

[6] A. Michalas, N. Paladi, and C. Gehrmann, “Security aspects of
e-health systems migration to the cloud,” in the 16th International
Conference on E-health Networking, Application & Services (Health-
com’14), pp. 228–232, IEEE, Oct 2014.

[7] B. Bertholon, S. Varrette, and P. Bouvry, “Certicloud: a novel tpm-
based approach to ensure cloud IaaS security,” in Cloud Computing,
2011 IEEE International Conference on, pp. 121–130, IEEE, 2011.

[8] M. Aslam, C. Gehrmann, L. Rasmusson, and M. Björkman, “Se-
curely launching virtual machines on trustworthy platforms in a
public cloud - an enterprise’s perspective.,” in CLOSER, pp. 511–
521, SciTePress, 2012.

[9] A. Cooper and A. Martin, “Towards a secure, tamper-proof grid
platform,” in Cluster Computing and the Grid, 2006. CCGRID 06.
Sixth IEEE International Symposium on, vol. 1, pp. 8–pp, IEEE, 2006.

[10] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient
access to outsourced data,” in Proceedings of the 2009 ACM workshop
on Cloud computing security, pp. 55–66, ACM, 2009.

[11] D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud data protection
for the masses,” IEEE Computer, vol. 45, no. 1, pp. 39–45, 2012.

[12] S. Graf, P. Lang, S. A. Hohenadel, and M. Waldvogel, “Versatile
key management for secure cloud storage,” in Proceedings of the
2012 IEEE 31st Symposium on Reliable Distributed Systems, pp. 469–
474, IEEE Computer Society, 2012.

[13] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-
Sealed Data: A New Abstraction for Building Trusted Cloud Ser-
vices,” in Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), (Bellevue, WA), pp. 175–188, USENIX, 2012.

[14] A.-R. Sadeghi and C. Stúble, “Property-based attestation for com-
puting platforms: Caring about properties, not mechanisms,” in
Proceedings of the 2004 Workshop on New Security Paradigms, NSPW
’04, (New York, NY, USA), pp. 67–77, ACM, 2004.

[15] A. Sahai, “Ciphertext-policy attribute-based encryption,” in In
Proceedings of the IEEE Symposium on Security and Privacy, 2007.

[16] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Fi-
nancial Cryptography and Data Security, vol. 6054 of Lecture Notes in
Computer Science, pp. 136–149, Springer Berlin Heidelberg, 2010.

[17] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Advances in Cryptology–EUROCRYPT 2005, Springer, 2005.

[18] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Financial Cryptography and Data Security,
pp. 258–274, Springer, 2013.

[19] N. Paladi, C. Gehrmann, M. Aslam, and F. Morenius, “Trusted
Launch of Virtual Machine Instances in Public IaaS Environ-
ments,” in Information Security and Cryptology (ICISC’12), vol. 7839
of Lecture Notes in Computer Science, pp. 309–323, Springer, 2013.

[20] N. Paladi, C. Gehrmann, and F. Morenius, “Domain-Based Storage
Protection (DBSP) in Public Infrastructure Clouds,” in Secure IT
Systems, pp. 279–296, Springer, 2013.

[21] P. Mell and T. Gance, “The NIST Definition of Cloud Computing,”
tech. rep., National Institute of Standards and Technology, 2011.

[22] C. Waldspurger and M. Rosenblum, “I/O virtualization,” Commu-
nications of the ACM, vol. 55, no. 1, pp. 66–73, 2012.

[23] D. Dolev and A. C. Yao, “On the security of public key protocols,”
Information Theory, IEEE Transactions on, vol. 29, no. 2, 1983.

[24] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: A virtual machine-based platform for trusted computing,”
in ACM SIGOPS Operating Systems Review, vol. 37, ACM, 2003.

[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny hy-
pervisor to provide lifetime kernel code integrity for commodity
OSes,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6, 2007.

[26] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested
virtualization,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pp. 203–216, ACM, 2011.

[27] G. Greenwald, “How the NSA tampers with US-made Internet
routers,” The Guardian, May 2014.

[28] S. Goldberg, “Why is it taking so long to secure internet routing?,”
Communications of the ACM, vol. 57, no. 10, pp. 56–63, 2014.

[29] A. Michalas, N. Komninos, N. Prasad, and V. Oleshchuk, “New
client puzzle approach for dos resistance in ad hoc networks,”
in Information Theory and Information Security (ICITIS), 2010 IEEE
International Conference on, pp. 568–573, Dec 2010.

[30] Trusted Computing Group, “TCG Specification, Architecture
Overview, revision 1.4,” tech. rep., 2007.

[31] B. Parno, J. M. McCune, and A. Perrig, Bootstrapping Trust in
Modern Computers, vol. 10. Springer, 2011.

[32] P. Eronen and H. Tschofenig, “Pre-shared key ciphersuites for
transport layer security (TLS),” 2005.

[33] B. Blanchet, “An efficient cryptographic protocol verifier based
on prolog rules,” in Computer Security Foundations Workshop, IEEE,
pp. 0082–0082, IEEE Computer Society, 2001.

[34] N. Paladi and A. Michalas, ““One of our hosts in another country”:
Challenges of data geolocation in cloud storage,” in 4th Interna-
tional Conference on Wireless Communications, Vehicular Technology,
Information Theory and Aerospace Electronic Systems, May 2014.

Nicolae Paladi is currently a PhD student at
Lund University and researcher in the Security
Lab at SICS. His research interests include dis-
tributed systems security with a special focus
on cloud computing, infrastructure security, In-
ternet security, virtualization and mobile platform
security, trusted computing, as well as selected
topics on privacy, anonymity and personal data
protection.

Christian Gehramann is heading the Security
Lab at SICS. The security lab has around 12
members and is performing applied research in
security in virtualized systems, security for IoT,
cryptography, authentication theory, security in
cellular networks and on the Internet. Christian
Gehrmann has conducted communication and
computer security research for more then 20
years. He holds a PhD from Lund University and
is also an associate professor at Lund University.

Antonis Michalas received his PhD in Network
Security from Aalborg University, Denmark and
later he worked as postdoctoral researcher at
the Security Lab of SICS. Currently he is an
assistant professor at the University of Westmin-
ster in London, UK. His research interests in-
clude private and secure e-voting systems, repu-
tation systems, privacy in decentralized environ-
ments, cloud computing and privacy preserving
protocols in participatory sensing applications.


	Introduction
	Contribution
	Organization

	Related Work
	Trusted Launch
	Secure Storage

	System model and Preliminaries
	System Model
	Threat Model
	Problem Statement

	Protocol Description
	Cryptographic Primitives
	Protocol Components
	Trusted Launch Construction
	Domain-Based Storage Protection Construction

	Security Analysis
	Implementation and Results
	Test bed Architecture
	Infrastructure Description
	Application Description

	Performance evaluation

	Application Domain
	Conclusion
	References
	Biographies
	Nicolae Paladi
	Christian Gehramann
	Antonis Michalas


