
Domain Based Storage Protection with Secure Access
Control for the Cloud

Nicolae Paladi
Swedish Institute of Computer

Science
Stockholm, Sweden
nicolae@sics.se

Antonis Michalas
Swedish Institute of Computer

Science
Stockholm, Sweden
antonis@sics.se

Christian Gehrmann
Swedish Institute of Computer

Science
Stockholm, Sweden
chrisg@sics.se

ABSTRACT
Cloud computing has evolved from a promising concept to
one of the fastest growing segments of the IT industry. How-
ever, many businesses and individuals continue to view cloud
computing as a technology that risks exposing their data
to unauthorized users. We introduce a data confidential-
ity and integrity protection mechanism for Infrastructure-as-
a-Service (IaaS) clouds, which relies on trusted computing
principles to provide transparent storage isolation between
IaaS clients. We also address the absence of reliable data
sharing mechanisms, by providing an XML-based language
framework which enables clients of IaaS clouds to securely
share data and clearly define access rights granted to peers.
The proposed improvements have been prototyped as a code
extension for a popular cloud platform.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection—
Authentication

Keywords
Cloud Computing; Security; IaaS; Storage Protection

1. INTRODUCTION
Cloud computing continues its path towards wider adop-

tion, and more companies attempt to tap into the promise of
cost savings. Evidence to the success of the Infrastructure-
as-a-Service (IaaS) model are both the increasing competi-
tion among IaaS cloud providers and the rush to migrate to
IaaS clouds among businesses.

Moving traditional infrastructure to shared virtualized en-
vironments raises new security challenges. We can hope that
users are aware of such security issues and strive to obtain
from IaaS clouds security properties – such as execution iso-
lation and control over data – which are on a par with on-
site deployments. However, considering that clients of IaaS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCC’14, June 3, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2805-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600075.2600082.

clouds share execution and storage resources with other ten-
ants, anonymous to them, currently available security solu-
tions have proved to be insufficient. In [1], the authors have
achieved to map the cloud infrastructure, collocate a mali-
cious virtual machine (VM) instance with a target instance
and launch side-channel attacks to extract information. The
authors of [2] describe a range of attacks on management in-
terfaces of public clouds using signature wrapping and XSS
attacks. As a result, the attackers would be able to com-
promise the control interfaces of the IaaS cloud and misuse
the cloud resources of other tenants. Finally, a recent exam-
ple are the “dirty disks” of a public IaaS provider [3], where
clients were able to read from improperly sanitised storage
devices data stored by previous clients. This directly points
to one of the unsolved problems in public IaaS clouds – en-
suring data protection and secure data sharing.

Full-disk encryption has emerged as a solid solution for
data confidentiality protection and is also mentioned in [3]
as a solution to the “dirty disks” problem. However, full-
disk encryption creates hurdles for data sharing, widely rec-
ognized as an essential feature for cloud applications [4].
Despite the variety of available open source cloud manage-
ment platforms (e.g OpenStack, Eucalyptus, OpenNebula),
allocation of read-write permissions for shared data between
collaborating tenants still remains an open problem. In this
paper we address the outlined gap. We improve and extend
previous work by adding capabilities to both grant access to
data to other IaaS cloud clients and assign access permis-
sions.

1.1 Our Contribution
The contribution of this work is twofold. We first present

a secure storage protection protocol that provides per-VM
instance access control and allows the client to control a
VM instance’s read and write access rights over a storage
device at launch time. We introduce an XML-based lan-
guage framework that allows users to define role-based ac-
cess control in order to grant access, based on permissions,
to other users in the IaaS cloud. Our protocol allows a gran-
ular access rights management per VM instance and storage
device. In addition, we analyse our protocol and show it is
resistant under malicious behaviours. Second, we comple-
ment the analysis with extensive experimental results that
show the effectiveness of the protocol.

1.2 Organization
In Section 2, we review some of the most important proto-

cols that provide domain storage protection in public IaaS

clouds and mechanisms for secure data sharing in clouds.
In Section 3, we describe the problem of data protection in
IaaS clouds and define the important terms used through-
out the paper. In Section 4, we describe the system model
of a cloud platform (CP) which stands at the basis of our
protocol implementation. In Section 5, we present our pro-
tocol for secure storage protection data sharing mechanism
in IaaS clouds. Section 7 contains experimental results of the
protocol benchmarks, while Section 8 concludes the paper.

2. RELATED WORK
The importance of data confidentiality protection and iso-

lation of data between IaaS cloud tenants is underlined by
the attention it has received from the research community.

In [5], authors propose a full disk background encryp-
tion model by introducing TCVisor, a hypervisor with a
parapass-through architecture that introduces TPM sup-
port and novel key-management approach. Support for TPM
is added in order to store parts of cryptographic keys and
whole-disk checksums for integrity checking. In addition
to that, Merkle trees are used for integrity verification and
protection of the root value relying on TPM functionality.
However, the poor description of storing/sealing the root
value of the Merkle tree hash, raises doubts about proto-
col’s validity.

The authors of [6] focus on hypervisor-level data protec-
tion and introduce Cloudvisor – a security monitor under-
neath the commodity hypervisor which provides protection
to the hosted VMs. CloudVisor runs in host mode and en-
crypts the data exchange between a VM and the hypervisor
and verifies the integrity, freshness and ordering of disk I/O
data. One immediate limitation of the solution in [6] are the
severe functionality limitations, such as support for a single
VM instance. Our protocol uses the functionality offered by
commodity hypervisors in order to ensure data protection
and does not introduce such severe limitations.

A solution for management of encrypted data is described
in [7], where each information block is encrypted with a dif-
ferent symmetric key, thus aiming for a cryptography-based
access control. An ‘information block’ represents an abstract
concept of arbitrary size. The paper assumes a lazy revo-
cation model, where a user indefinitely maintains access to
the data that she could reach prior to revocation (regardless
of whether or not the data has been accessed before access
revocation). While similar to our model in aspects such as
information blocks and encryption with different symmetric
keys, we propose an active revocation model, where the keys
can not be retrieved once the access is revoked.

Few of the IaaS storage protection schemes address the
problem of sharing files with certain permissions. In [8],
authors analysed access rights management of shared ver-
sioned encrypted data on cloud infrastructure for a restricted
group. in their model they proposed an adoption for en-
abling scalable and flexible key management within cloud.
By representing access rights as a graph and based on [9], au-
thors were able to distinguish between the keys used for en-
crypting data and the encrypted updates on the keys. Thus,
enabling flexible join/leave operations of clients. Despite be-
ing an attractive approach, the requirement for client-side
encryption limits the applicability of the scheme and ignores
the limitations to functionality (such as indexing and search)
that it introduces. In our model all cryptographic operations

are performed on trusted IaaS compute hosts, which are able
to allocate more computational resources than client devices.

Data-Protection-as-a-Service (DPaaS) [4] is a conceptual
architecture which aims to address the need for integrity, pri-
vacy, access transparency, ease of verification and rich com-
putation in a cloud environment. DPaaS recognises the diffi-
culties with full disk encryption and focuses on data sharing,
proposing flexible data units access control lists. Despite
highlighting a range of important issues related to cloud data
protection, DPaaS falls short of proposing a clear implemen-
tation strategy and specific sharing mechanisms that could
be used by cloud tenants. In the current paper, we address
many of the concerns highlighted in [4], propose an XML-
based framework to enable data sharing and describe a test
implementation in the context of a cloud platform.

3. PRELIMINARIES
Our protocol assumes that basic functionality normally

provided by a CP , such as registration and authentication of
a user, is available. Similar to [10], the active parties in our
protocol are domain managers (d), virtual machines (VM),
a secure component (SC) as well as a trusted third party
(TTP). Domain managers can launch new VM instances,
which can in turn create data and securely share it with
other VM instances both within the same and other IaaS
clouds. The proposed protocol also relies on the principles of
trusted computing and capabilities of the Trusted Platform
Module (TPM) [11].

For the purposes of our protocol, each domain manager,
SC and TTP has a public/private key pair (pk/sk). The
private key is kept secret, while the public key is shared
with the community. Furthermore, we assume that during
the initialization phase, each entity obtains a certificate via
the certification authority provided by the CP . These keys
and certificates will be used to protect internal message ex-
changes and hence the communication between the parties
assumed to be secure. Finally, our protocol also relies on
pseudorandom functions [12] – a major tool for the design
of shared key cryptography protocols – to create symmetric
keys.

Next, we define the main components of our protocol.

Disk encryption subsystem.
The disk encryption subsystem is a software or hardware

component responsible for encryption and decryption of data
during respectively writes or reads from a storage device. It
can encrypt storage units such as whole hard drives, parti-
tions, software RAID volumes, logical volumes, and files.
For simplicity, this paper assumes a software-based disk
encryption subsystem, such as dm-crypt, a popular open-
source disk encryption subsystem which uses the Linux ker-
nel Crypto API.

Domain Manager (di).
Domain Managers are responsible for launching virtual

machines and handling the VM instances that they create.
Let DM = {d1, . . . , dn} be the set of all domain managers in
our IaaS cloud. Then, the set of all VMs that each domain
manager di owns is defined as VMi =

{
vmi

1, . . . , vm
i
n

}
.

Domain (Domi).

A domain is an abstract concept referring to a collection
of data. A domain Domi can be created only from a domain
manager which is also responsible for granting permissions
to VM instances within the cloud environment. As a storage
unit, a domain can be any unit supported by the disk en-
cryption subsystem. Let Di =

{
Domi

1, . . . , Domi
n

}
be the

set of all domains created by a domain manager di.

Trusted Platform Module (TPM).
TPM is a tamper-evident hardware cryptographic copro-

cessor which follows specifications of the Trusted Computing
Group (TCG) [11]. In this work, we assume that the IaaS
compute hosts are equipped with a TPM v1.2 chip. An
active TPM records the software state of the platform at
boot time and stores it in its platform configuration registers
(PCRs) as a list of hashes. TPM enables data protection by
securely maintaining cryptographic keys, as well as though
the set of functions it exposes. The bind and seal functions
are particularly relevant for the proposed solution. Accord-
ing to [11], a message encrypted (“bound”) using a particular
TPM ’s public key is decryptable only by using the private
key of the same TPM . Sealing is a special case of the bind-
ing functionality, where the encrypted messages produced
through binding are only decryptable in a certain platform
state (defined by the PCR values) to which the message is
sealed. This ensures that an encrypted message can only be
decrypted by a platform found in a certain prescribed state.
We refer to [11] for a detailed description of the bind and
seal operations.

Trusted Third Party (TTP).
In this paper we assume a “trusted third party”, which

is trusted by the community and plays a key role in our
protocol. We rely on the commonly supported proposition
that a large code base normally contains a proportionally
large number of vulnerabilities [13]. To reduce the code
base, it is important that the TTP only supports the min-
imal necessary functionality. TTP is able to communicate
with components deployed on compute hosts to exchange
integrity attestation information, authentication tokens and
cryptographic keys. In addition, TTP can attest platform
integrity based on the integrity attestation quotes provided
by the TPM on the respective compute hosts, as well as seal
data to a trusted configuration of the hosts. Finally, TTP
can verify the authenticity of a client as well as perform
necessary cryptographic operations.

Secure Component (SC).
SC is a verifiable execution module which performs confi-

dentiality and integrity protection operations on guest VM
instance data. SC is present on all compute hosts and acts
as a mediator between the CP and the TTP . SC is re-
sponsible for forwarding the requests of domain managers
to either the TTP or the disk encryption subsystem, de-
pending on the type of request. In addition, SC is the only
entity from which TTP accepts requests.

Definition 1 (Pseudorandom Function). Let PRF
(K, c) be a family of functions 1 with two inputs, a secret key

1A function family is a map F : K×D → R, where K is the
set of keys of F,D is the domain of F and R is the range of
F . The two-input function F takes a key K and an input
X to return a point Y denoted by F (K,X).

K and a content c. We say that PRF is a pseudorandom
function iff the input-output behavior of a random instance
of the family is “computationally indistinguishable” from that
of a random function.

In this paper, we focus on the following problem:
Problem Statement: A domain manager di, operates a

set of VM instances VMi =
{
vmi

1, . . . , vm
i
n

}
. In addition to

that, di operates a set of domains Di =
{
Domi

1, . . . , Domi
k

}
made available to the VM instances as storage devices. Fi-
nally, a different domain manager dj operates a set of VMs
VMj =

{
vmj

1, . . . , vm
j
n

}
. We aim to create secure mecha-

nisms that will satisfy the following requirements:

• Data stored in each Domi
l should be encrypted;

• Plaintext data from each Domi
l should be revealed only

to VM instances with corresponding access privileges;

• Access privileges for members of VMi to domains in
Di should be exclusively controlled by domain manager
di;

• di should be able to share access privileges for domains
in Di to other domain managers, e.g. dj;

Adversarial Model.
Similar to existing works in the area, we assume that the

adversary is acting under the Dolev-Yao adversarial model
[14]. In this model, malicious nodes can overhear all mes-
sages and may attempt to use them to learn information
that should otherwise remain private. Adversaries can also
create, replay and destroy messages; however, they are not
able to break any cryptographic mechanism.

The notation Ei(.) will refer to the results of the applica-
tion of an asymmetric encryption function that only entity
i can decrypt with her private key.

4. IAAS CLOUD SYSTEM MODEL
We consider an IaaS cloud model as defined by the NIST,

where an IaaS cloud provides“processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which
can include operating systems and applications.” [15]. The
model is based on a CP deployed on multiple server plat-
forms. The CP is a distributed middleware composed of
a series of management services on management hosts and
corresponding service agents deployed on service hosts.

Service hosts can be dedicated to compute resources (com-
pute hosts hosting virtual machines) and/or storage resources.
Management services control vital aspects of the CP such
as scheduling, networking, identity, volume and virtual ma-
chine image management. In a typical CP architecture,
management services and service clients communicate among
themselves using the advanced message queuing protocol
(AMQP) based on a publish-subscribe model. The capa-
bilities of a CP are exposed to domain managers through a
set of APIs, graphical or command line interfaces. Domain
managers use the functionality of the CP in order to operate
VM instances, create storage volumes and custom network
topologies using software defined networks.

The IaaS cloud is maintained by a cloud service provider,
an organization responsible for the operation of the IaaS

cloud. The cloud service provider can be either private or
public. In this paper we assume a public cloud provider,
with multiple domain managers sharing physical resources
through a virtualization layer. On the physical compute
host level, virtualization between the domain managers is
ensured by the hypervisor; communication isolation is en-
sured though VLAN tagging (using the IEEE 801.2Q tags);
CP level isolation relies on the authentication service, which
authenticates domain managers based on their credentials.

Domain managers can create and attach block storage vol-
umes to one or more virtual machine instances in the cloud
environment. Support for storage encryption is offered by a
standard disk encryption subsystem. Domain managers can
also grant access rights on a certain volume to their peers.

5. PROTOCOL DESCRIPTION
Our work is an extension of the protocol presented in

[10] where the authors introduced the principles of “domain-
based storage protection” (DBSP) in a public IaaS cloud.
DBSP is based on a set of protocols that allow an IaaS client
to shift the responsibility for data confidentiality and in-
tegrity to an external TTP – away from the IaaS provider.
This approach relies on two protocols: initial data write
operation and subsequent data read and write operations.
The core idea of this approach is to store information nec-
essary to derive the decryption key for a given data volume
in a header appended to the volume itself. The decryption
key can only be derived by the TTP using the information
stored at write time in the volume header and TTP ’s own
secret key. Besides withdrawing data protection responsi-
bility from the IaaS provider, this enables a fluid migration
of the IaaS client’s encrypted data assets to a different IaaS
provider, while maintaining trust in the same TTP . In ad-
dition, the approach in [10] allows to precede the release of
the decryption key with a remote attestation of the platform
done by the same TTP . Remote attestation would: (i) en-
sure that the execution platform is in a certain trusted state
and (ii) allow the TTP to seal the decryption key to the
trusted configuration of the host to prevent its misuse in the
form of migration to other platforms or usage in a different
platform configuration.

Having briefly covered the background, we proceed with
a high-level overview of our protocol. A domain manager
di launches n VM instances and a set of domains Di ={
Domi

1, . . . , Domi
n

}
that the VM instances can access to

read and write data. To this end, di authenticates to the
CP and requests to generate a domain Domi

k. The request
also describes the VM instances belonging to the set VMi

that should have access to the specified domain and the re-
spective access rights. The CP is responsible for creating
Domi

k and allocating the corresponding disk space. Dur-
ing this process, the SC (part of the CP) contacts TTP ,
to generate a symmetric key (KDomi

k

2) that will be used to

encrypt data in Domi
k. Following the successful creation of

Domi
k, a domain manager must prove the right of a certain

VM instance to access Domi
k.

In the following protocol, the participants exchange a num-
ber of messages. In order to ensure the integrity of the com-

2All data in a single domain is protected with the same
storage protection master key, the domain key. This key is
generated by the TTP and cannot ever leave TTP ′s logical
perimeter.

munication, we assume that each message is signed by the
sender and the receiver can easily verify it.

5.1 Domain Sharing
One of the challenges of cloud computing is to enable users

to securely administer data in a shared environment. De-
spite the fact that the protocol in [10] achieves protection of
data in the cloud, it is considered a rudimentary work since
it lacks sharing functionality. In the following paragraphs,
we bridge this gap by presenting an extension of the proto-
col introduced in [10], which can be added to a typical CP
to allow a domain manager to share a storage domain with
other VM instances in the IaaS cloud.

Domain Registration.
Assume that a domain manager di wishes to create a

domain Domi
k. As a first step, di defines the parameters

needed to create the domain (e.g volume, size, name, etc.)
and a description of the type of data stored in Domi

k. This
description constitutes the metadata (metai

k) of Domi
k and

will be used for domain discovery and data search. Upon
receiving a domain creation request, the CP generates an
XML document (Figure 1), allocates the corresponding disk
space (by e.g. creating a logical volume) and adds metai

k to
the header of the allocated volume. It also adds the domain
credential that will later used by the TTP to the header of
the allocated volume.

1 <DomainCredential scope=”c r ea t e ”>
2 <Credent ia l ID>c r e d : i d</Credent ia l ID>
3 <Timestamp>i s s u e : t ime</Timestamp>
4 <DomainDescription>

5 <DomainID Encoding=”xmlenc : r sa ”>Domi
k</DomainID>

6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager Encoding=”xmlenc : r sa ”>

8 ETTP
(
di

)
9 </DomainManager>

10 <DomainVolume Encoding=”xmlenc : r sa ”>
11 Edi

(volume : id)

12 </DomainVolume>
13 <DomainSize>Edi

(disk : size)</DomainSize>

14 <Metadata>metai
k</Metadata>

15 </DomainDescription>
16 </DomainCredential>

Figure 1: Credential specification for the creation of
a new domain.

Once a domain has been created, di can grant access per-
missions to multiple VM instances. We analyse the problem
of sharing a domain in the following two use cases:

A. Grant access to Domi
k for a VM instance in the set

VMi: Assume di intends to grant access to Domi
k for a VM

instance vmi
l, which is part of the set VMi. To do this,

di requests the launch of a new virtual machine vmi
l and

defines the access domain(s) and respective permissions for
vmi

l. More precisely, di generates and sends to the CP an
XML document as shown in Figure 2 where each encrypted
element (i.e xmlenc:rsa) is protected with pkTTP and thus
TTP is the only one who can decrypt it. Prior to launch-
ing the VM instance with the requested domain(s) attached,
SC checks that element DomainDescription matches the one
stored in the header of the domain Domi

k. If it does, SC
updates the XML structure of Figure 1 by adding the ele-
ment VirtualMachine contained in the VM instance launch
request.

1 <DomainCredential scope=”addVM”>
2 <Credent ia l ID>c r e d : i d</Credent ia l ID>
3 <Timestamp>i s s u e : t ime</Timestamp>
4 <DomainDescription>

5 <DomainID>Domi
k</DomainID>

6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager: id</DomainManager>
8 </DomainDescription>
9 <VirtualMachine manager=”di ”>

10 <VMID Encoding=”xmlenc : r sa ”>ETTP

(
vmi

l

)
</VMID>

11 <Nonce Encoding=”xmlenc : r sa ”>ETTP (r)</Nonce>
12 <permis s i ons Encoding=”xmlenc : r sa ”>
13 <permiss ion>r</ permiss ion>
14 <permiss ion>w</ permiss ion>
15 </ permis s i ons>
16 </VirtualMachine>
17 </DomainCredential>

Figure 2: Credential Specification for the addition
of a VM to a domain.

Once vmi
l is launched, di generates a credential as shown

in Figure 3 that will be used later to prove that di has
granted access permissions for Domi

k to vmi
l.

1 <DomainCredential scope=”accessDomain ”>
2 <Credent ia l ID>c r e d : i d</Credent ia l ID>
3 <Timestamp>i s s u e : t ime</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc : r sa ”>dom:id</DomainID>
6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager: id</DomainManager>

8 <Metadata Encoding=”xmlenc : r sa ”>ETTP

(
metai

k

)
</

Metadata>
9 </DomainDescription>

10 <VirtualMachine manager=”di ”>

11 <VMID Encoding=”xmlenc : r sa ”>ETTP

(
vmi

l

)
</VMID>

12 <Nonce Encoding=”xmlenc : r sa ”>ETTP (r)</Nonce>
13 </VirtualMachine>
14 </DomainCredential>

Figure 3: Credential for presentation of granted per-
missions for a domain.

B. Grant access to Domi
k for a VM instance in the set

VMj: Assume di intends to grant access to Domi
k to a VM

instance vmj
l , which is part of the set VMj (operated by

domain manager dj). As we have mentioned earlier, a VM
instance must receive a credential from the corresponding
domain manager in order to access files in a specific do-
main. In this case though, the manager of Domi

k is not
the owner of vmj

l , so in order to grant access to vmj
l , dj

requests a valid credential from di. Upon reception – if di
accepts to give access to vmj

l – it generates a credential as
described in Figure 2 and sends it to the CP . Domain man-
ager di also generates a random nonce rj and sends Edj (rj)
to dj as well as ESC (rj) to the CP . Upon reception, dj
decrypts it with skdj , and sends it to CP which validates

that D (ESC (rj)) = D
(
Edj (rj)

)
. Then, SC adds the cor-

responding VM to the credential of Domi
k as described in

the previous case. More exactly, SC will add a nonce, the
VMID and the access permissions (presented in Figure 4)
to the credential of Domi

k (XML document in Figure 1).

5.2 Domain Access
Next, we describe the domain confidentiality protection

mechanism and present the protocol to retrieve encryption
keys and provide access to plain text data for authorized
VM instances.

We assume that vmi
l requires access to the data in Domi

k.
To grant access, SC must retrieve from TTP the symmetric
key (Ki

k) used to confidentiality protect data in Domi
k. The

1 <VirtualMachine manager=”di ”>

2 <VMID Encoding=”xmlenc : r sa ”>ETTP

(
vm

j
l

)
</VMID>

3 <Nonce Encoding=”xmlenc : r sa ”>ETTP

(
r′

)
</Nonce>

4 <permis s i ons Encoding=”xmlenc : r sa ”>
5 <permiss ion>r</ permiss ion>
6 </ permis s i ons>
7 </VirtualMachine>

Figure 4: Credential Specification for the addition
of a VM to a domain.

domain manager operating vmi
l sends a request to CP in

order to mount Domi
k to the virtual machine instance; the

call is forwarded to and processed by SC. In the request,
di sends the previously generated credential (Figure 3) and
proves that vmi

l has access to Domi
k. SC extracts from the

header of the domain Domi
k a data structure (Figure 1) that

contains information about the domain and sends it to TTP
along with the unique identifier of vmi

l.
As a first case, we assume that no data has been stored

in Domi
k yet, which implies that Ki

k has not been generated
yet. When TTP receives the message from SC, it first de-
crypts ETTP

(
vmi

l

)
from the XML document presented in

Figure 3 and locats the ID of the VM instance contained
in the credential. Next, TTP checks if the corresponding
block (i.e where VMID element is equal with vmi

l) exists in
the credential of the domain. If it does, TTP decrypts the
metadata and checks that values match in both XML files.
It then finds the permissions of vmi

l for Domi
k by decrypting

permissions from the domain credential.
Once TTP has validated that vmi

l is authorized to access
Domi

k, it performs a remote attestation of the compute host
where vmi will be launched (for simplicity, we assume that
this is is also the source of the key request). The remote
attestation involves obtaining a quote of the compute host’s
TPM platform configuration registers to evaluate whether
the platform can be trusted. We leave out the minutiae of
remote attestation and evaluation of platform trust level and
refer the reader to [16].

In the event of a positive result of the TPM remote attes-
tation, TTP generates a symmetric key (Ki

k) that encrypts
data in the domain. To create the key, TTP generates a
random nonce rk and evaluates the following:

Ki
k = PRF

(
metai

k‖rk,KTTP

)
,

where metai
k‖rk is respectively the concatenation of meta-

data and the random generated nonce, and KTTP is a master
key that does not leave the security perimeter of TTP . Af-
ter generating the symmetric key for Domi

k, TTP seals it
to the trusted configuration of the compute host (similar to
the key sealing procedures already described in [10, 16]) and
returns to SC the response shown in Figure 5.

Upon receiving the message, SC first decrypts ESC

(
vmi

l

)
and checks if the request was sent from the VM instance con-
tained in the response. If it was, SC calls the local TPM
to unseal the key which – if the compute host remained in
the earlier trusted state – reveals Ki

k. SC then uses it as
input to the disk encryption subsystem on the compute host
where vmi

l is running. The disk encryption subsystem seam-
lessly decrypts the mounted volume hosting Domi

k. Next,
the volume containing Domi

k is mounted as a disk device on
vmi

l – with read-write or read-only rights, depending on the
permissions granted by the domain owner.

1 <response>
2 <DomainKey Encoding=”xmlenc : r sa ”>

3 Edmcrypt

(
Ki

k

)
4 </DomainKey>

5 <VMID>ESC

(
vmi

l

)
</VMID>

6 <Metadata>metai
k‖ETTP

(
rk

)
</Metadata>

7 <permis s i ons>
8 <permiss ion>r</ permiss ion>
9 <permiss ion>w</ permiss ion>

10 </ permis s i ons>
11 </ response>

Figure 5: Response of TTP after the generation of
the domain symmetric key.

The case where Ki
k has already been generated is similar,

with the only difference that to recalculate Ki
k, TTP will

have to decrypt ETTP (rk) contained in the updated meta-
data and use it as an input to the pseudorandom function.

5.3 Revocation
There are cases when credentials of a VM may need to

be revoked if a VM instance misbehaved, lost access rights
to a domain, or permissions have been changed. In this
section we describe the mechanism to change or revoke the
permissions of a VM instance for a specific domain.

Following our previous scenario, we assume that di wants
to change the access rights of vmi

l for the domain Domi
k.

We analyse the following two scenarios for di:
A. Prevent vmi

l from accessing Domi
k: Assume di wants

to completely remove vmi
l from the list of VMs that are au-

thorized to access Domi
k. First, di generates the XML file

shown in Figure 6 and sends it to CP , which forwards the
request to the SC on one of the host platforms. Upon recep-
tion, SC extracts the credential for Domi

k from the header
of the volume and sends it to TTP along with the XML re-
ceived from di. TTP decrypts ETTP

(
vmi

l

)
and finds the ID

of the VM that should remove its access rights. Then, TTP
finds the corresponding block in the XML that contains all
the VM instances that have access to Domi

k and removes
it. Finally, TTP returns to SC an updated XML document
which does not contain vmi

l and SC updates the header of
Domi

k with the fresh credential.

1 <VMCredential scope=”Revoke ”>
2 <Credent ia l ID>c r e d : i d</Credent ia l ID>
3 <Timestamp>i s s u e : t ime</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc : r sa ”>dom:id</DomainID>
6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager: id</DomainManager>
8 </DomainDescription>
9 <VirtualMachine manager=”di ”>

10 <VMID Encoding=”xmlenc : r sa ”>ETTP

(
vmi

l

)
</VMID>

11 </VirtualMachine>
12 </VMCredential>

Figure 6: Request to revoke the credential of a VM.

B. Change permissions of vmi
l on Domi

k: In this case
we assume that di intends to just change the permission for
vmi

l ‘read-write’ to ‘read’. The procedure that is followed
is identical to the one in scenario A. di generates a new
credential for vmi

l (Figure 7) and sends it to TTP via CP .
Additionally, SC sends to TTP the credential of the domain
that is stored in the header of the volume. TTP follows
the same steps in order to update the credential of Domi

k.
Following the successful update of the domain credential,
SC sends the fresh credential to di who can use it in the

future in order to prove that vmi
l is authorized to access the

corresponding domain under certain permissions.
In both cases A and B, di has the option to receive a

from TTP a confirmation proving that the permissions for
vmi

l have indeed been withdrawn or modified. To do this,
prior to the request di generates a random nonce rrev, en-
crypts it with TTP and sends it along with the credential
of vmi

l. Upon reception TTP – apart from altering the per-
missions of the corresponding VM – decrypts ETTP (rrev)
and returns to di H(rrev||vmi

l)
3. Given that by definition

the TTP will not deviate from the protocol, the returned
hash is an implicit confirmation of the fact that TTP has
received the update request and has modified the credential
accordingly.

1 <VMCredential scope=”UpdatePermissions ”>
2 <Credent ia l ID>c r e d : i d</Credent ia l ID>
3 <Timestamp>i s s u e : t ime</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc : r sa ”>dom:id</DomainID>
6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager: id</DomainManager>
8 </DomainDescription>
9 <VirtualMachine manager=”di ”>

10 <VMID Encoding=”xmlenc : r sa ”>ETTP

(
vmi

l

)
</VMID>

11 <Nonce Encoding=”xmlenc : r sa ”>ETTP

(
r′

)
</Nonce>

12 <permis s i ons Encoding=”xmlenc : r sa ”>
13 <permiss ion>r</ permiss ion>
14 </ permis s i ons>
15 </VirtualMachine>
16 </VMCredential>

Figure 7: Request for altering permissions of vmi
l on

domain Domi
k.

6. SECURITY ANALYSIS
In this section, we analyse the behaviour of our protocol

in several attack scenarios. In all of the attack scenarios,
we assume that the involved parties follow the Dolev-Yao
adversarial model [14] and can overhear all messages and
may attempt to use them in order to learn information that
otherwise should remain private or gain access to domains
that are not authorized to.

Unauthhorized access to a domain: Assume that a ma-
licious domain manager dm attempts to gain unauthorized
access to a domain Domi

k for a VM instance vmm
l . To do

so, the domain manager will have to prove that she owns a
credential for accessing Domi

k. The domain manager self-
generates a credential and presents it to the CP in order
to gain access to Domi

k (as shown in Figure 3). This can
be easily done since the encrypted information contained in
a credential is mainly generated by using the public key of
TTP , which is also responsible for validating the correctness
of the credential. As described in Section 5, SC retrieves the
corresponding metadata from the header of Domi

k and for-
wards both artefacts to TTP . Upon reception, TTP verifies
the correctness of the credential received from dm. To this
end, TTP decrypts the information contained in both arte-
facts and finds out that the ID of vmm

l is not in the list of
the authorized VM instances for the domain Domi

k. Thus,
this attack cannot be launched.

Using a valid credential from another domain manager:
In such a scenario we assume that a malicious domain man-
ager dm attempts to gain unauthorized access to a domain
Domi

k for vmm
k by providing a valid credential that belongs

3H(.) is a secure cryptographic hash function such as SHA3

to another VM instance, i.e. effectively impersonating the
righteous domain manager. We assume that dm gets a valid
credential for Domi

k that was created for vmi
k. This can be

done in two different ways: either dm can intercept a mes-
sage in which di sends the credential to SC in order to access
Domi

k; or – if we assume that di is also acting maliciously
– di can cooperate with dm, and reveal to dm the credential
created for vmi

l. In both cases, dm will be able to convince
TTP about the validity of the credential. Thus, TTP will
first attest the trusted configuration of the host where the
virtual machine vmm

l will reside, then will calculate the do-
main key and will send back to SC the metadata showed in
Figure 5. Upon reception, SC first decrypts ESC

(
vmi

k

)
and

checks whether the domain manager requested to grant ac-
cess to the VM instance stated in the response of the TTP .
In the above attack scenario, SC will drop the request since
the VMID received from TTP does not correspond to the
VM instance for which access to Domi

k was requested. We
can conclude that such an attack would only be possible if
malicious domain managers can change their identity.

Using remote TPM attestation and the TPM seal oper-
ation, we obtain the confidence that SC will act according
to the protocol and will verify that the requesting VM in-
stance identifier matches the VM instance identifier autho-
rized in the response obtained from the TTP . The domain
decryption key is only made available to the target compute
host with a trusted platform configuration, and can not be
accessed in plain text once the compute host changes its
platform configuration.

7. EXPERIMENTAL RESULTS
In order to measure the performance of the protocol, we

have implemented the SC as a client and a server application
serving the role of the TTP .

Our implementation follows the protocol: SC creates a
request for an encryption key and sends it to TTP , which
derives the encryption key and returns it in encrypted form
together with the meta data.

The experiments aimed to analyse two main performance
metrics: processing time and communication overhead. To
this end, we ran several experiments, in order to measure the
time to request a new encryption key, the duration of the
most computation-intensive or network-intensive operations,
as well as to measure the performance of TTP .

Figure 8: Time required by TTP to process a request
and to generate a key for a domain.

Figure 9: Proportion of execution time spent in
functions during a key request.

In the first phase of our experiments we measured the per-
formance of TTP when serving multiple parallel requests
from SC. We tested the time TTP needed in order to per-
form encryption/decryption operations, generate a domain
key as well as to parse an XML for 10 to 1000 parallel re-
quests. For encryption and decryption, we used the RSA
cryptosystem with a key length of 1024 bits. Figure 8 illus-
trates the results in seconds as a function of the number of
requests. As is evident from the graph, the required process-
ing time is negligible and does not constitute any real burden
to the functionality of the CP . We we have found that, on
average, the time needed for TTP to successfully respond to
SC when receiving 1000 parallel requests is approximately
equal to 0.16 seconds.

In the second phase of our experiments, we measured the
communication delay for a single request sent to TTP by
SC (with a sample of 1000 sequential requests), as well as
the impact of domain key requests on the duration of the
VM instance launch. Table 7 and Figure 9 shows respec-
tively the absolute and relative execution times for opera-
tions performed by SC to obtain an encryption key. Figure 9
indicates that most of the execution time is spent on the de-
cryption of the domain key and the call round trip time (call
RTT). The absolute duration of the encryption key request
is on average 0.025 seconds.

Table 1: Execution times (in seconds) for some func-
tions in the secure component, 1000 requests.

Cumulative time Per call Function

3.300 0.001 RSA Encryption

10.445 0.010 Call RTT

9.001 0.009 RSA Decryption

24.974 0.025 Total Execution Time

In addition to that, we deployed an IaaS cluster using
version “Havana” of OpenStack, a popular CP in order to
measure the time needed for a VM to be launched. This
time would then be compared with the time needed for the

generation of a domain key. As the process of key genera-
tion for the domain of a new VM instance is taking place
in parallel with the VM launch, this comparison would be a
good metric to see whether our protocol affects the perfor-
mance of the CP or not. According to our measurements,
the average time to launch a VM instance is 20.57 seconds
while the average time for a domain key request is 0.025 sec-
onds. Taking into consideration the fact that a domain key
request will usually take place during the launch of a VM,
our protocol does not affect the overall performance of the
CP .

8. CONCLUSION
In this paper we have considered the problem of secure

storage in IaaS environments. More precisely, we proposed a
protocol that ensures confidentiality and integrity protection
of stored information in a cloud environment. Furthermore,
we presented an XML-based language framework that allows
the clients of IaaS clouds to securely share their data and
assign different access rights to users. The analysis was cou-
pled with extensive experimental results which showed that
the proposed language adds only a reasonable overhead to
the operation of a cloud management platform. In our fu-
ture work, we aim to improve the protocol and reduce the
trust base by removing the need for a TTP. While this may
affect the performance of the protocol, it would allow us to
consider more complex attack scenarios which better reflect
the complexity of information flow in IaaS clouds.

9. REFERENCES
[1] Thomas Ristenpart, Eran Tromer, Hovav Shacham,

and Stefan Savage. Hey, You, Get Off of My Cloud:
Exploring Information Leakage in Third-Party
Compute Clouds. In Proceedings of the 16th ACM
Conference on Computer and Communications
Security, CCS ’09, pages 199–212, New York, NY,
USA, 2009. ACM.

[2] Juraj Somorovsky, Mario Heiderich, Meiko Jensen,
Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. All
Your Clouds Are Belong to us: Security Analysis of
Cloud Management Interfaces. In Proceedings of the
3rd ACM Workshop on Cloud Computing Security,
CCSW ’11, pages 3–14, New York, NY, USA, 2011.
ACM.

[3] Michael Jordon. Cleaning up dirty disks in the cloud.
Network Security, 2012(10):12–15, 2012.

[4] Dawn Song, Elaine Shi, Ian Fischer, and Umesh
Shankar. Cloud data protection for the masses. IEEE
Computer, 45(1):39–45, 2012.

[5] M. Rezaei, NS Moosavi, H. Nemati, and R. Azmi.
Tcvisor: A hypervisor level secure storage. In Internet
Technology and Secured Transactions (ICITST), 2010
International Conference for, pages 1–9. IEEE, 2010.

[6] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu
Zang. Cloudvisor: retrofitting protection of virtual
machines in multi-tenant cloud with nested
virtualization. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
pages 203–216. ACM, 2011.

[7] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure
and efficient access to outsourced data. In Proceedings

of the 2009 ACM workshop on Cloud computing
security, pages 55–66. ACM, 2009.

[8] S. Graf, P. Lang, S. Hohenadel, and M. Waldvogel.
Versatile key management for secure cloud storage.
Submitted at EuroSys, 11(11.4):2012–13, 2012.

[9] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and
B. Plattner. The versakey framework: Versatile group
key management. Selected Areas in Communications,
IEEE Journal on, 17(9):1614–1631, 1999.

[10] Nicolae Paladi, Christian Gehrmann, and Fredric
Morenius. Domain-Based Storage Protection (DBSP)
in Public Infrastructure Clouds. In Secure IT Systems,
pages 279–296. Springer, 2013.

[11] Trusted Computing Group. TCG Specification,
Architecture Overview, revision 1.4. Technical report,
Trusted Computing Group, 2007.

[12] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to Construct Random Functions. J. ACM,
33(4):792–807, August 1986.

[13] Michael Hohmuth, Michael Peter, Hermann Härtig,
and Jonathan S Shapiro. Reducing TCB size by using
untrusted components: small kernels versus
virtual-machine monitors. In Proceedings of the 11th
workshop on ACM SIGOPS European workshop,
page 22. ACM, 2004.

[14] D. Dolev, Stanford University. Computer Science
Dept, and A.C. Yao. On the Security of Public Key
Protocols. Report (Stanford University. Computer
Science Dept.). Department of Computer Science,
Stanford University, 1981.

[15] P. Mell and T. Grance. The NIST definition of cloud
computing (draft). NIST special publication, 800, 2011.

[16] Nicolae Paladi, Christian Gehrmann, Mudassar
Aslam, and Fredric Morenius. Trusted Launch of
Virtual Machine Instances in Public IaaS
Environments. In Taekyoung Kwon, Mun-Kyu Lee,
and Daesung Kwon, editors, Information Security and
Cryptology – ICISC 2012, volume 7839 of Lecture
Notes in Computer Science, pages 309–323. Springer
Berlin Heidelberg, 2013.

