
“One of Our Hosts in Another Country”: Challenges
of Data Geolocation in Cloud Storage

Nicolae Paladi
Security Lab

Swedish Institute of Computer Science
& Lund University, Sweden

nicolae@sics.se

Antonis Michalas
Security Lab

Swedish Institute of Computer Science
Stockholm, Sweden

antonis@sics.se

Abstract—Physical location of data in cloud storage is an
increasingly urgent problem. In a short time, it has evolved from
the concern of a few regulated businesses to an important consid-
eration for many cloud storage users. One of the characteristics of
cloud storage is fluid transfer of data both within and among the
data centres of a cloud provider. However, this has weakened the
guarantees with respect to control over data replicas, protection of
data in transit and physical location of data. This paper addresses
the lack of reliable solutions for data placement control in cloud
storage systems. We analyse the currently available solutions and
identify their shortcomings. Furthermore, we describe a high-level
architecture for a trusted, geolocation-based mechanism for data
placement control in distributed cloud storage systems, which are
the basis of an on-going work to define the detailed protocol and
a prototype of such a solution. This mechanism aims to provide
granular control over the capabilities of tenants to access data
placed on geographically dispersed storage units comprising the
cloud storage.

Index Terms—Trusted Cloud Geolocation, Secure Cloud Com-
puting, Data Protection

I. INTRODUCTION

In the last few years, cloud computing has seen a rapid
evolution and tends to be one of the fastest growing segments
of the IT industry. Cloud computing offers additional benefits
to businesses by providing flexible infrastructure at lower costs,
greater scalability and improved disaster recovery.

As a result, the amount of data stored in the cloud by
individuals and companies has grown at a rapid pace. However,
despite strong trends towards migration of workloads and
storage to the clouds, many users and decision makers voice
concerns about the security and privacy of their data. In the
early stages of cloud computing, users were sceptical of the
capabilities of cloud computing to securely store their data.
This increasing demand for security mechanisms to ensure the
safety of stored data resulted in extensive research efforts to
build protocols for secure storage protection [1]–[3]. However,
the continuous evolution of services offered by cloud providers
are expanding demonstrated that storage protection mechanisms
alone seem insufficient.

Lately, along with the already traditional questions about the
safety of cloud environments we have also seen concerns about
the physical location of data and its availability in different
jurisdictions. By storing data in the cloud, users hand it over to
a provider that may have data centres in different geographical
locations, countries or even continents. However, organizations
that work with sensitive data – such as health records, or

financial data – need complete control over the physical storage
location and data access. As a result, storing sensitive data in
the cloud complicates adherence to regulatory compliance laws,
since such data may fall under different regulations depending
on where it is physically stored. If for example data is moved
to a different country, a different set of rules may apply.

Data location is one of the most common compliance issues
that an organization faces [4], [5]. Usage policies and options
for physical placement of data in the cloud will impact the de-
cision of an organization with regard to usage of cloud services.
By moving data beyond their technological and geographic
borders, organizations risk losing control of how their data
complies with the local legal frameworks. There is thus a clear
need for mechanisms that would allow all cloud storage users
to select the territories where their data can be stored as well
as verify the exact location of their data.

A. Our Contribution

In this invited paper, we present a theoretical analysis of
the existing trusted geolocation systems for the cloud. We use
this analysis to demonstrate the inefficiencies, as well as the
strengths of existing protocols and redefine the important re-
search questions in cloud data geolocation in the hope to spawn
further research in the area. To the best of our knowledge, this
is the first work that provides a collective description of such
systems. This description can provide essential knowledge to
protocol designers and help them avoid common pitfalls and
design better trusted geolocation solutions for the cloud storage.

B. Organaziation

In Section II we define the problem of trusted geolocation in
cloud computing and the primitives used throughout the paper.
In Sections III and IV, we analyze the main proposed solutions
for data geolocation in cloud storage. In Section V, we present
a novel high-level architecture for data placement control in
cloud storage while in Section VI we conclude the paper.

II. PROBLEM STATEMENT & DEFINITIONS

In this section, we define the problem of trusted geolocation
in cloud computing along with the primitives that we use in the
rest of the paper. All of the protocols presented in this paper
consider a cloud service provider (CSP) which uses a set of
hosts distributed in different geographic locations.

CSP ’s Locations & Hosts: We assume that a CSP uses a
set of geographically distributed hosts. Let L = {l1, . . . , ln} be
the set of all locations where CSP can store user data. Then
the set Si =

{
si1, . . . , s

i
k

}
is defined as the set of all hosts

owned by CSP in a location li.
Trusted User Locations: Each user ui who wishes to store

a file f needs to define a list of trusted locations. Let Ti ⊆ L
be the set of all trusted locations for user ui. Then the set of
hosts in Ti is denoted as STi =

{
sTi
1 , . . . , sTi

l

}
.

Distance Between a Host & a Location: Most of the
protocols presented in this paper are using distance bounding
techniques in order to measure the distance between a host and
a location. Therefore, we denote the distance between a host
sik and a location lj as follows:

dist
(
sik, lj

)
=

 0, if sik is located in lj

|li − lj |, otherwise

Proof of Retrievability (PoR): PoR was introduced in
[6] and is a cryptographic proof of knowledge scheme which
enables a user (verifier) to determine whether a host (prover)
possesses a file f . More precisely, a host can prove to a user
that she can retrieve the file without having knowledge of f . A
PoR scheme consists of five algorithms, but for simplicity, in
the rest of the paper we denote by POR(P, V) an execution
of the protocol between a prover P and a verifier V .

Trusted Platform Module (TPM): TPM is a tamper-
evident hardware cryptographic coprocessor which follows the
specifications of the Trusted Computing Group [7]. An active
TPM records the software state of the platform at boot time
and stores it in its platform configuration registers (PCRs) as a
list of hashes.

Problem Statement: Let U = {u1, . . . , un} be the set of
authorized users of the CSP . We assume that a user ui wishes
to store a file f in the storage cloud provided by CSP . The
problem is how to achieve the following:

1) ui must be able to select a set of locations in which f
should be stored;

2) ui must have the option to validate the location of f at
any time;

3) ui must ensure that CSP does not store plaintext replicas
(fri) of f outside of the allowed geographical area(s);

III. DISTANCE BASED PROTOCOLS

Despite the abundance of secure storage and trust establish-
ment schemes in cloud computing, there is a clear lack of
protocols that address the problem of data placement control.
Furthermore, most of the existing work relies on techniques
where the location of a host is calculated based on the round
trip time (RTT) measurements between a responder (host) and a
requester (user, CSP or a third party). In the remainder of this
section, we will analyze the most important trusted geolocation
schemes published to date. This analysis will help us expose
drawbacks and inefficiencies of the existing works as well as
the strengths of each protocol.

Before proceeding with the description of the protocols, we
need to describe their adversarial model. Most of the following

protocols assume an economically rational adversary that aims
to reduce costs through data migration in spite of contractual
agreements. As described in [8] and [9] an economically
rational adversary will avoid storing data needlessly but can
deviate from the protocol when it believes it is being audited.

A. LoSt: Location Based Storage [10]

Watson et al. [10] showed that there are limits to the accuracy
of verifying the location of data in a cloud storage. The
authors demonstrated that when a malicious CSP colludes with
malicious hosts, it is infeasible for a user to correctly verify the
exact location of the files. Furthermore, authors of [10] were
the first to take into consideration cases where two or more
malicious hosts collude and make copies of the stored files.
This assumption led them to argue that the task of restricting
where the geographic location of data is impossible. In addition,
they suggested a proof of location (PoL) scheme that can be
used by a user in order to obtain the location of a stored file.
The proposed protocol is composed of two major phases, Store
and Locate.

Store: A user ui wishes to store a file f in a certain
location lj ∈ Ti. To do this, ui encodes f , generates a tag
taglj and sends it together with lj and the encoding type to
CSP . Upon reception, CSP is responsible to select a set of
hosts (T ⊆ Si) within lj that will store the encoded file E(f)
as well as replicas of the file in each host. Additionally, CSP
can re-encode each replica with a different key for each host.

Locate: In this phase ui needs to verify that E(f), as well
as all its copies, are stored on hosts within the geographical
borders of lj . During the initialization step, ui sends a request
to CSP querying the list T of all hosts which store f . At
this point, authors assume that there is a trusted landmark
infrastructure L = {L1, . . . ,Ln}, independent from the storage
system, through which a user can interact with the hosts of
the CSP . ui forwards Sf to the trusted landmarks that are
responsible for individually challenging each host in the list.
Each landmark Li verifies that each host in Sf holds a copy of
f by running POR(T ,Li), ∀ s ∈ T . Then, for every host
that proves the fact of holding a copy of f , Li calculates
the approximative location by measuring the network latency.
The results are then returned to ui, which is responsible for
verifying that each location is an element of the set Ti.

Strengths: The main advantage of LoSt is the analysis
which yield list of attacks applicable to protocols that use
latency based techniques in order to locate data stored in the
cloud. More precisely, authors presented two attacks that allows
a malicious server to lie about its location. The first attack
is called shortening, where a malicious server ADV pretends
to be closer to a location than it really is; the second one is
called lengthening, where ADV pretends to be farther from
a location. Every time ADV receives a request to prove that
holds a file f , it uses the dist function in order to calculate
the distance of its current location with the claimed location.
If the distance is smaller than the one that verifier is expecting,
ADV simply adds the appropriate delay to the communication.
In the case where the distance is greater than the claimed
one, ADV colludes with a proxy server which is close to the
claimed location and holds f . The proxy will be responsible for

answering the challenges needed for the verification on behalf
of ADV .

Furthermore, authors showed how to construct a PoL
scheme from a geolocation and a PoR scheme. Additionally,
they improved the efficiency of the construction by introducing
recoding, a new property for PoR’s which reduces the compu-
tation and communication cost of the user.

Limitations: To verify of the location of a stored file,
authors posit that a set of trusted landmarks exists and will
be responsible for verifying the existence of a file on a host.
This requirement makes the protocol difficult to implement in
practice, since it would require major changes to the infrastruc-
ture of a cloud provider.

B. GeoProof [11]

A. Albeshri et al. [11], [12] proposed a protocol which
combines a PoR scheme with a time-based distance-bounding
protocol to determine the distance between a data centre and
a verifier. The proposed solution assumes that a tamper-proof
GPS device is attached to the local network of the CSP and a
third party will communicate with this device in order to verify
the location of the stored data on behalf of a user.

Similar to the previous protocol, GeoProof consists of two
phases, Store and Locate.

Store: During the initialization step, ui splits a file f into
n shares f = {f1, . . . , fn}. From the calculated shares, ui

creates k-block chunks and applies an error correction code
to each chunk. This process results in the generation of a
new file f ′, where ui encrypts the data with a symmetric
algorithm, reorders the blocks of E(f ′) and splits the result
into n shares E(f ′) = {Ef1 , . . . , Efn}. For each generated
share, ui calculates the MAC value and the result is the file
ffinal that will be stored in the cloud.

Locate: In order for ui to verify the location of a file, she
sends ffinal to the CSP . Recall that ffinal consists of n shares
and each share is associated with a tag tagi. The third party
generates a random nonce r and sends it back to ui along with
the total number of shares that ffinal contains as well as the
number of shares that will be checked during the verification
protocol. Upon reception, ui generates a random challenge
c, such that c = {c1, . . . , ck} ⊆ {1, . . . , n}. Then, for each
ci, ui sends ci to the CSP . Upon reception, CSP finds the
corresponding block from ffinal and replies to ui by sending
the corresponding share concatenated with the corresponding
tag. After k rounds, ui will have received responses for all the
challenges from the set c. ui can then find the approximative
physical location of the file by calculating the RTT.

Strengths: In [12] authors present an enhancement of the
original paper [11] where they manage to avoid the delay in
computation of the PoR scheme and thus reduce the host-
side delay in returning the PoR proof. Furthermore, storage
protection is provided by both encrypting the file to be stored
and by splitting and creating a random order for the generated
shares, thus hindering the attacker from reconstructing the file.
Finally, authors provided experimental results for hard disk,
LAN and Internet latency.

Limitations: The GeoProof protocol suffers from two
main drawbacks. First, the paper does not address the copies
of the data stored in remote locations. Second, even though

distance-bounding protocols are very sensitive to timing delays,
no solution is proposed for such attacks. Furthermore, there is
no discussion on how a user can select the locations in which
she wishes to store a file. Finally, the paper does not provide
any solution to uniquely identify the storage hosts of the cloud
service provider.

C. Do You Know Where Your Cloud Files Are? [8]

Authors address the question of determining the physical
location of data in a distributed IaaS storage. Benson et al.
propose a method for determining the location of data in IaaS
storage with a per-data center granularity. The solution assumes
that the locations of all data centres where the CSP stores data
are known, that the CSP does not have any exclusive Internet
connection between the data centres and that for each data
center, there is a trusted third party node located geographically
close to it, relative to the distance between the data centres.

The proposed method uses the Haversine distance1 as a
passive distance measurement between the data centers to
determine the location of the data centres where a certain piece
of data is stored.

In addition, the paper discusses techniques to determine the
location without having the list of data centres disclosed and
detect the changes within a location. Apart from the proposed
method itself, the authors contribute with a solid overview of
the cloud data geolocation approaches.

Strengths: The protocol does not require additional ref-
erence points, except the known locations of data centres.
Furthermore, authors provide extensive experimental results by
collecting data from different locations using the PlanetLab test
bed [13].

Limitations: The main drawback of the proposed solution
is that it does not deal with copies of the data stored in remote
locations. Ignoring this aspect makes the problem of trusted
geolocation trivial. Moreover, authors incorrectly assume that
the CSP does not have dedicated communication channels
between the data centres, ignoring the use of dark fiber by
CSP s. Finally, during the experiments the authors do not
include the measurements regarding packet loss, making the
results unreliable since a malicious provider could always drop
packets.

D. Geolocation of Data in the Cloud [9]

Gondree and Peterson [9] proposed a Constraints-Based Data
geolocation (CBDG) solution for determining the location of
data and its “binding” to specific locations2. More precisely,
they extend the solutions in [8], [14] by providing a generic
framework for actively monitoring the location of stored data
in the cloud using latency based techniques.

The suggested approach combines probabilistic provable data
possession with geolocation in a CBDG protocol, which builds
closely on a MAC-based PoR scheme with some additional
steps. The protocol assumes an initial model building stage,

1The Haversine formula (haversin(θ) = sin2(θ
2

) = 1−cos(θ)
2

) is used to
calculate great-circle distances between two points on a sphere from their
longitudes and latitudes.

2Binding is here used in the sense of detecting occurrences of data misplace-
ment, rather than data binding in the meaning common in trusted computing

where a set of landmarks L throughout the analyzed geograph-
ical region, each building a latency-distance estimation model.
Furthermore, PoR challenges (similar to the challenge queries
Q) in [15] are divided between L. Using its latency-distance
model, each landmark generates a circular constraint of a radius
rL centered on L. The geolocation step of the protocol uses
the intersection of geolocation constraints [rL] to determine the
region where the data resides.

Strengths: The proposed solution combines provable data
possession with data geolocation. In addition to that, it provides
a more generic framework than the previous works ([8], [14]),
which allows any distance latency model – including topology-
aware models – to be used.

Limitations: Despite the advantages over the previous
works [8], [14], the proposed solution does not overcome their
main drawbacks. It does not provide any solution for replicas
of the data stored in remote locations; furthermore, proper
functioning of the protocol requires a set of landmarks placed
close to the data centres of the CSP , in order to run latency-
based distance estimation models.

IV. USING A HARDWARE ROOT OF TRUST IN DATA
GEOLOCATION

In Section III, we reviewed several proposed protocols for
data geolocation in cloud storage and exposed a range of critical
limitations of the distance-bounding protocols applied to data
geolocation. A complementary approach is to store geolocation
data directly on the storage host, protected by a hardware root
of trust. We continue by a review of two proposed solutions
that rely on a hardware root of trust in order to either control
or verify the placement of data in a particular jurisdiction [16],
[17].

A. Leading the way: NIST 7904

The National Institute of Standards and Technology (NIST)
has described a prototype implementation for trusted geoloca-
tion in the cloud [17]. The prototype relies on the combination
of trusted computing, Intel Trusted Execution Technology and
a set of manual audit steps in order to verify and enforce data
location policies. This is done in several stages: (i) platform at-
testation and safe hypervisor launch, which ensures that the host
platform is running a trusted software stack; this stage results
in the creation of a trusted computing pool composed of hosts
with an attested platform state; (ii) out-of-band provisioning of
geolocation data to the platforms in the trusted computing pool;
(iii) trust-based and geolocation-based workload migration –
this stage aims to ensure that workloads (such as data storage
and computation) are only placed on hosts that belong to the
trusted computing pool.

The hardware root of trust is defined as “inherently trusted
combination of hardware and firmware that maintains the
integrity of the geolocation information and the platform.”, e.g.
TPM. The solution assumes that geolocation information is
bound along with platform metadata and stored in the TPM.
The information is later accessed in stage (iii) in order to verify
the integrity of the host and the location of the platform.

Strengths: The use of a hardware root of trust provides
some additional guarantees with regard to the trustworthiness
of the platform in the protocol context.

Limitations: The described proof of concept is based
on a closed-source software stack; the solution description
lacks important elements and does not explain the mechanism
of the out-of-bound provisioning of geolocation information
to the non-volatile index of the TPM; finally, the solution
relies on policy assurances but does not describe a strong link
between the declared geolocation of the platform and placement
of the workload. The lack of reliable assurance mechanisms
increases the risks brought by trivial operator mistakes and
policy misconfiguration which could result in migrating clear
text data outside the trusted computing pools.

Given the fact that the prototype described in [17] is built
using proprietary software, we can not present a practical attack
against this approach. However, we can perform a theoretical
vulnerability assessment. While [17] does not describe a spe-
cific mechanism for out-of-band provisioning of geolocation
data, a theoretical attack would be to impersonate the authority
provisioning the geolocation tag. The goal is to provision
false geolocation information (using the same unnamed out-
of-band mechanism) to a host with trusted configuration si1,
placed in an illegal location i. Since in this case the TPM is
a passive consumer of geolocation data, it would extend it to
the respective PCR in the TPM during the platform launch.
As a result, the host si1 would present geolocation information
corresponding to a host sT1 and would therefore be eligible to
access restricted data and workloads.

Storing information location with the CA

The authors of [16] propose a different approach regarding
the use of TPMs on host platforms for data geolocation in
clouds. The solution assumes that the identity of the host’s TPM
is stored along with the host’s geographical position with the
Certificate Authority (CA). Next, the user of a VM instance
would request an attestation of the host platform in order
to obtain trust guarantees and geolocation data. The solution
further assumes that all VM instances implement a “LocCheck”
client which is able to communicate with a “Location verifica-
tion and integrity check” (LICT) module implemented in the
hypervisor. A two-stage protocol is suggested: the initialization
phase includes remote attestation of the host platform and
physical verification of host location; and the verification phase,
where the user randomly chooses several memory areas (MA)
MA1, . . . ,MAn and interacts with the VM’s “LocCheck”
client that communicates with the virtualization host to obtain
all the necessary manipulations with the local TPM to verify
(through a mediation of the CA) that data is indeed stored on
the platform.

Strengths: Similar to the approach in IV-A, the use of a
hardware root of trust provides some additional guarantees with
regard to the trustworthiness of the platform in the context of
the protocol.

Limitations: The solution assumes that geolocation veri-
fication is done through administrative methods. Besides being
costly and often infeasible due to the sheer number of plat-
forms, this approach does not prevent data replicas from being
stored in other, arbitrary locations. Furthermore, the paper does
not describe any implementation results.

While the authors of [16] do not present a detailed implemen-
tation design, we can present a simple theoretical relay attack

for this model. Since in the presence of a malicious CSP the
user ui can not know which VM instance they communicate
with, the CSP can induce ui to believe they are communicating
with an instance VMA running on a host in a trusted location,
sT1 , when in fact it communicates with a modified instance
VMB located on a host in an illegal location, sI1. When ui

decides to verify the location of the instance it communicates
with, it chooses – according to the protocol – a range of
memory values MA1, . . . ,MAn. The memory values are then
copied on to a VMA which is launched on sT1 , which relays
the rest of the communication according to the protocol. While
the authors discuss the lack of incentive for a form of a relay
attack from the CSP because it would require always running
two copies of VM instances, the above described relay attack
only requires the instance VMA to be launched on sT1 during
the geolocaton verification according to the protocol. Since
the verification according to the protocol is not likely to be
done continuously – otherwise the ui would themselves cause
a denial-of-service of the TPM on the host, given that the TPM
has very limited processing power – periodically launching
VMA on sT1 would make sense from an attacker’s point of
view.

V. TRUSTED GEOLOCATION-BASED DATA PLACEMENT

Based on the analysis of the currently proposed solutions for
data geolocation in cloud storage, we provide a new conceptual
architecture that overcomes the above limitations. While a
detailed description and implementation of this architecture
will be presented in an upcoming report, we present here a
set of requirements that such an architecture should satisfy,
along with a high-level overview of the protocol. We consider a
malicious CSP that provides a storage service (using a large-
scale distributed data store) and attempts to store plain text
copies of user-provided data in arbitrary jurisdictions, ignoring
the requirements of its clients; however, we assume the physical
security of storage hosts. The proposed solution aims to fulfil
the following requirements:

1) Plain text data – including all plaintext copies and replicas
– may only reside on storage hosts in T ;

2) Requirement 1 must hold in the face of both accidental
policy misconfigurations and deliberate attempts of the
CSP to place plaintext data on hosts outside T

3) A user ui should not need to verify post factum that her
data is placed in the chosed jurisdiction Ji;

4) A third party – e.g. an auditor – should be able to uniquely
identify the specific hosts where plain text data (including
copies) may reside;

We make several assumptions for the purposes of the solu-
tion: (i) physical security of the data centres is ensured; (ii) the
server platforms are equipped with a hardware root of trust,
e.g. TPM; (iii) all server platforms are equipped with a GPS
receiver. Assumptions (i),(ii) are trivial; however, a remark is
necessary in the case of assumption (iii). While GPS receivers
are currently common on mobile and laptop platforms, they
are less common on server platforms. However, given that
the hardware already exists, we can make a parallel with the
evolution of the TPM (which was initially deployed on laptops)
to assume that GPS devices will shortly be widely available for
server platforms as well.

The solution assumes that a ui uploads exclusively encrypted
data to the cloud storage. The decryption key – along with
a hash of the data and the requirement to store the data in
jurisdiction Ji – is protected with the public key of the TTP
and uploaded along the data. Storage hosts record their platform
state in TPM registers at boot time, as well as the location
data read from the GPS receiver by a kernel module that
communicates between the drivers of the GPS receiver and the
TPM . Upon request from the CSP , TTP attests the storage
hosts of the CSP that are placed within Ji and seals the
decryption key to the trusted configuration of the platform and
the location of the platform. Finally, the storage hosts decrypt
the data provided by ui for further processing.

VI. CONCLUSIONS

In this invited paper, we have presented an analysis of proto-
cols aiming to provide geographic location assurance for cloud
computing environments, as well as provided a thorough list of
strengths and limitations. We hope this comprehensive list of
protocol inefficiencies provide essential knowledge to protocol
designers and will inspire further research in the area to design
better trusted geolocation solutions for cloud storage. Based
on the identified limitations, we have presented a high-level
architectural description of an alternative, trusted geolocation-
based data placement mechanism for cloud storage systems.
This trusted geolocation-based data placement mechanism is
currently under development and will be presented in future
work. Considering that this field is quite young, more work
is needed to identify geolocation mechanisms with stronger
security guarantees and a minimal impact on the functionality
of cloud storage systems.

REFERENCES

[1] N. Paladi, C. Gehrmann, and F. Morenius, “Domain-Based Storage
Protection (DBSP) in Public Infrastructure Clouds,” in Secure IT Systems,
pp. 279–296, Springer, 2013.

[2] M. Rezaei, N. Moosavi, H. Nemati, and R. Azmi, “Tcvisor: A hypervisor
level secure storage,” in Internet Technology and Secured Transactions
(ICITST), 2010 International Conference for, pp. 1–9, IEEE, 2010.

[3] S. Graf, P. Lang, S. Hohenadel, and M. Waldvogel, “Versatile key
management for secure cloud storage,” Submitted at EuroSys, vol. 11,
no. 11.4, pp. 2012–13, 2012.

[4] W. A. Jansen, “Cloud hooks: Security and privacy issues in cloud comput-
ing,” in Proceedings of the 2011 44th Hawaii International Conference
on System Sciences, HICSS ’11, (Washington, DC, USA), pp. 1–10, IEEE
Computer Society, 2011.

[5] B. R. Kandukuri, R. P. V., and A. Rakshit, “Cloud security issues,”
in Proceedings of the 2009 IEEE International Conference on Services
Computing, SCC ’09, (Washington, DC, USA), pp. 517–520, IEEE
Computer Society, 2009.

[6] A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, (New York, NY, USA), pp. 584–
597, ACM, 2007.

[7] Trusted Computing Group, “TCG Specification, Architecture Overview,
revision 1.4,” tech. rep., Trusted Computing Group, 2007.

[8] K. Benson, R. Dowsley, and H. Shacham, “Do you know where your
cloud files are?,” in Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11, (New York, NY, USA),
pp. 73–82, ACM, 2011.

[9] M. Gondree and Z. N. Peterson, “Geolocation of data in the cloud,”
in Proceedings of the Third ACM Conference on Data and Application
Security and Privacy, CODASPY ’13, (New York, NY, USA), pp. 25–36,
ACM, 2013.

[10] G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and
S. Narayan, “Lost: Location based storage,” in Proceedings of the 2012
ACM Workshop on Cloud Computing Security Workshop, CCSW ’12,
(New York, NY, USA), pp. 59–70, ACM, 2012.

[11] A. Albeshri, C. Boyd, and J. G. Nieto, “Geoproof: Proofs of geo-
graphic location for cloud computing environment,” in Proceedings of the
2012 32Nd International Conference on Distributed Computing Systems
Workshops, ICDCSW ’12, (Washington, DC, USA), pp. 506–514, IEEE
Computer Society, 2012.

[12] A. Albeshri, C. Boyd, and J. Nieto, “Enhanced geoproof: improved
geographic assurance for data in the cloud,” International Journal of
Information Security, pp. 1–8, 2013.

[13] L. Peterson, S. Muir, T. Roscoe, and A. Klingaman, “PlanetLab Archi-
tecture: An Overview,” Tech. Rep. PDN–06–031, PlanetLab Consortium,
May 2006.

[14] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A position paper on
data sovereignty: The importance of geolocating data in the cloud,” in
Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’11, (Berkeley, CA, USA), pp. 9–9, USENIX
Association, 2011.

[15] K. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. Rivest, “How to
tell if your cloud files are vulnerable to drive crashes,” in Proceedings
of the 18th ACM conference on Computer and communications security,
pp. 501–514, ACM, 2011.

[16] C. Krauß and V. Fusenig, “Using trusted platform modules for location
assurance in cloud networking,” in Network and System Security, pp. 109–
121, Springer, 2013.

[17] E. Banks, M. Bartock, K. Firftal, D. Lemon, K. Scarfone, U. Shetty,
M. Souppaya, T. Williams, and R. Yeluri, “DRAFT Trusted Geolocation
in the Cloud: Proof of Concept Implementation,” NIST special publica-
tion, vol. 7904, p. 42, 2012.

